1
|
Zhu F, Yan Z, Zhao K, Li X, Ma J, Zhang X, Zang Y. Engineering of Glycosyltransferase for Efficient Biosynthesis of Salidroside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8448-8457. [PMID: 40152664 DOI: 10.1021/acs.jafc.5c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Salidroside has been widely used in the cosmetic and medicinal industries. Previously, potential glycosyltransferase UGTBS was obtained for salidroside synthesis. However, the catalytic efficiency for salidroside was undesirable. In this study, a semirational design was applied to engineer UGTBS. The quadruple mutant M4 (I62N/S129T/F168W/Y316S) showed significantly enhanced salidroside synthesis. A conversion rate of 94.7% was obtained using mutant M4, which was 2.2-fold higher than that of the wild-type. The regioselectivity of mutant M4 toward tyrosol hydroxyl was also improved, resulting in 97.9% salidroside in the total product, which was 1.2-fold higher than that of the wild type. Kinetic constants and molecular simulations indicated that increased affinity and altered conformation of the binding pocket accounted for the enhanced salidroside synthesis. Furthermore, a fed-batch cascade reaction strategy was used, and over 183 mM salidroside was obtained. The engineered mutant M4 demonstrated precise catalysis for salidroside formation.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Zixu Yan
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Kexue Zhao
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Xiaoli Li
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei 230012, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| | - Xinhong Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230069, China
| | - Yongjun Zang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an 237012, China
| |
Collapse
|
2
|
Huang Z, Ni D, Chen Z, Zhu Y, Zhang W, Mu W. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability. Crit Rev Food Sci Nutr 2024; 64:11396-11408. [PMID: 37485919 DOI: 10.1080/10408398.2023.2238054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.
Collapse
Affiliation(s)
- Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Zhu F, Yan Z, Dai J, Li G, Xu Q, Ma Y, Ma J, Chen N, Zhang X, Zang Y. Improvement in organic solvent resistance of keratinase BLk by directed evolution. J Biotechnol 2024; 382:37-43. [PMID: 38244699 DOI: 10.1016/j.jbiotec.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Keratinase, a vital enzyme in hair degradation, requires enhanced stability for industrial applications in the harsh reaction environment used for keratin hydrolysis. Previous studies have focused on improving keratinase thermostability. In this study, directed evolution was applied to enhance the organic solvent stability of the keratinase BLk from Bacillus licheniformis. Three mutants were identified, exhibiting significant enhanced stability in various solvents, although no similar improvements were observed in terms of thermostability. The identified mutations were located on the enzyme surface. The half-lives of the D41A, A24E, and A24Q mutants increased by 47-, 63-, and 61-fold, respectively, in the presence of 50% (v/v) acetonitrile compared to that of the wild type (WT). Similarly, in the presence of 50% (v/v) acetone, the half-lives of these mutants increased by 22-, 27-, and 27-fold compared to that of the WT enzyme. Notably, the proteolytic activity of all the selected mutants was similar to that of the WT enzyme. Furthermore, molecular dynamics simulation was used to assess the possible reasons for enhanced solvent stability. These results suggest that heightened intramolecular interactions, such as hydrogen bonding and hydrophobic interactions, contribute to improved solvent tolerance. The mutants obtained in this study hold significant potential for industrial applications.
Collapse
Affiliation(s)
- Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China.
| | - Zixu Yan
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Jingli Dai
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Guosi Li
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Qilin Xu
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Yunfeng Ma
- Anhui Anlito Biological Technology Co., LTD, Anhui Huoshan Economic and Technological Development Zone P.R.C, Lu'an city 237200, China
| | - Jingbo Ma
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Naidong Chen
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China
| | - Xinhong Zhang
- School of Biology, Food and Environment, Hefei University, Hefei 230630, China.
| | - Yongjun Zang
- College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Province Key Laboratory for Quality Evaluation and Improvement of Traditional Chinese Medicine, West Anhui University, Lu'an city 237012, China.
| |
Collapse
|
4
|
Miao H, Xiang X, Han N, Wu Q, Huang Z. Improving the Thermostability of Serine Protease PB92 from Bacillus alcalophilus via Site-Directed Mutagenesis Based on Semi-Rational Design. Foods 2023; 12:3081. [PMID: 37628080 PMCID: PMC10453622 DOI: 10.3390/foods12163081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Proteases have been widely employed in many industrial processes. In this work, we aimed to improve the thermostability of the serine protease PB92 from Bacillus alcalophilus to meet the high-temperature requirements of biotechnological treatments. Eight mutation sites (N18, S97-S101, E110, and R143) were identified, and 21 mutants were constructed from B-factor comparison and multiple sequence alignment and expressed via Bacillus subtilis. Among them, fifteen mutants exhibited increased half-life (t1/2) values at 65 °C (1.13-31.61 times greater than that of the wild type). Based on the composite score of enzyme activity and thermostability, six complex mutants were implemented. The t1/2 values of these six complex mutants were 2.12-10.05 times greater than that of the wild type at 65 °C. In addition, structural analysis revealed that the increased thermal stability of complex mutants may be related to the formation of additional hydrophobic interactions due to increased hydrophobicity and the decreased flexibility of the structure. In brief, the thermal stability of the complex mutants N18L/R143L/S97A, N18L/R143L/S99L, and N18L/R143L/G100A was increased 4-fold, which reveals application potential in industry.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
5
|
Chi H, Zhu X, Shen J, Lu Z, Lu F, Lyu Y, Zhu P. Thermostability enhancement and insight of L-asparaginase from Mycobacterium sp. via consensus-guided engineering. Appl Microbiol Biotechnol 2023; 107:2321-2333. [PMID: 36843197 DOI: 10.1007/s00253-023-12443-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 02/28/2023]
Abstract
Acrylamide alleviation in food has represented as a critical issue due to its neurotoxic effect on human health. L-Asparaginase (ASNase, EC 3.5.1.1) is considered a potential additive for acrylamide alleviation in food. However, low thermal stability hinders the application of ASNase in thermal food processing. To obtain highly thermal stable ASNase for its industrial application, a consensus-guided approach combined with site-directed saturation mutation (SSM) was firstly reported to engineer the thermostability of Mycobacterium gordonae L-asparaginase (GmASNase). The key residues Gly97, Asn159, and Glu249 were identified for improving thermostability. The combinatorial triple mutant G97T/N159Y/E249Q (TYQ) displayed significantly superior thermostability with half-life values of 61.65 ± 8.69 min at 50 °C and 5.12 ± 1.66 min at 55 °C, whereas the wild-type was completely inactive at these conditions. Moreover, its Tm value increased by 8.59 °C from parent wild-type. Interestingly, TYQ still maintained excellent catalytic efficiency and specific activity. Further molecular dynamics and structure analysis revealed that the additional hydrogen bonds, increased hydrophobic interactions, and favorable electrostatic potential were essential for TYQ being in a more rigid state for thermostability enhancement. These results suggested that our strategy was an efficient engineering approach for improving fundamental properties of GmASNase and offering GmASNase as a potential agent for efficient acrylamide mitigation in food industry. KEY POINTS: • The thermostability of GmASNase was firstly improved by consensus-guided engineering. • The half-life and Tm value of triple mutant TYQ were significantly increased. • Insight on improved thermostability of TYQ was revealed by MD and structure analysis.
Collapse
Affiliation(s)
- Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Rational engineering of a metalloprotease to enhance thermostability and activity. Enzyme Microb Technol 2023; 162:110123. [DOI: 10.1016/j.enzmictec.2022.110123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022]
|
7
|
Zhu F, He B, Gu F, Deng H, Chen C, Wang W, Chen N. Improvement in organic solvent resistance and activity of metalloprotease by directed evolution. J Biotechnol 2020; 309:68-74. [DOI: 10.1016/j.jbiotec.2019.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022]
|
8
|
Tan H, Yang G, Chen W, Liu Q, Li K, Yin H. Identification and characterization of thermostable endo-polygalacturonase II B from Aspergillus luchuensis. J Food Biochem 2020; 44:e13133. [PMID: 31903633 DOI: 10.1111/jfbc.13133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/17/2019] [Accepted: 12/05/2019] [Indexed: 11/30/2022]
Abstract
Endo-polygalacturonase II B (PgaB) from Aspergillus luchuensis was orthologous to endo-polygalacturonase from Aspergillus niger with mutant sites Thr42Ser and Glu52Ala. Mature pgaB gene was cloned from the genomic DNA of A. luchuensis and secreted expressed with over 90% purity in Pichia Pastoris and reached 1.0 g/L after 144 hr culture. The recombinant PgaB was further purified by Ni-NTA chromatography. Using polygalacturonic acid (PGA) as substrate, the optimal condition for PgaB activity was 40°C and pH 4.5, respectively. Km and Vmax of PgaB were 0.19 mmol/l and 103.58 μmol min-1 mg-1 , respectively. The relative activity of PgaB remained more than 60% and 40% of maximum activity at 50 and 60°C for 7 hr. PgaB increased the light transmittance by 85% and showed high efficiency in juice clarification. The main product was galacturonic acid oligosaccharides with degrees of polymers (DP) 1-3. The PgaB is a potential pectinolytic enzyme in food industries. PRACTICAL APPLICATIONS: Endo-polygalacturonase II B (PgaB) was identified from Aspergillus luchuensis, a filamentous fungus widely used in food and beverage fermentation in East Asia. PgaB still kept its most activity at 60°C for 7 hr. Polygalacturonic acid (PGA) can be digested effectively by the PgaB and the main products are galacturonic acid oligosaccharides with degrees of polymers (DP) 1-3. PgaB shows high efficiency in juice clarification. The PgaB is a potential pectinolytic enzyme for the applications in food industries.
Collapse
Affiliation(s)
- Haidong Tan
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guojun Yang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wei Chen
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qishun Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Kuikui Li
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
9
|
Liao H, Gong JY, Yang Y, Jiang ZD, Zhu YB, Li LJ, Ni H, Li QB. Enhancement of the thermostability of Aspergillus niger α-l-rhamnosidase based on PoPMuSiC algorithm. J Food Biochem 2019; 43:e12945. [PMID: 31368575 DOI: 10.1111/jfbc.12945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
α-l-Rhamnosidase is a biotechnologically important enzyme in food industry and in the preparation of drugs and drug precursors. To expand the functionality of our previously cloned α-l-rhamnosidase from Aspergillus niger JMU-TS528, 14 mutants were constructed based on the changes of the folding free energy (ΔΔG), predicted by the PoPMuSiC algorithm. Among them, six single-site mutants displayed higher thermal stability than wild type (WT). The combinational mutant K573V-E631F displayed even higher thermostability than six single-site mutants. The spectra analyses displayed that the WT and K573V-E631F had almost similar secondary and tertiary structure profiles. The simulated protein structure-based interaction analysis and molecular dynamics calculation were further implemented to assess the conformational preferences of the K573V-E631F. The improved thermostability of mutant K573V-E631F may be attributed to the introduction of new cation-π and hydrophobic interactions, and the overall improvement of the enzyme conformation. PRACTICAL APPLICATIONS: The stability of enzymes, particularly with regards to thermal stability remains a critical issue in industrial biotechnology and industrial processing generally tends to higher ambient temperature to inhibit microbial growth. Most of the α-l-rhamnosidases are usually active at temperature from 30 to 60°C, which are apt to denature at temperatures over 60°C. To expand the functionality of our previously cloned α-l-rhamnosidase from Aspergillus niger JMU-TS528, we used protein engineering methods to increase the thermal stability of the α-l-rhamnosidase. Practically, conducting reactions at high temperatures enhances the solubility of substrates and products, increases the reaction rate thus reducing the reaction time, and inhibits the growth of contaminating microorganisms. Thus, the improvement on the thermostability of α-l-rhamnosidase on the one hand can increase enzyme efficacy; on the other hand, the high ambient temperature would enhance the solubility of natural substrates of α-l-rhamnosidase, such as naringin, rutin, and hesperidin, which are poorly dissolved in water at room temperature. Protein thermal resistance is an important issue beyond its obvious industrial importance. The current study also helps in the structure-function relationship study of α-l-rhamnosidase.
Collapse
Affiliation(s)
- Hui Liao
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Jian-Ye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Ze-Dong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Yan-Bing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| | - Li-Jun Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen, China.,Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, China.,Research Center of Food Biotechnology of Xiamen City, Xiamen, China
| | - Qing-Biao Li
- College of Food and Biological Engineering, Jimei University, Xiamen, China
| |
Collapse
|
10
|
Xu Q, Si M, Zhang Z, Li Z, Jiang L, Huang H. Rational Side-Chain Amino Acid Substitution in Firefly Luciferase for Improved Thermostability. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683819010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
11
|
Enhancement of Z-aspartame synthesis by rational engineering of metalloprotease. Food Chem 2018; 253:30-36. [DOI: 10.1016/j.foodchem.2018.01.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/22/2017] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
|
12
|
Li L, Liao H, Yang Y, Gong J, Liu J, Jiang Z, Zhu Y, Xiao A, Ni H. Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger. Int J Biol Macromol 2018; 112:14-21. [PMID: 29355637 DOI: 10.1016/j.ijbiomac.2018.01.078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/05/2018] [Accepted: 01/12/2018] [Indexed: 02/05/2023]
Abstract
To improve the thermostability of α-L-rhamnosidase (r-Rha1), an enzyme previously identified from Aspergillus niger JMU-TS528, multiple arginine (Arg) residues were introduced into the r-Rha1 sequence to replace several lysine (Lys) residues that located on the surface of the folded r-Rha1. Hinted by in silico analysis, five surface Lys residues (K134, K228, K406, K440, K573) were targeted to produce a list of 5 single-residue mutants and 4 multiple-residue mutants using site-directed mutagenesis. Among these mutants, a double Lys to Arg mutant, i.e. K406R/K573R, showed the best thermostability improvement. The half-life of this mutant's enzyme activity increased 3 h at 60 °C, 23 min at 65 °C, and 3.5 min at 70 °C, when compared with the wild type. The simulated protein structure based interaction analysis and molecular dynamics calculation indicate that the thermostability improvement of the mutant K406R-K573R was possibly due to the extra hydrogen bonds, the additional cation-π interactions, and the relatively compact conformation. With the enhanced thermostability, the α-L-rhamnosidase mutant, K406R-K573R, has potentially broadened the r-Rha1 applications in food processing industry.
Collapse
Affiliation(s)
- Lijun Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Liao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jianye Gong
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jianan Liu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanbing Zhu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China.
| |
Collapse
|
13
|
Li LJ, Wu ZY, Yu Y, Zhang LJ, Zhu YB, Ni H, Chen F. Development and characterization of an α-l-rhamnosidase mutant with improved thermostability and a higher efficiency for debittering orange juice. Food Chem 2017; 245:1070-1078. [PMID: 29287324 DOI: 10.1016/j.foodchem.2017.11.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
The glycoside hydrolase, α-l-rhamnosidase, could remove the bitter taste of naringin from citrus juices. However, most α-l-rhamnosidases are easily deactivated at high temperatures, limiting the practice in debittering citrus juices. The V529A mutant of the α-l-rhamnosidase r-Rha1 from Aspergillus niger JMU-TS528 was developed with improved thermostability using directed evolution technology and site-directed mutagenesis. The enzyme mutant had a half-live of thermal inactivation T(1/2) of 1.92 h, 25.00 min, and 2 min at 60, 65, and 70 °C, respectively. In addition, it had improved substrate affinity and better resistance to the inhibition of glucose. The improved substrate affinity was related to its lowered binding energy. Most significantly, the naringin content was reduced to below the bitter taste threshold by treatment with 75 U/mL of the mutant during the preheating process of orange juice production. The comprehensive results indicate that thermostability improvement could promote the practical value of α-l-rhamnosidase in citrus juice processing.
Collapse
Affiliation(s)
- Li Jun Li
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China
| | - Zhe Yu Wu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China
| | - Yue Yu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China
| | - Lu Jia Zhang
- College of Chemistry and Molecular Engineering, East China Normal University, Shanghai 201100, China
| | - Yan Bing Zhu
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China
| | - Hui Ni
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Research Center of Food Biotechnology of Xiamen City, Xiamen, Fujian Province 361021, China.
| | - Feng Chen
- College of Food and Biology Engineering, Jimei University, Xiamen, Fujian Province 361021, China; Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
14
|
Modulating Mobility: a Paradigm for Protein Engineering? Appl Biochem Biotechnol 2016; 181:83-90. [PMID: 27449223 DOI: 10.1007/s12010-016-2200-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/17/2016] [Indexed: 12/30/2022]
Abstract
Proteins are highly mobile structures. In addition to gross conformational changes occurring on, for example, ligand binding, they are also subject to constant thermal motion. The mobility of a protein varies through its structure and can be modulated by ligand binding and other events. It is becoming increasingly clear that this mobility plays an important role in key functions of proteins including catalysis, allostery, cooperativity, and regulation. Thus, in addition to an optimum structure, proteins most likely also require an optimal dynamic state. Alteration of this dynamic state through protein engineering will affect protein function. A dramatic example of this is seen in some inherited metabolic diseases where alternation of residues distant from the active site affects the mobility of the protein and impairs function. We postulate that using molecular dynamics simulations, experimental data or a combination of the two, it should be possible to engineer the mobility of active sites. This may be useful in, for example, increasing the promiscuity of enzymes. Thus, a paradigm for protein engineering is suggested in which the mobility of the active site is rationally modified. This might be combined with more "traditional" approaches such as altering functional groups in the active site.
Collapse
|
15
|
Abstract
Using structure and sequence based analysis we can engineer proteins to increase their thermal stability.
Collapse
Affiliation(s)
- H. Pezeshgi Modarres
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - M. R. Mofrad
- Molecular Cell Biomechanics Laboratory
- Departments of Bioengineering and Mechanical Engineering
- University of California Berkeley
- Berkeley
- USA
| | - A. Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic Laboratory
- Department of Mechanical and Manufacturing Engineering
- University of Calgary
- Calgary
- Canada
| |
Collapse
|