1
|
Çelen Yücetürk S, Azaz AD. Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation. Z NATURFORSCH C 2025; 80:9-19. [PMID: 38646860 DOI: 10.1515/znc-2024-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/03/2024] [Indexed: 04/23/2024]
Abstract
The β-glucosidase enzyme was obtained from Trichoderma koningii Oudem. NRRL 54330 under optimal conditions by solid substrate fermentation (SSF) using corn cobs as substrate. The enzyme was purified by two-step procedures, ammonium sulphate precipitation and cefarose-4B-l-tyrosine-1-naphthylamine hydrophobic interaction chromatography, followed by biochemical and kinetic characterisation. The β-glucosidase was obtained from T. koningii using ground corn cob as substrate and Na2HPO4, pH 9, as humidification medium. The optimum conditions for enzyme production by SSF were 30 °C and 6 days. The purification efficiency of the obtained β-glucosidase was calculated to be 22.56-fold with a yield of 73.51 %. In the determination of β-glucosidase activity, p-nitrophenyl-β-d-glucopyranoside (pNPG) substrate was used, and the optimum pH and temperature values at which β-glucosidase showed high activity were determined to be pH 3.0 and 75 °C. The purity of the enzyme and the presence/number of subunits were checked using two different electrophoretic methods, SDS-PAGE and NATIVE-PAGE electrophoretic methods. The K m and V max values of the purified enzyme were determined to be 0.16 mM and 2000 EU respectively. It was also found that d-(+)-glucose and δ-gluconolactone inhibitors exhibited competitive inhibition of β-glucosidase in the presence of pNPG.
Collapse
Affiliation(s)
- Selma Çelen Yücetürk
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, 53003 Balikesir University , 10145 Balıkesir, Türkiye
| | - Ayşe Dilek Azaz
- Department of Biology, Faculty of Science and Literature, 53003 Balikesir University , 10145 Balıkesir, Türkiye
| |
Collapse
|
2
|
Vitor AB, Farias KS, Ribeiro GCA, Pirovani CP, Benevides RG, Pereira GAG, de Assis SA. Cloning, heterologous expression and characterization of β-glucosidase deriving from Moniliophthora perniciosa (Stahel) Aime and Phillips Mora. 3 Biotech 2024; 14:287. [PMID: 39493291 PMCID: PMC11530418 DOI: 10.1007/s13205-024-04128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Β-glucosidase (BGLs) act synergistically with endoglucanases and exoglucanases and then are of great interest for biomass conversion into bioethanol. Thus, the aim of the current study is to produce a recombinant β-glycosidase from Moniliophtora perniciosa expressed in Escherichia coli cells. Enzyme coding sequence expression was confirmed through Sanger sequencing after using wheat bran (WB) and carboxymethylcellulose (CMC) as fungal growth media. Synthetic gene betaglyc-GH1 with optimized codons for E. coli expression was cloned in pET-28a. β-glucosidase recombinant (GH1chimera) was purified using a nickel column and its identity was confirmed through mass spectrometry. The recombinant enzyme presented an apparent molecular mass of 53.23 kDa on SDS-PAGE. Recombinant β-glucosidase has shown hydrolytic activity using p-nitrophenyl-β-D-glycopyranoside (pNPG) as substrate and maximum activity at pH 4.6 and 65 °C. Thus, the results indicate that the application of the GH1chimera in the hydrolysis of lignocellulosic materials to obtain glucose monomers can be efficient. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04128-x.
Collapse
Affiliation(s)
- Alison Borges Vitor
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | - Keilane Silva Farias
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Geise Camila Araújo Ribeiro
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| | - Carlos Priminho Pirovani
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Raquel Guimarães Benevides
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | | | - Sandra Aparecida de Assis
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| |
Collapse
|
3
|
da Silva Almeida LE, de Assis SA. Application of Immobilized β-Glucosidase from Candida boidinii in the Hydrolysis of Delignified Sugarcane Bagasse. Indian J Microbiol 2024; 64:650-670. [PMID: 39010988 PMCID: PMC11246346 DOI: 10.1007/s12088-024-01223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/07/2024] [Indexed: 07/17/2024] Open
Abstract
Candida boidinii is a methylotrophic yeast with wide geographical distribution. In the present study, the microorganism was isolated from the Bahian semiarid and the enzymatic extract containing β-glucosidase was obtained through submerged fermentation. Response surface methodology was employed to optimize of fermentation medium. The higher production of β-glucosidase was obtained after 71 h of fermentation in an optimized medium composed of 3.35% glucose, 1.78% yeast extract and 1% peptone. The optimum pH and temperature of enzymatic activity were 6.8 (citrate-phosphate buffer) and 71.7 °C, respectively. Salts tested (10 mM) CaCl2, Na2SO4 and ZnSO4 promotes the increase of 91%, 45% and 80% of activity, respectively. The enzyme retained 64% ± 2.3 of its initial activity after 1 h heating at 90 °C. The production of reducing sugars was 95.94% after 24 h of hydrolysis and, with the addition of metal ions, this value increased more than 2 times. Among the supports analyzed for immobilization, chitosan showed higher residual activity during reuse. The immobilized enzyme showed higher activity at 60 °C with pH 6 and preserved almost 100% of the initial activity after 30 min at 70 °C.
Collapse
Affiliation(s)
- Larissa Emanuelle da Silva Almeida
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Transnordestina Ave., km 0, BR 116, Feira de Santana, Bahia 44036-900 Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Transnordestina Ave., km 0, BR 116, Feira de Santana, Bahia 44036-900 Brazil
| |
Collapse
|
4
|
Sanguine IS, Cavalheiro GF, Garcia NFL, Santos MVD, Gandra JR, Goes RHDTEBD, Paz MFD, Fonseca GG, Leite RSR. Xylanases of Trichoderma koningii and Trichoderma pseudokoningii: Production, characterization and application as additives in the digestibility of forage for cattle. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications. Int J Biol Macromol 2021; 188:226-244. [PMID: 34371052 DOI: 10.1016/j.ijbiomac.2021.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022]
Abstract
Cellulases play a promising role in the bioconversion of renewable lignocellulosic biomass into fermentable sugars which are subsequently fermented to biofuels and other value-added chemicals. Besides biofuel industries, they are also in huge demand in textile, detergent, and paper and pulp industries. Low titres of cellulase production and processing are the main issues that contribute to high enzyme cost. The success of ethanol-based biorefinery depends on high production titres and the catalytic efficiency of cellulases functional at elevated temperatures with acid/alkali tolerance and the low cost. In view of their wider application in various industrial processes, stable cellulases that are active at elevated temperatures in the acidic-alkaline pH ranges, and organic solvents and salt tolerance would be useful. This review provides a recent update on the advances made in thermostable cellulases. Developments in their sources, characteristics and mechanisms are updated. Various methods such as rational design, directed evolution, synthetic & system biology and immobilization techniques adopted in evolving cellulases with ameliorated thermostability and characteristics are also discussed. The wide range of applications of thermostable cellulases in various industrial sectors is described.
Collapse
|
6
|
Alarid‐García C, Hernández‐Calderón OM, Rios‐Iribe EY, González‐Llanes MD, Escamilla‐Silva EM. Production of β‐glucosidase by
Aspergillus niger
CDBB‐H
‐175 on submerged fermentation. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Cristian Alarid‐García
- Faculty of Chemical Biological Sciences Autonomous University of Sinaloa Culiacán Mexico
| | | | - Erika Y. Rios‐Iribe
- Faculty of Chemical Biological Sciences Autonomous University of Sinaloa Culiacán Mexico
| | | | | |
Collapse
|
7
|
Almeida LEDS, Ribeiro GCA, Aparecida de Assis S. β-Glucosidase produced by Moniliophthora perniciosa: Characterization and application in the hydrolysis of sugarcane bagasse. Biotechnol Appl Biochem 2021; 69:963-973. [PMID: 33855775 DOI: 10.1002/bab.2167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/03/2021] [Indexed: 11/11/2022]
Abstract
β-Glucosidases (BGLs) belong to the group of enzymes of cellulases and act in the last stage of cellulose degradation, releasing glucose molecules, eliminating the inhibitory effect of cellobiose. This study focused on the production, characterization, and application of BGL from Moniliophthora perniciosa in the hydrolysis of pretreated sugarcane bagasse (3% NaOH + 6% Na2 SO3 ), with varying enzymatic loads and reaction times. The enzyme showed an optimum pH of 4.5 and 60°C. It was stable at all temperatures analyzed (50-90°C) and retained about 100% of its activity at 50°C after 60 min of incubation. Among the ions analyzed, BaCl2 increased BGL activity 9.04 ± 1.41 times. The maximum production of reducing sugars (89.15%) was achieved after 48 h with 10 mg of protein.
Collapse
Affiliation(s)
- Larissa Emanuelle da Silva Almeida
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Geise Camila Araújo Ribeiro
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
8
|
Slaný O, Klempová T, Marcinčák S, Čertík M. Production of high-value bioproducts enriched with γ-linolenic acid and β-carotene by filamentous fungi Umbelopsis isabellina using solid-state fermentations. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01545-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AbstractSolid-state fermentation is a useful tool for utilizing different plant-based materials as cultivation substrates in order to produce potentially high-value fermented bioproducts. The aim of the present study was to successfully prepare various types of such bioproducts, using a zygomycetous strain Umbelopsis isabellina CCF2412. Various legume and cereal substrates were utilized effectively, while a few of them were obtained from agricultural waste, which is particularly advantageous from ecological and economic point of view. A common feature of the produced fermented materials was the increased content of different polyunsaturated fatty acids and carotenoid pigments in these bioproducts. Subsequent to the optimization of the solid-state fermentation process using cornmeal as the cultivation substrate, bioproducts enriched with γ-linolenic acid (11.45 mg γ-linolenic acid per gram of bioproduct), β-carotene (50.90 μg β-carotene per gram of bioproduct), and various microbial sterols were obtained. Appropriate n–6/n–3 acid ratio and enrichment of other microbial substances, such as the pigments and sterols mentioned above, in the fermented bioproducts widens the applicability of these bioproducts in different industries. The fermented cereal bioproducts produced in the present study from fermented wheat bran substrate were used for evaluating their application as feed for broiler chicken, and satisfactory results were obtained. Therefore, the present study creates novel opportunities for improving the quality of fermented bioproducts obtained during solid-state fermentation processes, especially for application in the feed industry.
Collapse
|
9
|
Navarro-Mtz AK, Martinez-Garcia R, Urzua-Valenzuela M, Roldan-Sabino C, Kakazey M, Juarez-Arellano EA. High-energy ball milling treatment of soybean for Bacillus thuringiensis culture media. J Biosci Bioeng 2019; 128:296-301. [PMID: 30962100 DOI: 10.1016/j.jbiosc.2019.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/16/2018] [Accepted: 02/20/2019] [Indexed: 11/29/2022]
Abstract
Soybean meal has been intensively used as a substrate in culture media for several microorganisms. However, the fermentable sugar containing the soybean needs to be released from the solid matrix through different processes. Against this backdrop, the present study explores the use of high-energy ball milling as a one-step treatment method for expedited production of fermentable sugars of textured soybean. The best result is observed after only 5 min of milling, obtaining 34.1 times more fermentable sugars than untreated textured soybean, and 2.5 times more than commercially used soybean meal. Notably, the textured soybean ball-milled has been used as a substrate for Bacillus thuringiensis var. kurstaki HD-73 fermentation. The cell and spore production is also compared with a standard Rowe media. The maximum cell concentration obtained in the entire fermentation process using ball-milled textured soybean media is found to be higher than the concentration obtained using the standard Rowe media. In addition, it is observed that there is a direct correlation between maximum cell production and reducing sugar concentration generated by the high-energy ball milling treatment. No fermentation inhibitors or by-products are generated during the physical treatment.
Collapse
Affiliation(s)
- Ana Karin Navarro-Mtz
- Instituto de Biotecnología, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Rigoberto Martinez-Garcia
- División de Estudios de Posgrado, Maestría en Biotecnología, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Michell Urzua-Valenzuela
- División de Estudios de Posgrado, Maestría en Ciencias Químicas, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Crisanto Roldan-Sabino
- División de Estudios de Posgrado, Maestría en Biotecnología, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico
| | - Mykola Kakazey
- CIICAp, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico
| | - Erick Adrian Juarez-Arellano
- Instituto de Química Aplicada, Universidad del Papaloapan, Circuito Central 200, Parque Industrial, 68301 Tuxtepec, Oaxaca, Mexico.
| |
Collapse
|
10
|
Fan G, Fu Z, Teng C, Wu Q, Liu P, Yang R, Minhazul KAHM, Li X. Comprehensive analysis of different grades of roasted-sesame-like flavored Daqu. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1635154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Guangsen Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Zhilei Fu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Qiuhua Wu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Pengxiao Liu
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| | - Karim a H M Minhazul
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
- School of Food and Chemical Engineering, Beijing Technology and Business University (BTBU), Beijing, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, China
| |
Collapse
|
11
|
Production of β-glucosidase from wheat bran and glycerol by Aspergillus niger in stirred tank and rotating fibrous bed bioreactors. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Yan FY, Xia W, Zhang XX, Chen S, Nie XZ, Qian LC. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. J Zhejiang Univ Sci B 2016; 17:455-64. [PMID: 27256679 PMCID: PMC4913794 DOI: 10.1631/jzus.b1500317] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/05/2016] [Indexed: 02/03/2023]
Abstract
An extracellular β-glucosidase produced by Aspergillus terreus was identified, purified, characterized and was tested for the hydrolysis of soybean isoflavone. Matrix-assisted laser desorption/ionization with tandem time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS) revealed the protein to be a member of the glycosyl hydrolase family 3 with an apparent molecular mass of about 120 kDa. The purified β-glucosidase showed optimal activity at pH 5.0 and 65 °C and was very stable at 50 °C. Moreover, the enzyme exhibited good stability over pH 3.0-8.0 and possessed high tolerance towards pepsin and trypsin. The kinetic parameters Km (apparent Michaelis-Menten constant) and Vmax (maximal reaction velocity) for p-nitrophenyl-β-D-glucopyranoside (pNPG) were 1.73 mmol/L and 42.37 U/mg, respectively. The Km and Vmax for cellobiose were 4.11 mmol/L and 5.7 U/mg, respectively. The enzyme efficiently converted isoflavone glycosides to aglycones, with a hydrolysis rate of 95.8% for daidzin, 86.7% for genistin, and 72.1% for glycitin. Meanwhile, the productivities were 1.14 mmol/(L·h) for daidzein, 0.72 mmol/(L·h) for genistein, and 0.19 mmol/(L·h) for glycitein. This is the first report on the application of A. terreus β-glucosidase for converting isoflavone glycosides to their aglycones in soybean products.
Collapse
|
13
|
Zhou L, Li S, Zhang T, Mu W, Jiang B. Properties of a novel polydatin-β-d-glucosidase from Aspergillus niger SK34.002 and its application in enzymatic preparation of resveratrol. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2588-2595. [PMID: 26381723 DOI: 10.1002/jsfa.7465] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Resveratrol and its glucoside polydatin are the main stilbenes in Polygonum cuspidatum. Resveratrol has become the subject of intensive research over the past two decades owing to its outstanding pharmacological properties. However, its lower concentration in plants compared to polydatin limits its application. In this study, the polydatin-β-d-glucosidase (PBG) that hydrolyzes the β-d-glucosyl residue of polydatin with release of resveratrol was purified to homogeneity and characterized. RESULTS The molecular weight of PBG was estimated to be 125 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 128 kDa by size-exclusion chromatography- multi-angle laser light scattering/ultraviolet/refractive index. The optimal PBG activity was observed at 70 °C and pH 4.5. The enzyme showed around 50% stability at 60 °C for 12 h and residual activity was over 80% at pH 3.0-5.0. Ca(2+) , Mg(2+) , Mn(2+) , Zn(2+) , Ba(2+) , Ni(2+) , Co(2+) and Cu(2+) ions had no significant effect on the enzyme activity. The PBG presented higher affinity to polydatin (Km = 0.74 mmol L(-1) ) than p-nitrophenyl-β-d-glucopyranoside (Km = 2.9 mmol L(-1) ) and cellobiose (Km = 8.9 mmol L(-1) ). CONCLUSION With this enzyme, nearly all polydatin in P. cuspidatum was converted to resveratrol. Although several β-D-glucosidases (BGLs) have been obtained from other sources, PBG is distinguished from other BGLs by its outstanding thermal stability and high catalytic efficiency. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linfang Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Shuhua Li
- Department of Textile and Dyeing Engineering, Jiangsu College of Engineering and Technology, Nantong, 226007, Jiangsu, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
14
|
Fl aacute via RDSS, Nayara FLG, Marcelo FDP, Gustavo GF, Rodrigo SOERL. Production and characterization of -glucosidase from Gongronella butleri by solid-state fermentation. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/ajb2015.15025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
15
|
Hu K, Zhu X, Mu H, Ma Y, Ullah N, Tao Y. A novel extracellular glycosidase activity from Rhodotorula mucilaginosa
: its application potential in wine aroma enhancement. Lett Appl Microbiol 2016; 62:169-76. [DOI: 10.1111/lam.12527] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/17/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022]
Affiliation(s)
- K. Hu
- College of Enology; Northwest A&F University; Yangling Shaanxi China
| | - X.L. Zhu
- College of Enology; Northwest A&F University; Yangling Shaanxi China
| | - H. Mu
- College of Enology; Northwest A&F University; Yangling Shaanxi China
| | - Y. Ma
- College of Enology; Northwest A&F University; Yangling Shaanxi China
| | - N. Ullah
- College of Enology; Northwest A&F University; Yangling Shaanxi China
- Department of Human Nutrition; The University of Agriculture; Peshawar Pakistan
| | - Y.S. Tao
- College of Enology; Northwest A&F University; Yangling Shaanxi China
- Shaanxi Engineering Research Center for Viti-Viniculture; Yangling Shaanxi China
| |
Collapse
|