1
|
Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Rahman RNZRA. Ion-Pair Interaction and Hydrogen Bonds as Main Features of Protein Thermostability in Mutated T1 Recombinant Lipase Originating from Geobacillus zalihae. Molecules 2020; 25:E3430. [PMID: 32731607 PMCID: PMC7435748 DOI: 10.3390/molecules25153430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 01/19/2023] Open
Abstract
A comparative structure analysis between space- and an Earth-grown T1 recombinant lipase from Geobacillus zalihae had shown changes in the formation of hydrogen bonds and ion-pair interactions. Using the space-grown T1 lipase validated structure having incorporated said interactions, the recombinant T1 lipase was re-engineered to determine the changes brought by these interactions to the structure and stability of lipase. To understand the effects of mutation on T1 recombinant lipase, five mutants were developed from the structure of space-grown T1 lipase and biochemically characterized. The results demonstrate an increase in melting temperature up to 77.4 °C and 76.0 °C in E226D and D43E, respectively. Moreover, the mutated lipases D43E and E226D had additional hydrogen bonds and ion-pair interactions in their structures due to the improvement of stability, as observed in a longer half-life and an increased melting temperature. The biophysical study revealed differences in β-Sheet percentage between less stable (T118N) and other mutants. As a conclusion, the comparative analysis of the tertiary structure and specific residues associated with ion-pair interactions and hydrogen bonds could be significant in revealing the thermostability of an enzyme with industrial importance.
Collapse
Affiliation(s)
- Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd. Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; (S.N.H.I.); (N.H.A.K.); (M.S.M.A.); (A.T.C.L.)
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Design of BRC analogous peptides based on the complex BRC8-RAD51 and the preliminary study on the peptide structures. Amino Acids 2020; 52:831-839. [PMID: 32417964 DOI: 10.1007/s00726-020-02856-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
BRCA2 is an important tumor suppressor gene that plays a critical role in preserving the stability of cellular genetic information, participating in DNA repair by engaging in binding interactions with RAD51 proteins. However, the lack of structural data on BRCA2 and RAD51 makes the study of their interaction mechanism still a great challenge. We characterize the structure of the BRC8-RAD51 complex using ZDOCK protein docking software and identify the potential non-conserved active site of BRC8 via virtual alanine scanning, utilizing the obtained results to synthesize BRC8, its six analogous peptides (BRC8-1 to BRC8-6), and critical peptide fragment of RAD51 (RAD51(231-260)) by Fmoc solid-phase synthesis. The analogous peptides are found to exhibit a secondary structure significantly different from that of BRC8 by circular dichroism spectroscopy, which indicates that mutation sites determined by computer-aided simulation correspond to key amino acid residues substantially affecting polypeptide structure. On the other hand, the secondary structure of RAD51(231-260) was also considerably influenced by its interaction with BRC8 and analogs, e.g., the fraction of the α-helical structure in RAD51(231-260) increased to 23.6, 15.1, and 13.5% upon interaction with BRC8-1, BRC8-3, and BRC8-6, respectively. The results show that the properties of C-terminal amino acid residues significantly influence peptide-peptide interactions, in agreement with the results of virtual alanine scanning. Therefore, computer-aided simulation was confirmed to be a technique that is useful for narrowing down the range of sites responsible for interactions between peptides or proteins, and provides new inspirations for the design of peptides with strong interactions.
Collapse
|
3
|
Development of a new Geobacillus lipase variant GDlip43 via directed evolution leading to identification of new activity-regulating amino acids. Int J Biol Macromol 2020; 151:1194-1204. [DOI: 10.1016/j.ijbiomac.2019.10.163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 10/25/2022]
|
4
|
Druteika G, Sadauskas M, Malunavicius V, Lastauskiene E, Statkeviciute R, Savickaite A, Gudiukaite R. New engineered Geobacillus lipase GD-95RM for industry focusing on the cleaner production of fatty esters and household washing product formulations. World J Microbiol Biotechnol 2020; 36:41. [DOI: 10.1007/s11274-020-02816-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
|
5
|
Usage of GD-95 and GD-66 lipases as fusion partners leading to improved chimeric enzyme LipGD95-GD66. Int J Biol Macromol 2018; 118:1594-1603. [DOI: 10.1016/j.ijbiomac.2018.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/29/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
|
6
|
Zhou J, Wang Y, Xu G, Wu L, Han R, Schwaneberg U, Rao Y, Zhao YL, Zhou J, Ni Y. Structural Insight into Enantioselective Inversion of an Alcohol Dehydrogenase Reveals a "Polar Gate" in Stereorecognition of Diaryl Ketones. J Am Chem Soc 2018; 140:12645-12654. [PMID: 30247889 DOI: 10.1021/jacs.8b08640] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diaryl ketones are important building blocks for synthesizing pharmaceuticals and are generally regarded as "difficult-to-reduce" ketones due to the large steric hindrance of their two bulky aromatic side chains. Alcohol dehydrogenase from Kluyveromyces polyspora ( KpADH) has been identified as a robust biocatalyst due to its high conversion of diaryl ketone substrate (4-chlorophenyl)(pyridine-2-yl)ketone (CPMK) with a moderate R-selectivity of 82% ee. To modulate the stereoselectivity of KpADH, a "polarity scanning" strategy was proposed, in which six key residues inside and at the entrance of the substrate binding pocket were identified. After iterative combinatorial mutagenesis, variants Mu-R2 and Mu-S5 with enhanced (99.2% ee, R) and inverted (97.8% ee, S) stereoselectivity were obtained. The crystal structures of KpADH and two mutants in complex with NADPH were resolved to elucidate the evolution of enantioselective inversion. Based on MD simulation, Mu-R2-CPMKProR and Mu-S5-CPMKProS were more favorable in the formation of prereaction states. Interestingly, a quadrilateral plane formed by α-carbons of four residues (N136, V161, C237, and G214) was identified at the entrance of the substrate binding pocket of Mu-S5; this plane acts as a "polar gate" for substrates. Due to the discrepancy in charge characteristics between chlorophenyl and pyridine substituents, the pro- S orientation of CPMK is defined when it passes through the "polar gate" in Mu-S5, whereas the similar plane in wild-type is blocked by several aromatic residues. Our result paves the way for engineering stereocomplementary ADH toward bulky diaryl ketones and provides structural insight into the mechanism of stereoselective inversion.
Collapse
Affiliation(s)
- Jieyu Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yue Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Lian Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ruizhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringerweg 3 , 52074 Aachen , Germany
| | - Yijian Rao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology , Jiangnan University , Wuxi , 214122 Jiangsu , China
| |
Collapse
|
7
|
Gudiukaite R, Sadauskas M, Gegeckas A, Malunavicius V, Citavicius D. Construction of a novel lipolytic fusion biocatalyst GDEst-lip for industrial application. J Ind Microbiol Biotechnol 2017; 44:799-815. [PMID: 28105534 DOI: 10.1007/s10295-017-1905-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/07/2017] [Indexed: 01/11/2023]
Abstract
The gene encoding esterase (GDEst-95) from Geobacillus sp. 95 was cloned and sequenced. The resulting open reading frame of 1497 nucleotides encoded a protein with calculated molecular weight of 54.7 kDa, which was classified as a carboxylesterase with an identity of 93-97% to carboxylesterases from Geobacillus bacteria. This esterase can be grouped into family VII of bacterial lipolytic enzymes, was active at broad pH (7-12) and temperature (5-85 °C) range and displayed maximum activity toward short acyl chain p-nitrophenyl (p-NP) esters. Together with GD-95 lipase from Geobacillus sp. strain 95, GDEst-95 esterase was used for construction of fused chimeric biocatalyst GDEst-lip. GDEst-lip esterase/lipase possessed high lipolytic activity (600 U/mg), a broad pH range of 6-12, thermoactivity (5-85 °C), thermostability and resistance to various organic solvents or detergents. For these features GDEst-lip biocatalyst has high potential for applications in various industrial areas. In this work the effect of additional homodomains on monomeric GDEst-95 esterase and GD-95 lipase activity, thermostability, substrate specificity and catalytic properties was also investigated. Altogether, this article shows that domain fusing strategies can modulate the activity and physicochemical characteristics of target enzymes for industrial applications.
Collapse
Affiliation(s)
- Renata Gudiukaite
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania.
| | - Mikas Sadauskas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Audrius Gegeckas
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| | - Donaldas Citavicius
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, 10257, Vilnius, Lithuania
| |
Collapse
|