1
|
Muhammad R, Boothman C, Song H, Lloyd JR, van Dongen BE. Assessing the impacts of oil contamination on microbial communities in a Niger Delta soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171813. [PMID: 38513868 DOI: 10.1016/j.scitotenv.2024.171813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/22/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Oil spills are a global challenge, contaminating the environment with organics and metals known to elicit toxic effects. Ecosystems within Nigeria's Niger Delta have suffered from prolonged severe spills for many decades but the level of impact on the soil microbial community structure and the potential for contaminant bioremediation remains unclear. Here, we assessed the extent/impact of an oil spill in this area 6 months after the accident on both the soil microbial community/diversity and the distribution of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase (PAH-RHDGNα) genes, responsible for encoding enzymes involved in the degradation of PAHs, across the impacted area. Analyses confirmed the presence of oil contamination, including metals such as Cr and Ni, across the whole impacted area and at depth. The contamination impacted on the microbial community composition, resulting in a lower diversity in all contaminated soils. Gamma-, Delta-, Alpha- proteobacteria and Acidobacteriia dominated 16S rRNA gene sequences across the contaminated area, while Ktedonobacteria dominated the non-contaminated soils. The PAH-RHDαGN genes were only detected in the contaminated area, highlighting a clear relationship with the oil contamination/hydrocarbon metabolism. Correlation analysis indicated significant positive relationships between the oil contaminants (organics, Cr and Ni), PAH-RHDαGN gene, and the presence of bacteria/archaea such as Anaerolinea, Spirochaetia Bacteroidia Thermoplasmata, Methanomicrobia, and Methanobacteria indicating that the oil contamination not only impacted the microbial community/diversity present, but that the microbes across the impacted area and at depth were potentially playing an important role in degrading the oil contamination present. These findings provide new insights on the level of oil contamination remaining 6 months after an oil spill, its impacts on indigenous soil microbial communities and their potential for in situ bioremediation within a Niger Delta's ecosystem. It highlights the strength of using a cross-disciplinary approach to assess the extent of oil pollution in a single study.
Collapse
Affiliation(s)
- Rakiya Muhammad
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Christopher Boothman
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Hokyung Song
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Jonathan R Lloyd
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK
| | - Bart E van Dongen
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, M13 9PL, UK.
| |
Collapse
|
2
|
Zainab R, Hasnain M, Ali F, Dias DA, El-Keblawy A, Abideen Z. Exploring the bioremediation capability of petroleum-contaminated soils for enhanced environmental sustainability and minimization of ecotoxicological concerns. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104933-104957. [PMID: 37718363 DOI: 10.1007/s11356-023-29801-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
The bioremediation of soils contaminated with petroleum hydrocarbons (PHCs) has emerged as a promising approach, with its effectiveness contingent upon various types of PHCs, i.e., crude oil, diesel, gasoline, and other petroleum products. Strategies like genetically modified microorganisms, nanotechnology, and bioaugmentation hold potential for enhancing remediation of polycyclic aromatic hydrocarbon (PAH) contamination. The effectiveness of bioremediation relies on factors such as metabolite toxicity, microbial competition, and environmental conditions. Aerobic degradation involves enzymatic oxidative reactions, while bacterial anaerobic degradation employs reductive reactions with alternative electron acceptors. Algae employ monooxygenase and dioxygenase enzymes, breaking down PAHs through biodegradation and bioaccumulation, yielding hydroxylated and dihydroxylated intermediates. Fungi contribute via mycoremediation, using co-metabolism and monooxygenase enzymes to produce CO2 and oxidized products. Ligninolytic fungi transform PAHs into water-soluble compounds, while non-ligninolytic fungi oxidize PAHs into arene oxides and phenols. Certain fungi produce biosurfactants enhancing degradation of less soluble, high molecular-weight PAHs. Successful bioremediation offers sustainable solutions to mitigate petroleum spills and environmental impacts. Monitoring and assessing strategy effectiveness are vital for optimizing biodegradation in petroleum-contaminated soils. This review presents insights and challenges in bioremediation, focusing on arable land safety and ecotoxicological concerns.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Maria Hasnain
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Faraz Ali
- School of Engineering and Technology, Central Queensland University, Sydney, Australia
| | - Daniel Anthony Dias
- CASS Food Research Centre, School of Exercise and Nutrition Sciences Deakin University, Melbourne, VIC, 3125, Australia
| | - Ali El-Keblawy
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE
| | - Zainul Abideen
- Department of Applied Biology, College of Sciences, University of Sharjah, PO Box 27272, Sharjah, UAE.
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
3
|
Dai X, Lv J, Fu P, Guo S. Microbial remediation of oil-contaminated shorelines: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93491-93518. [PMID: 37572250 DOI: 10.1007/s11356-023-29151-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/31/2023] [Indexed: 08/14/2023]
Abstract
Frequent marine oil spills have led to increasingly serious oil pollution along shorelines. Microbial remediation has become a research hotspot of intertidal oil pollution remediation because of its high efficiency, low cost, environmental friendliness, and simple operation. Many microorganisms are able to convert oil pollutants into non-toxic substances through their growth and metabolism. Microorganisms use enzymes' catalytic activities to degrade oil pollutants. However, microbial remediation efficiency is affected by the properties of the oil pollutants, microbial community, and environmental conditions. Feasible field microbial remediation technologies for oil spill pollution in the shorelines mainly include the addition of high-efficiency oil degrading bacteria (immobilized bacteria), nutrients, biosurfactants, and enzymes. Limitations to the field application of microbial remediation technology mainly include slow start-up, rapid failure, long remediation time, and uncontrolled environmental impact. Improving the environmental adaptability of microbial remediation technology and developing sustainable microbial remediation technology will be the focus of future research. The feasibility of microbial remediation techniques should also be evaluated comprehensively.
Collapse
Affiliation(s)
- Xiaoli Dai
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 10089, China.
| | - Jing Lv
- China University of Petroleum-Beijing, Beijing, 102249, China
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan, 570228, China
| | - Shaohui Guo
- China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
4
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J. Oil-Contaminated Soil Remediation with Biodegradation by Autochthonous Microorganisms and Phytoremediation by Maize ( Zea mays). Molecules 2023; 28:6104. [PMID: 37630356 PMCID: PMC10459520 DOI: 10.3390/molecules28166104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Biological methods are currently the most commonly used methods for removing hazardous substances from land. This research work focuses on the remediation of oil-contaminated land. The biodegradation of aliphatic hydrocarbons and PAHs as a result of inoculation with biopreparations B1 and B2 was investigated. Biopreparation B1 was developed on the basis of autochthonous bacteria, consisting of strains Dietzia sp. IN118, Gordonia sp. IN101, Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus globerulus IN113 and Raoultella sp. IN109, whereas biopreparation B2 was enriched with fungi, such as Aspergillus sydowii, Aspergillus versicolor, Candida sp., Cladosporium halotolerans, Penicillium chrysogenum. As a result of biodegradation tests conducted under ex situ conditions for soil inoculated with biopreparation B1, the concentrations of TPH and PAH were reduced by 31.85% and 27.41%, respectively. Soil inoculation with biopreparation B2 turned out to be more effective, as a result of which the concentration of TPH was reduced by 41.67% and PAH by 34.73%. Another issue was the phytoremediation of the pre-treated G6-3B2 soil with the use of Zea mays. The tests were carried out in three systems (system 1-soil G6-3B2 + Zea mays; system 2-soil G6-3B2 + biopreparation B2 + Zea mays; system 3-soil G6-3B2 + biopreparation B2 with γ-PGA + Zea mays) for 6 months. The highest degree of TPH and PAH reduction was obtained in system 3, amounting to 65.35% and 60.80%, respectively. The lowest phytoremediation efficiency was recorded in the non-inoculated system 1, where the concentration of TPH was reduced by 22.80% and PAH by 18.48%. Toxicological tests carried out using PhytotoxkitTM, OstracodtoxkitTM and Microtox® Solid Phase tests confirmed the effectiveness of remediation procedures and showed a correlation between the concentration of petroleum hydrocarbons in the soil and its toxicity. The results obtained during the research indicate the great potential of bioremediation practices with the use of microbial biopreparations and Zea mays in the treatment of soils contaminated with petroleum hydrocarbons.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, ul. Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | | | | | | |
Collapse
|
5
|
Mishra P, Kiran NS, Romanholo Ferreira LF, Yadav KK, Mulla SI. New insights into the bioremediation of petroleum contaminants: A systematic review. CHEMOSPHERE 2023; 326:138391. [PMID: 36933841 DOI: 10.1016/j.chemosphere.2023.138391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Petroleum product is an essential resource for energy, that has been exploited by wide range of industries and regular life. A carbonaceous contamination of marine and terrestrial environments caused by errant runoffs of consequential petroleum-derived contaminants. Additionally, petroleum hydrocarbons can have adverse effects on human health and global ecosystems and also have negative demographic consequences in petroleum industries. Key contaminants of petroleum products, primarily includes aliphatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene (BTEX), polycyclic aromatic hydrocarbons (PAHs), resins, and asphaltenes. On environmental interaction, these pollutants result in ecotoxicity as well as human toxicity. Oxidative stress, mitochondrial damage, DNA mutations, and protein dysfunction are a few key causative mechanisms behind the toxic impacts. Henceforth, it becomes very evident to have certain remedial strategies which could help on eliminating these xenobiotics from the environment. This brings the efficacious application of bioremediation to remove or degrade pollutants from the ecosystems. In the recent scenario, extensive research and experimentation have been implemented towards bio-benign remediation of these petroleum-based pollutants, aiming to reduce the load of these toxic molecules in the environment. This review gives a detailed overview of petroleum pollutants, and their toxicity. Methods used for degrading them in the environment using microbes, periphytes, phyto-microbial interactions, genetically modified organisms, and nano-microbial remediation. All of these methods could have a significant impact on environmental management.
Collapse
Affiliation(s)
- Prabhakar Mishra
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | - Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Av. Murilo Dantas, 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| |
Collapse
|
6
|
Mohamed MSM, Asair AA, Fetyan NAH, Elnagdy SM. Complete Biodegradation of Diclofenac by New Bacterial Strains: Postulated Pathways and Degrading Enzymes. Microorganisms 2023; 11:1445. [PMID: 37374947 DOI: 10.3390/microorganisms11061445] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
The accumulation of xenobiotic compounds in different environments interrupts the natural ecosystem and induces high toxicity in non-target organisms. Diclofenac is one of the commonly used pharmaceutical drugs that persist in the environment due to its low natural degradation rate and high toxicity. Therefore, this study aimed to isolate potential diclofenac-degrading bacteria, detect the intermediate metabolites formed, and determine the enzyme involved in the degradation process. Four bacterial isolates were selected based on their ability to utilize a high concentration of diclofenac (40 mg/L) as the sole carbon source. The growth conditions for diclofenac degradation were optimized, and bacteria were identified as Pseudomonas aeruginosa (S1), Alcaligenes aquatilis (S2), Achromobacter spanius (S11), and Achromobacter piechaudii (S18). The highest percentage of degradation was recorded (97.79 ± 0.84) after six days of incubation for A. spanius S11, as analyzed by HPLC. To detect and identify biodegradation metabolites, the GC-MS technique was conducted for the most efficient bacterial strains. In all tested isolates, the initial hydroxylation of diclofenac was detected. The cleavage step of the NH bridge between the aromatic rings and the subsequent cleavage of the ring adjacent to or in between the two hydroxyl groups of polyhydroxylated derivatives might be a key step that enables the complete biodegradation of diclofenac by A. piechaudii S18, as well as P. aeruginosa S1. Additionally, the laccase, peroxidase, and dioxygenase enzyme activities of the two Achromobacter strains, as well as P. aeruginosa S1, were tested in the presence and absence of diclofenac. The obtained results from this work are expected to be a useful reference for the development of effective detoxification bioprocesses utilizing bacterial cells as biocatalysts. The complete removal of pharmaceuticals from polluted water will stimulate water reuse, meeting the growing worldwide demand for clean and safe freshwater.
Collapse
Affiliation(s)
- Mahmoud S M Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ayan A Asair
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Nashwa A H Fetyan
- Department of Microbiology, Soil, Water and Environment Research Institute, Agriculture Research Center, Giza 12619, Egypt
| | - Sherif M Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Liu Y, Wei F, Xu R, Cheng T, Ma Y. Insights into the Binding Interaction of Catechol 1,2-Dioxygenase with Catechol in Achromobacter xylosoxidans DN002. Appl Biochem Biotechnol 2023; 195:298-313. [PMID: 36074236 DOI: 10.1007/s12010-022-04129-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Microbial remediation has become one of the promising ways to eliminate polycyclic aromatic hydrocarbons (PAHs) pollution due to its efficient enzyme metabolism system. Catechol 1,2-dioxygenase (C12O) is a crucial rate-limiting enzyme in the degradation pathway of PAHs in Achromobacter xylosoxidans DN002 that opens the benzene ring through the ortho-cleavage pathway. However, little attention has been given to explore the interaction mechanism of relevant enzyme-substrate. This study aims to investigate the binding interaction between C12O of strain DN002 and catechol by means of a molecular biological approach combined with homology modeling, molecular docking, and multiple spectroscopies. The removal rate of catechol in the mutant strain of cat A deletion was only 12.03%, compared to the wild-type strain (54.21%). A Ramachandran plot of active site regions of the primary amino acid sequences in the native enzyme showed that 93.5% sequences were in the most favored regions on account of the results of homology modeling, while an additional 6.2% amino acid sequences were found in conditionally allowed regions, and 0.4% in generously allowed regions. The binding pocket of C12O with catechol was analyzed to obtain that the catalytic trimeric group of Tyr164-His224-His226 was proven to be great vital for the ring-opening reaction of catechol by molecular docking. In the native enzyme, binding complexes were spontaneously formed by hydrophobic interactions. Binding constants and thermodynamic potentials from fluorescence spectra indicated that catechol effectively quenched the intrinsic fluorescence of C12O in the C12O/catechol complex via conventional static and dynamic quenching mechanisms of C12O. The results of ultraviolet and visible (UV) spectra, synchronous fluorescence, and circular dichroism (CD) spectra revealed conspicuous changes in the local conformation, and site-directed mutagenesis confirmed the role of predicted key residues during catalysis, wherein His226 had a significant effect on catechol utilization by C12O. This is the first report to reveal interactions of C12O with substrate from the molecular docking results, providing the mechanistic understanding of representative dioxygenases involved in aromatic compound degradation, and a solid foundation for further site modifications as well as strategies for the directed evolution of this enzyme.
Collapse
Affiliation(s)
- Yani Liu
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Fengdan Wei
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Rui Xu
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Tao Cheng
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 Taibai North Rd, Xi'an, Shaanxi, 710069, People's Republic of China.
| |
Collapse
|
8
|
Aguilera Flores MM, Sánchez Castro MA, Ávila Vázquez V, Correa Aguado HC, García Torres J. Evaluation of the lipase from castor bean ( Ricinus Communis L.) as a potential agent for the remediation of used lubricating oil contaminated soils. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:657-673. [PMID: 36406614 PMCID: PMC9672203 DOI: 10.1007/s40201-022-00806-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 06/16/2023]
Abstract
Bioremediation of hydrocarbons-contaminated soils, using enzymes, is considered an alternative technology for soil remediation, obtaining shorter remediation times, greater removal efficiencies, and less waste generation. The lipases from invasive plants such as castor bean (Ricinus Communis L.) could represent an opportunity for its application in this purpose. This paper reports the results of evaluating enzymatic treatment at different conditions for the remediation of used lubricating oil-contaminated soils. Four assays were performed for the removal of the contaminant in a soil sample: (1) natural attenuation and (2) biostimulation with urea (10% w/v), both used as blanks, (3) enzymatic treatment with lipases at ambient conditions (room temperature, soil pH) and (4) enzymatic treatment with lipases at ideal conditions (temperature 37 °C, pH 4.5). After seven weeks of treatment, removal percentages of 14.23 ± 1.92%, 35.71 ± 5.17%, 14.11 ± 6.71%, and 94.26 ± 1.91%, respectively, were obtained. The degradation of the contaminant was analyzed by Fourier-transform Infrared spectroscopy (FTIR) for each assay. Results show the potential of the lipases for catalyzing the degradation of this contaminant in the soil at ideal conditions, representing an alternative technology to be applied as treatment ex-situ. This paper is the first study known to show the utilization of castor bean lipase for the remediation of hydrocarbons-contaminated soils.
Collapse
Affiliation(s)
- Miguel Mauricio Aguilera Flores
- Environmental Engineering, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160 Zacatecas, Zac Mexico
| | - Manuel Alexis Sánchez Castro
- Environmental Engineering, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160 Zacatecas, Zac Mexico
| | - Verónica Ávila Vázquez
- Environmental Engineering, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160 Zacatecas, Zac Mexico
| | - Hans Christian Correa Aguado
- Environmental Engineering, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160 Zacatecas, Zac Mexico
| | - Jésica García Torres
- Environmental Engineering, Interdisciplinary Professional Unit of Engineering Campus Zacatecas, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, 98160 Zacatecas, Zac Mexico
| |
Collapse
|
9
|
Mutanda I, Sun J, Jiang J, Zhu D. Bacterial membrane transporter systems for aromatic compounds: Regulation, engineering, and biotechnological applications. Biotechnol Adv 2022; 59:107952. [PMID: 35398204 DOI: 10.1016/j.biotechadv.2022.107952] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/20/2022] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Aromatic compounds are ubiquitous in nature; they are the building blocks of abundant lignin, and constitute a substantial proportion of synthetic chemicals and organic pollutants. Uptake and degradation of aromatic compounds by bacteria have relevance in bioremediation, bio-based plastic recycling, and microbial conversion of lignocellulosic biomass into high-value commodity chemicals. While remarkable progress has been achieved in understanding aromatic metabolism in biodegraders, the membrane transporter systems responsible for uptake and efflux of aromatic compounds and their degradation products are still poorly understood. Membrane transporters are responsible for the initial recognition, uptake, and efflux of aromatic compounds; thus, in addition to controlling influx and efflux, the transporter system also forms part of stress tolerance mechanisms through excreting toxic metabolites. This review discusses significant advancements in our understanding of the nature and identity of the bacterial membrane transporter systems for aromatics, the molecular and structural basis of substrate recognition, mechanisms of translocation, functional regulation, and biotechnological applications. Most of these developments were enabled through the availability of crystal structures, advancements in computational biophysics, genome sequencing, omics studies, bioinformatics, and synthetic biology. We provide a comprehensive overview of recently reported knowledge on aromatic transporter systems in bacteria, point gaps in our understanding of the underlying translocation mechanisms, highlight existing limitations in harnessing transporter systems in synthetic biology applications, and suggest future research directions.
Collapse
Affiliation(s)
- Ishmael Mutanda
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianxiong Jiang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
10
|
Sah D, Rai JPN, Ghosh A, Chakraborty M. A review on biosurfactant producing bacteria for remediation of petroleum contaminated soils. 3 Biotech 2022; 12:218. [PMID: 35965658 PMCID: PMC9365905 DOI: 10.1007/s13205-022-03277-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022] Open
Abstract
The discharge of potentially toxic petroleum hydrocarbons into the environment has been a matter of concern, as these organic pollutants accumulate in many ecosystems due to their hydrophobicity and low bioavailability. Petroleum hydrocarbons are neurotoxic and carcinogenic organic pollutants, extremely harmful to human and environmental health. Traditional treatment methods for removing hydrocarbons from polluted areas, including various mechanical and chemical strategies, are ineffective and costly. However, many indigenous microorganisms in soil and water can utilise hydrocarbon compounds as sources of carbon and energy and hence, can be employed to degrade hydrocarbon contaminants. Therefore, bioremediation using bacteria that degrade petroleum hydrocarbons is commonly viewed as an environmentally acceptable and effective method. The efficacy of bioremediation can be boosted further by using potential biosurfactant-producing microorganisms, as biosurfactants reduce surface tension, promote emulsification and micelle formation, making hydrocarbons bio-available for microbial breakdown. Further, introducing nanoparticles can improve the solubility of hydrophobic hydrocarbons as well as microbial synthesis of biosurfactants, hence establishing a favourable environment for microbial breakdown of these chemicals. The review provides insights into the role of microbes in the bioremediation of soils contaminated with petroleum hydrocarbons and emphasises the significance of biosurfactants and potential biosurfactant-producing bacteria. The review partly focusses on how nanotechnology is being employed in different critical bioremediation processes.
Collapse
Affiliation(s)
- Diksha Sah
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - J. P. N. Rai
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Ankita Ghosh
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| | - Moumita Chakraborty
- Department of Environmental Sciences, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263145 India
| |
Collapse
|
11
|
Alami NH, Hamzah A, Tangahu BV, Warmadewanti I, Bachtiar Krishna Putra A, Purnomo AS, Danilyan E, Putri HM, Aqila CN, Dewi AAN, Pratiwi A, Putri SK, Luqman A. Microbiome profile of soil and rhizosphere plants growing in traditional oil mining land in Wonocolo, Bojonegoro, Indonesia. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:697-705. [PMID: 35867913 DOI: 10.1080/15226514.2022.2103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditional oil mining poses negative effects on the environment through pollution with crude oil. One of the traditional mining sites in Wonocolo, Bojonegoro, Indonesia was reported to contaminate the surrounding area with a high level of crude oil. Therefore, this study aims to examine the microbiome profiles of contaminated soil and the rhizosphere of naturalized plants growing at the sites. It was conducted in Wonocolo, Bojonegoro to obtain an insight into the possible remediation efforts of using indigenous hydrocarbon-degrading bacteria and naturalized plants as in situ remediation agents. The results showed that the soil located close to the oil well-contained a high level of crude oil at 24.8%, and exhibited a distinct microbiome profile compared to those located further which had lower crude oil contamination of 14.15, 10.89, and 4.9%. Soil with the highest level of crude oil contamination had a comparatively higher relative abundance of assA, an anaerobic alkene-degrading gene. Meanwhile, the rhizosphere of the two naturalized plants, Muntingia calabura, and Pennisetum purpureum, exhibited indifferent microbiome profiles compared to the soil. They were found to contain less abundant hydrocarbon-degrading genes, such as C230, PAH-RHD-GP, nahAc, assA, and alkB suggesting that these naturalized plants might not be a suitable tool for in-situ remediation.
Collapse
Affiliation(s)
- Nur Hidayatul Alami
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Afan Hamzah
- Industrial Chemical Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Bieby Voijant Tangahu
- Environmental Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Idaa Warmadewanti
- Environmental Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Adi Setyo Purnomo
- Chemistry Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Edo Danilyan
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Hellen Melati Putri
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Citra Nesa Aqila
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Aulia An Nisaa Dewi
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ayudia Pratiwi
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | | | - Arif Luqman
- Biology Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| |
Collapse
|
12
|
Saeed M, Ilyas N, Jayachandran K, Shabir S, Akhtar N, Shahzad A, Sayyed RZ, Bano A. Advances in Biochar and PGPR engineering system for hydrocarbon degradation: A promising strategy for environmental remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119282. [PMID: 35413406 DOI: 10.1016/j.envpol.2022.119282] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 05/22/2023]
Abstract
In soil, polycyclic aromatic hydrocarbons (PAHs) have resulted in severe environmental deterioration, compromised soil characteristics, and negatively affect all life forms, including humans. Developing appropriate and effective clean-up technology is crucial in solving the contamination issues. The traditional methods to treat PHAs contaminated soil are less effective and not ecofriendly. Bioremediation, based on bioaugmentation and biostimulation approaches, is a promising strategy for remediating contaminated soil. The use of plant growth-promoting rhizobacteria (PGPR) as a bioaugmentation tool is an effective technique for treating hydrocarbon contaminated soil. Plant growth-promoting rhizobacteria (PGPR) are group of rhizospheric bacteria that colonize the roots of plants. Biochar is a carbon-rich residue, which acts as a source of nutrients, and is also a bio-stimulating candidate to enhance the activities of oil-degrading bacteria. The application of biochar as a nutrient source to bioremediate oil-contaminated soil is a promising approach for reducing PHA contamination. Biochar induces polyaromatic hydrocarbons (PAHs) immobilization and removes the contaminants by various methods such as ion exchange electrostatic attractions and volatilization. In comparison, PGPR produce multiple types of biosurfactants to enhance the adsorption of hydrocarbons and mineralize the hydrocarbons with the conversion to less toxic substances. During the last few decades, the use of PGPR and biochar in the bioremediation of hydrocarbons-contaminated soil has gained greater importance. Therefore, developing and applying a PGPR-biochar-based remediating system can help manage hazardous PAH contaminated soil. The goal of this review paper is to (i) provide an overview of the PGPR mechanism for degradation of hydrocarbons and (ii) discuss the contaminants absorbent by biochar and its characteristics (iii) critically discuss the combined effect of PGPR and biochar for degradation of hydrocarbons by decreasing their mobility and bioavailability. The present review focuses on techniques of bioaugmentation and biostimulation based on use of PGPR and biochar in remediating the oil-contaminated soil.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan; Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan.
| | | | - Sumera Shabir
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Nosheen Akhtar
- Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Asim Shahzad
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif AJ&K, Pakistan
| | - R Z Sayyed
- Department of Microbiology, P.S.G.V.P. Mandal's, Arts, Science, and Commerce College, Shahada, 425409, India
| | - Asghari Bano
- Department of Biosciences University of Wah, Quaid Avenue, Wah Cantt, Pakistan
| |
Collapse
|
13
|
Ossai IC, Hamid FS, Hassan A. Micronised keratinous wastes as co-substrates, and source of nutrients and microorganisms for trichoremediation of petroleum hydrocarbon polluted soil. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Ibrar M, Khan S, Hasan F, Yang X. Biosurfactants and chemotaxis interplay in microbial consortium-based hydrocarbons degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24391-24410. [PMID: 35061186 DOI: 10.1007/s11356-022-18492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Hydrocarbons are routinely detected at low concentrations, despite the degrading metabolic potential of ubiquitous microorganisms. The potential drivers of hydrocarbons persistence are lower bioavailability and mass transfer limitation. Recently, bioremediation strategies have developed rapidly, but still, the solution is not resilient. Biosurfactants, known to increase bioavailability and augment biodegradation, are tightly linked to bacterial surface motility and chemotaxis, while chemotaxis help bacteria to locate aromatic compounds and increase the mass transfer. Harassing the biosurfactant production and chemotaxis properties of degrading microorganisms could be a possible approach for the complete degradation of hydrocarbons. This review provides an overview of interplay between biosurfactants and chemotaxis in bioremediation. Besides, we discuss the chemical surfactants and biosurfactant-mediated biodegradation by microbial consortium.
Collapse
Affiliation(s)
- Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, 430074, Hubei, People's Republic of China
| | - Salman Khan
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Fariha Hasan
- Department of Microbiology, Applied, Environmental and Geomicrobiology Laboratory, Quaid-I-Azam University, Islamabad, Pakistan
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, People's Republic of China.
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
15
|
Monga D, Kaur P, Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100092. [PMID: 35005657 PMCID: PMC8717453 DOI: 10.1016/j.crmicr.2021.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental pollutants dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons. Environmental pollutants toxicity. Possible microbial biodegradation pathways of environmental pollutants.
Industrialization and human activities have led to serious effects on environment. With the progress taking place in the biodegradation field, it is important to summarize the latest advancement. In this review, we intend to provide insights on the recent progress on the biodegradation of environmental contaminants such as dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons by microorganisms. Along with the biodegradation of environmental contaminants, toxicity effects have also been discussed.
Collapse
|
16
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J, Skalski T. Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:400. [PMID: 35057118 PMCID: PMC8778143 DOI: 10.3390/ma15020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Teresa Steliga
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Piotr Kapusta
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| |
Collapse
|
17
|
Bioprospecting of indigenous biosurfactant-producing oleophilic bacteria for green remediation: an eco-sustainable approach for the management of petroleum contaminated soil. 3 Biotech 2022; 12:13. [PMID: 34966636 PMCID: PMC8660960 DOI: 10.1007/s13205-021-03068-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023] Open
Abstract
In the present study, the efficiency of four different strains of Pseudomonas aeruginosa and their biosurfactants in the bioremediation process were investigated. The strains were found to be capable of metabolizing a wide range of hydrocarbons (HCs) with preference for high molecular weight aliphatic (ALP) over aromatic (ARO) compounds. After treating with individual bacteria and 11 different consortia, the residual crude oils were quantified and qualitatively analyzed. The bacterial strains degraded ALP, ARO, and nitrogen, sulphur, oxygen (NSO) containing fractions of the crude oil by 73-67.5, 31.8-12.3 and 14.7-7.3%, respectively. Additionally, the viscosity of the residual crude oil reduced from 48.7 to 34.6-39 mPa s. Further, consortium designated as 7 and 11 improved the degradation of ALP, ARO, and NSO HCs portions by 80.4-78.6, 42.7-42.4 and 21.6-19.2%, respectively. Moreover, addition of biosurfactant further increased the degradation performance of consortia by 81.6-80.7, 43.8-42.6 and 22.5-20.7%, respectively. Gas chromatographic analysis confirmed the ability of the individual strains and their consortium to degrade various fractions of crude oil. Experiments with biosurfactants revealed that polyaromatic hydrocarbons (PAHs) are more soluble in the presence of biosurfactants. Phenanthrene had the highest solubility among the tested PAHs, which further increased as biosurfactant doses raised above their respective critical micelle concentrations (CMC). Furthermore, biosurfactants were able to recover 73.5-63.4% of residual oil from the sludge within their respective CMCs. Hence, selected surfactant-producing bacteria and their consortium could be useful in developing a greener and eco-sustainable way for removing crude oil pollutants from soil.
Collapse
|
18
|
Perliński P, Mudryk ZJ, Zdanowicz M, Kubera Ł. Spatio-temporal variation in number and production of neustonic and planktonic bacteria inhabiting polluted estuarine harbour channel. Arch Microbiol 2021; 203:5547-5559. [PMID: 34432093 PMCID: PMC8502141 DOI: 10.1007/s00203-021-02538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 12/29/2022]
Abstract
The aim of this paper was to determine the abundance and secondary production by bacteria inhabiting the surface microlayer and subsurface water in a specific water basin, i.e., polluted estuarine harbour channel. In a 3-year seasonal cycle, the total number of bacteria and their biomass were higher in the surface microlayer (SML) 7.57 × 108cells dm-3 and 15.86 µg C dm-3 than in the subsurface water (SSW) 4.25 × 108cells dm-3 and 9.11 µg C dm-3 of the studied channel. The opposite relationship was noted in the level of the secondary production (SML-37.16 μg C dm-3 h-1, SSW-60.26 μg C dm-3 h-1) in this water basin. According to the analysed microbiological parameters, the total number of bacteria and secondary production varied along the horizontal profile in the water of the studied channel. The total number of bacteria and their secondary production showed the seasonal variation as well.
Collapse
Affiliation(s)
- Piotr Perliński
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland.
| | - Zbigniew J Mudryk
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland
| | - Marta Zdanowicz
- Department of Experimental Biology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Arciszewskiego 22b, 76-200, Słupsk, Poland
| | - Łukasz Kubera
- Department of Microbiology and Immunobiology, Faculty of Biological Sciences, Kazimierz Wielki University, Al. Powstańców Wielkopolskich 10, 85-090, Bydgoszcz, Poland
| |
Collapse
|
19
|
Ma Y, Zhao H, Shan Q, Xu Y, Yu M, Cui J, Liu T, Qiao L, He X. K-strategy species plays a pivotal role in the natural attenuation of petroleum hydrocarbon pollution in aquifers. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126559. [PMID: 34252660 DOI: 10.1016/j.jhazmat.2021.126559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
The natural attenuation of petroleum hydrocarbons is inseparable from the action of microorganisms, while the degradation methods and ecological strategies of microorganisms in petroleum-contaminated aquifers are still under debate. In the present study, 16 S rRNA sequencing and quantitative real-time polymerase chain reaction were used to assess the potential microbial degradation of petroleum hydrocarbons, and the ecological strategy of microorganisms under petroleum stress was analyzed through a co-occurrence network. The results showed that the microbial community in sediments exhibit higher efficiency and stability and stronger ecological function than that in groundwater. Keystone species coordinated with the community to execute ecosystem processes and tended to choose a K-strategy to survive, with the aquifer sediment being the main site of petroleum hydrocarbon degradation. Under natural conditions, the presence of petroleum hydrocarbons at concentrations higher than 126 μg kg-1 and 5557 μg kg-1 was not conducive to the microbial degradation of polycyclic aromatic hydrocarbons and alkanes, respectively. These results can be used as a reference for an enhanced bioremediation of contaminated groundwater. Overall, these findings provide support to managers for developing environmental management strategies.
Collapse
Affiliation(s)
- Yan Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Hangzheng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qianjuan Shan
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqiu Xu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Minda Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jun Cui
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Longkai Qiao
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
20
|
Li J, Chen W, Zhou W, Wang Y, Deng M, Zhou S. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1487-1498. [PMID: 32844301 DOI: 10.1007/s10646-020-02268-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Two pyrene-degrading strains, Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 were co-incubated in equal proportions as a microbiological consortium and could enhance the degradation of pyrene. The enzymatic activities of the catechol 1,2-dioxygenase (C12O) and 2,3-dioxygenase activities (C23O) were produced complementary expression by P. aeruginosa PA06 and Achromobacter sp. AC15, respectively. Meanwhile, results showed that pyrene degradation was sufficiently promoted in the presence of sodium citrate as a co-metabolic carbon source, likely a result of enhanced biomass and biosurfactant production. The optimized dosage and ideal initial pHs were 1.4 g L-1 and 5.5, respectively. We also analyzed the rate constant of pyrene degradation, cell growth, and enzyme activity. Results show that P. aeruginosa PA06 had a better effect than Achromobacter sp. AC15 in bacterial growth. However, the C23O or C12O activity produced by Achromobacter sp. AC15 continued at a similar or even faster than that of P. aeruginosa PA06. The mixed bacteria had a better effect than any single bacteria, suggesting the strains worked synergistically to enhance the degradation efficiency. In the co-metabolism system of 600 mg/L pyrene and 1.4 g/L sodium citrate, pyrene degradation reached 74.6%, was 1.57 times, 2.06 times, and 3.89 times that of the mix-culture strains, single PA06 and single AC15 without sodium citrate, respectively. Overall, these findings are valuable as a potential tool for the bioremediation of high-molecular-weight PAHs.
Collapse
Affiliation(s)
- Jing Li
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Weixin Chen
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Wei Zhou
- Guizhou Academy of Sciences, 1 Shanxi Road, Guiyang, 550001, People's Republic of China
| | - Yao Wang
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China
| | - Maocheng Deng
- School of Food and Biotechnology, Guangdong Industry Polytechnic, Guangzhou, 510300, People's Republic of China.
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, 510006, People's Republic of China.
- Guizhou Academy of Sciences, 1 Shanxi Road, Guiyang, 550001, People's Republic of China.
- State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou, 510641, People's Republic of China.
| |
Collapse
|
21
|
Guo Z, Yin H, Wei X, Zhu M, Lu G, Dang Z. Effects of methanol on the performance of a novel BDE-47 degrading bacterial consortium QY2 in the co-metabolism process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125698. [PMID: 33773249 DOI: 10.1016/j.jhazmat.2021.125698] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), frequently detected in the environment, is arduous to be removed by conventional biological treatments due to its persistence and toxicity. Herein effects of methanol as a co-metabolic substrate on the biodegradation of BDE-47 was systematically studied by a functional bacterial consortium QY2, constructed through long-term and successive acclimation from indigenous microorganisms. The results revealed that BDE-47 (0.25 mg/L) was completely removed within 7 days in the 2.5 mM methanol treatment group, and its degradation efficiency was 3.26 times higher than that without methanol treatment. The addition of methanol dramatically accelerated the debromination, hydroxylation and phenyl ether bond breakage of BDE-47 by QY2. However, excessive methanol (>5 mM) combined with BDE-47 had strong stress on microbial cells, including significant (p < 0.05) increase of reactive oxygen species level, superoxide dismutase activity, catalase activity and malondialdehyde content, even causing 20.65% cell apoptosis and 11.27% death. It was worth noting that the changes of QY2 community structure remained relatively stable after adding methanol, presumably attributed to the important role of the genus Methylobacterium in maintaining the functional and structural stability of QY2. This study deepened our understanding of how methanol as co-metabolite substances stimulated the biodegradation of BDE-47 by microbial consortium.
Collapse
Affiliation(s)
- Zhanyu Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China.
| | - Xipeng Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, Guangdong, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, Guangdong, China
| |
Collapse
|
22
|
Isolation and Characterization of Oil-Degrading Enterobacter sp. from Naturally Hydrocarbon-Contaminated Soils and Their Potential Use against the Bioremediation of Crude Oil. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The contamination of crude oil in soil matrices is a persistent problem with negative repercussions because of the recalcitrant, hazardous, and mutagenic properties of its constituents. To mitigate the effect of crude oil contamination in soil, the use of microorganisms is a cheap and feasible option. In the current study, bacterial species from numerous polluted oil field surfaces were isolated and examined for their ability to degrade crude oil. Random soil samples polluted with hydrocarbons were collected and various bacterial isolates were isolated. Results revealed that 40% of total isolates had potential use for hydrocarbon biodegradation, the synthesis of exopolysaccharides and the solubilization of phosphorous. Following isolation and characterization to degrade crude oil, a pot trial was conducted using maize inoculated with the four best strains—i.e., S1 (PMEL-63), S2 (PMEL-67), S3 (PMEL-80), and S4 (PMEL-79)—in artificially hydrocarbon-polluted soil with concentrations of crude oil of 0, 1000, and 2000 ppm. Results revealed that S4 (PMEL-79) had significant potential to degrade hydrocarbon in polluted soils. The root length, shoot length, and fresh biomass of maize were increased by 65%, 45%, and 98%, respectively, in pots inoculated with S4 (PMEL-79) Enterobacter cloacae subsp., whereas the lowest root length was observed where no strain was added and the concentration of crude oil was at maximum. Moreover, S4 (PMEL-79) Enterobacter cloacae subsp. was found to be the most effective strain in degrading crude oil and increasing maize growth under polluted soil conditions. It was concluded that the isolation of microorganisms from oil-contaminated sites should be considered in order to identify the most effective microbial consortium for the biodegradation of naturally hydrocarbon-contaminated soils.
Collapse
|
23
|
Crettaz-Minaglia M, Fallico M, Aranda O, Juarez I, Pezzoni M, Costa C, Andrinolo D, Giannuzzi L. Effect of temperature on microcystin-LR removal and lysis activity on Microcystis aeruginosa (cyanobacteria) by an indigenous bacterium belonging to the genus Achromobacter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44427-44439. [PMID: 32767213 DOI: 10.1007/s11356-020-09901-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Microcystis is a frequent cyanobacterium bloom-forming with cosmopolitan distribution which can produce a hepatotoxin group called microcystins (MCs). These MCs are resistant to the traditional processes employed in the water treatment plants and they are often detected after conventional treatments. Because of this, the bio-removal studies have obtained a great interest in the last decades. In this work, a bacterial strain namely LG1 with the ability to remove microcystin-LR (MC-LR) under laboratory conditions was isolated from Rio de la Plata River and it was identified as Achromobacter spp. This ubiquitous bacterium was able to remove 79.5% MC-LR in 7 days with average removal time of 3.33 ± 0.08, 3.06 ± 0.05, and 2.77 ± 0.05 days at 28, 32, and 36 ± 1 °C, being higher at high temperature (36 °C) with an activation energy = 16.79 ± 1.99 kJ mol-1. LG1 grew better at higher temperature (from 28 to 36 ± 1 °C) increasing the specific growth rate (μ) and reducing 2-fold the lag phase duration (LPD) without significant differences (p > 0.05) between maximum population density (MPD). In addition, LG1 showed a lysis activity on two M. aeruginosa native strains in 7 days measured as chlorophyll a (Chl-a) concentration. The lysis activity increased around 2-fold when increasing the temperature from 28 to 36 ± 1 °C. This is the first report of an indigenous bacterium belonging to the genus Achromobacter spp. isolated from the Rio de la Plata River with the capacity to remove MC-LR and lysis activity on M. aeruginosa.
Collapse
Affiliation(s)
- Melina Crettaz-Minaglia
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina.
- CONICET, Buenos Aires, Argentina.
| | - Maximiliano Fallico
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Oswaldo Aranda
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| | - Ivan Juarez
- CONICET, Buenos Aires, Argentina
- Centro de Investigaciones y Desarrollo en Criotecnología de Alimentos, UNLP-CONICET, La Plata, Argentina
| | - Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Cristina Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Buenos Aires, Argentina
| | - Dario Andrinolo
- Laboratorio de Toxicología General, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
- CONICET, Buenos Aires, Argentina
| | - Leda Giannuzzi
- CONICET, Buenos Aires, Argentina
- Centro de Investigaciones y Desarrollo en Criotecnología de Alimentos, UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
24
|
Li Y, Tian Y, Hao Z, Ma Y. Complete genome sequence of the aromatic-hydrocarbon-degrading bacterium Achromobacter xylosoxidans DN002. Arch Microbiol 2020; 202:2849-2853. [PMID: 32683476 DOI: 10.1007/s00203-020-01977-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022]
Abstract
Achromobacter xylosoxidans DN002 is capable of utilizing numerous aromatic hydrocarbons as sole carbon and energy resource. In this study, the whole genome of strain DN002 was sequenced and analyzed, which consisted of one circular chromosome of 5,943,204 bp and a 278,917 bp plasmid with an average GC content of 65.46 mol%, 5694 protein-coding genes, 13 rRNA genes and 57 tRNA genes. Analysis of cluster of orthologous group (COG) demonstrated that strain DN002 had remarkable gene abundance foramino acid transport and metabolism, transcription, inorganic ion transport and metabolism, energy production and conversion, and carbohydrate transport and metabolism. Genes related to biodegradation of aromatic hydrocarbons, chemotaxis and flagella were identified from the genome, which will advance our fundamental understanding the molecular mechanism for degradation and metabolizing of aromatic hydrocarbons.
Collapse
Affiliation(s)
- Yanbing Li
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 TaibaiNorth Rd, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Yuexin Tian
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 TaibaiNorth Rd, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Zhidan Hao
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 TaibaiNorth Rd, Xi'an, 710069, Shaanxi, People's Republic of China
| | - Yanling Ma
- Shaanxi Provincial Key Laboratory of Biotechnology, Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, 229 TaibaiNorth Rd, Xi'an, 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
25
|
Zeng XH, Du H, Zhao HM, Xiang L, Feng NX, Li H, Li YW, Cai QY, Mo CH, Wong MH, He ZL. Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122211. [PMID: 32036315 DOI: 10.1016/j.jhazmat.2020.122211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
This study aims to clarify the interaction mechanism of substrate with catechol 2,3-dioxygenase (C23O) through multi-technique combination. A novel C23O (named C23O-2G) was cloned, heterogeneously expressed, and identified as a new member in subfamily I.2 of extradiol dioxygenases. Based on the simulations of molecular docking and dynamics, the exact binding sites of catechol on C23O-2G were identified, and the catalytic mechanism mediated by key residues was proposed. The roles of the predicted residues during catalysis were confirmed by site-directed mutagenesis, and the mutation of Thr254 could significantly increase catalytic efficiency and substrate specificity of C23O-2G. The binding and thermodynamic parameters obtained from fluorescence spectra suggested that catechol could effectively quench the intrinsic fluorescence of C23O-2G via static and dynamic quenching mechanisms and spontaneously formed C23O-2G/catechol complex by the binding forces of hydrogen bond and van der Waals force. The results of UV-vis spectra, synchronous fluorescence, and CD spectra revealed obvious changes in the microenvironment and conformation of C23O-2G, especially for the secondary structure. The atomic force microscope images further demonstrated the changes from an appearance point of view. This study could improve our mechanistic understanding of representative dioxygenases involved in aromatic compound degradation.
Collapse
Affiliation(s)
- Xian-Hong Zeng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Huan Du
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA.
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhen-Li He
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, 34945, USA
| |
Collapse
|
26
|
Mohapatra B, Kazy SK, Sar P. Comparative genome analysis of arsenic reducing, hydrocarbon metabolizing groundwater bacterium Achromobacter sp. KAs 3-5T explains its competitive edge for survival in aquifer environment. Genomics 2019; 111:1604-1619. [DOI: 10.1016/j.ygeno.2018.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
27
|
Villaverde J, Láiz L, Lara-Moreno A, González-Pimentel JL, Morillo E. Bioaugmentation of PAH-Contaminated Soils With Novel Specific Degrader Strains Isolated From a Contaminated Industrial Site. Effect of Hydroxypropyl-β-Cyclodextrin as PAH Bioavailability Enhancer. Front Microbiol 2019; 10:2588. [PMID: 31798552 PMCID: PMC6874150 DOI: 10.3389/fmicb.2019.02588] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/25/2019] [Indexed: 11/13/2022] Open
Abstract
A PAHs-contaminated industrial soil was analyzed using PCR amplification of the gene 16S ribosomal RNA for the detection and identification of different isolated bacterial strains potentially capable of degrading PAHs. Novel degrader strains were isolated and identified as Achromobacter xylosoxidans 2BC8 and Stenotrophomonas maltophilia JR62, which were able to degrade PYR in solution, achieving a mineralization rate of about 1% day-1. A. xylosoxidans was also able to mineralize PYR in slurry systems using three selected soils, and the total extent of mineralization (once a plateau was reached) increased 4.5, 21, and 57.5% for soils LT, TM and CR, respectively, regarding the mineralization observed in the absence of the bacterial degrader. Soil TM contaminated with PYR was aged for 80 days and total extent of mineralization was reduced (from 46 to 35% after 180 days), and the acclimation period increased (from 49 to 79 days). Hydroxypropyl-ß-cyclodextrin (HPBCD) was used as a bioavailability enhancer of PYR in this aged soil, provoking a significant decrease in the acclimation period (from 79 to 54 days) due to an increase in PYR bioavailable fraction just from the beginning of the assay. However, a similar global extension of mineralization was obtained. A. xylosoxidans was then added together with HPBCD to this aged TM soil contaminated with PYR, and the total extent of mineralization decreased to 25% after 180 days, possibly due to the competitive effect of endogenous microbiota and the higher concentration of PYR in the soil solution provoked by the addition of HPBCD, which could have a toxic effect on the A. xylosoxidans strain.
Collapse
Affiliation(s)
- Jaime Villaverde
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Leonila Láiz
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Alba Lara-Moreno
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - J L González-Pimentel
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| | - Esmeralda Morillo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Seville, Spain
| |
Collapse
|
28
|
Xu X, Liu W, Wang W, Tian S, Jiang P, Qi Q, Li F, Li H, Wang Q, Li H, Yu H. Potential biodegradation of phenanthrene by isolated halotolerant bacterial strains from petroleum oil polluted soil in Yellow River Delta. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:1030-1038. [PMID: 30901777 DOI: 10.1016/j.scitotenv.2019.02.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The Yellow River Delta (YRD), being close to Shengli Oilfield, is at high risk for petroleum oil pollution. The aim of this study was to isolate halotolerant phenanthrene (PHE) degrading bacteria for dealing with this contaminates in salinity environment. Two bacterial strains assigned as FM6-1 and FM8-1 were successfully screened from oil contaminated soil in the YRD. Morphological and molecular analysis suggested that strains FM6-1 and FM8-1 were belonging to Delftia sp. and Achromobacter sp., respectively. Bacterial growth of both strains was not dependent on NaCl, however, grew well under extensive NaCl concentration. The optimum NaCl concentration for bacterial production of strain FM8-1 was 4% (m/v), whereas for strain FM6-1, growth was not affected within 2.5% NaCl. Both strains could use the tested aromatic hydrocarbons (naphthalene, phenanthrene, fluoranthene and pyrene) and aliphatic hydrocarbons (C12, C16, C20 and C32) as sole carbon source. The optimized biodegradation conditions for strain FM6-1 were pH 7, 28 °C and 2% NaCl, for strain FM8-1 were pH 8, 28 °C and 2.5% NaCl. The highest biodegradation rate of strains FM6-1 and FM8-1 was found at 150 mg/L PHE and 200 mg/L, respectively. In addition, strainsFM8-1 showed a superior biodegradation ability to strain FM6-1 at each optimized condition. The PHE biodegradation process by both strains well fitted to first-order kinetic models and the k1 values were calculated to be 0.1974 and 0.1070 per day. Strain FM6-1 metabolized PHE via a "phthalic acid" route, while strain FM8-1 metabolized PHE through the "naphthalene" route. This project not only obtained two halotolerant petroleum hydrocarbon degraders but also provided a promising remediation approach for solving oil pollutants in salinity environments.
Collapse
Affiliation(s)
- Xingjian Xu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China.
| | - Wenming Liu
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Wei Wang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Shuhua Tian
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Pan Jiang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Qige Qi
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Fengjiao Li
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, Inner Mongolia 137400, China
| | - Haiyan Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Huai Li
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Changchun University of Science and Technology, Changchun 130022, China
| |
Collapse
|
29
|
Fluoranthene Biodegradation by Serratia sp. AC-11 Immobilized into Chitosan Beads. Appl Biochem Biotechnol 2019; 188:1168-1184. [DOI: 10.1007/s12010-019-02980-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/20/2019] [Indexed: 01/14/2023]
|
30
|
Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions: A Perspective Analysis. Front Microbiol 2018; 9:2885. [PMID: 30559725 PMCID: PMC6287552 DOI: 10.3389/fmicb.2018.02885] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/12/2018] [Indexed: 11/13/2022] Open
Abstract
With the sharp increase in population and modernization of society, environmental pollution resulting from petroleum hydrocarbons has increased, resulting in an urgent need for remediation. Petroleum hydrocarbon-degrading bacteria are ubiquitous in nature and can utilize these compounds as sources of carbon and energy. Bacteria displaying such capabilities are often exploited for the bioremediation of petroleum oil-contaminated environments. Recently, microbial remediation technology has developed rapidly and achieved major gains. However, this technology is not omnipotent. It is affected by many environmental factors that hinder its practical application, limiting the large-scale application of the technology. This paper provides an overview of the recent literature referring to the usage of bacteria as biodegraders, discusses barriers regarding the implementation of this microbial technology, and provides suggestions for further developments.
Collapse
Affiliation(s)
- Xingjian Xu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Wenming Liu
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Shuhua Tian
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Wei Wang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Qige Qi
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Pan Jiang
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Xinmei Gao
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Fengjiao Li
- Hinggan League Academy of Agriculture and Animal Husbandry, Ulanhot, China
| | - Haiyan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Hongwen Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.,School of Life Science and Technology, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
31
|
Guevara-Luna J, Alvarez-Fitz P, Ríos-Leal E, Acevedo-Quiroz M, Encarnación-Guevara S, Moreno-Godinez ME, Castellanos-Escamilla M, Toribio-Jiménez J, Romero-Ramírez Y. Biotransformation of benzo[a]pyrene by the thermophilic bacterium Bacillus licheniformis M2-7. World J Microbiol Biotechnol 2018; 34:88. [DOI: 10.1007/s11274-018-2469-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/31/2018] [Indexed: 10/14/2022]
|