1
|
Wang M, Jiang D, Lu X, Zong H, Zhuge B. Large Flux Supply of NAD(H) under Aerobic Conditions by Candida glycerinogenes. ACS Synth Biol 2024; 13:1716-1726. [PMID: 38733342 DOI: 10.1021/acssynbio.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
NAD is a redox coenzyme and is the center of energy metabolism. In metabolic engineering modifications, an insufficient NAD(H) supply often limits the accumulation of target products. In this study, Candida glycerinogenes was found to be able to supply NAD(H) in large fluxes, up to 7.6 times more than Saccharomyces cerevisiae in aerobic fermentation. Aerobic fermentation in a medium without amino nitrogen sources demonstrated that C. glycerinogenes NAD synthesis was not dependent on NAD precursors in the medium. Inhibition by antisense RNA and the detection of transcript levels indicated that the main NAD supply pathway is the de novo biosynthesis pathway. It was further demonstrated that NAD(H) supply was unaffected by changes in metabolic flow through C. glycerinogenes ΔGPD aerobic fermentation (80 g/L ethanol). In conclusion, the ability of C. glycerinogenes to supply NAD(H) in large fluxes provides a new approach to solving the NAD(H) supply problem in synthetic biology.
Collapse
Affiliation(s)
- Mengying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Dongqi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinyao Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Jiang W, Cai Y, Sun S, Wang W, Tišma M, Baganz F, Hao J. Inactivation of hydrogenase-3 leads to enhancement of 1,3-propanediol and 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 177:110438. [PMID: 38518554 DOI: 10.1016/j.enzmictec.2024.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Klebsiella pneumoniae can use glucose or glycerol as carbon sources to produce 1,3-propanediol or 2,3-butanediol, respectively. In the metabolism of Klebsiella pneumoniae, hydrogenase-3 is responsible for H2 production from formic acid, but it is not directly related to the synthesis pathways for 1,3-propanediol and 2,3-butanediol. In the first part of this research, hycEFG, which encodes subunits of the enzyme hydrogenase-3, was knocked out, so K. pneumoniae ΔhycEFG lost the ability to produce H2 during cultivation using glycerol as a carbon source. As a consequence, the concentration of 1,3-propanediol increased and the substrate (glycerol) conversion ratio reached 0.587 mol/mol. Then, K. pneumoniae ΔldhAΔhycEFG was constructed to erase lactic acid synthesis which led to the further increase of 1,3-propanediol concentration. A substrate (glycerol) conversion ratio of 0.628 mol/mol in batch conditions was achieved, which was higher compared to the wild type strain (0.545 mol/mol). Furthermore, since adhE encodes an alcohol dehydrogenase that catalyzes ethanol production from acetaldehyde, K. pneumoniae ΔldhAΔadhEΔhycEFG was constructed to prevent ethanol production. Contrary to expectations, this did not lead to a further increase, but to a decrease in 1,3-propanediol production. In the second part of this research, glucose was used as the carbon source to produce 2,3-butanediol. Knocking out hycEFG had distinct positive effect on 2,3-butanediol production. Especially in K. pneumoniae ΔldhAΔadhEΔhycEFG, a substrate (glucose) conversion ratio of 0.730 mol/mol was reached, which is higher compared to wild type strain (0.504 mol/mol). This work suggests that the inactivation of hydrogenase-3 may have a global effect on the metabolic regulation of K. pneumoniae, leading to the improvement of the production of two industrially important bulk chemicals, 1,3-propanediol and 2,3-butanediol.
Collapse
Affiliation(s)
- Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoqi Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenqi Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
3
|
Green synthesis of nickel ferrite nanoparticles for efficient enhancement of lignocellulosic hydrolysate-based biohydrogen production. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
4
|
Lee SM, Cho DH, Jung HJ, Kim B, Kim SH, Bhatia SK, Gurav R, Jeon JM, Yoon JJ, Park JH, Park JH, Kim YG, Yang YH. Enhanced tolerance of Cupriavidus necator NCIMB 11599 to lignocellulosic derived inhibitors by inserting NAD salvage pathway genes. Bioprocess Biosyst Eng 2022; 45:1719-1729. [PMID: 36121506 DOI: 10.1007/s00449-022-02779-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Polyhydroxybutyrate (PHB) is a bio-based, biodegradable and biocompatible plastic that has the potential to replace petroleum-based plastics. Lignocellulosic biomass is a promising feedstock for industrial fermentation to produce bioproducts such as polyhydroxybutyrate (PHB). However, the pretreatment processes of lignocellulosic biomass lead to the generation of toxic byproducts, such as furfural, 5-HMF, vanillin, and acetate, which affect microbial growth and productivity. In this study, to reduce furfural toxicity during PHB production from lignocellulosic hydrolysates, we genetically engineered Cupriavidus necator NCIMB 11599, by inserting the nicotine amide salvage pathway genes pncB and nadE to increase the NAD(P)H pool. We found that the expression of pncB was the most effective in improving tolerance to inhibitors, cell growth, PHB production and sugar consumption rate. In addition, the engineered strain harboring pncB showed higher PHB production using lignocellulosic hydrolysates than the wild-type strain. Therefore, the application of NAD salvage pathway genes improves the tolerance of Cupriavidus necator to lignocellulosic-derived inhibitors and should be used to optimize PHB production.
Collapse
Affiliation(s)
- Sun Mi Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Do-Hyun Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Byungchan Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Republic of Korea
| | - Jeong-Hoon Park
- Sustainable Technology and Wellness R&D Group, Korea Institute of Industrial Technology (KITECH), Jeju-si, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Li Y, Zhang Q, Liu Z, Jiang H, Jia Q. Genome mining discovery of hydrogen production pathway of Klebsiella sp. WL1316 fermenting cotton stalk hydrolysate. Int Microbiol 2022; 25:503-513. [PMID: 35147786 DOI: 10.1007/s10123-022-00241-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022]
Abstract
Genome sequencing was used to identify key genes for the generation of hydrogen gas through cotton stalk hydrolysate fermentation by Klebsiella sp. WL1316. Genome annotation indicated that the genome size was 5.2 Mb with GC content 57.6%. Xylose was metabolized in the pentose phosphate pathway via the conversion of xylose to xylulose in Klebsiella sp. WL1316. This strain contained diverse formate-hydrogen lyases and hydrogenases with gene numbers higher than closely related species. A metabolic network involving glucose, xylose utilisation, and fermentative hydrogen production was reconstructed. Metabolic analysis of key node metabolites showed that glucose and xylose metabolism influenced biomass synthesis and biohydrogen production. Formic acid accumulated during fermentation at 24-48 h but decreased sharply after 48 h, illustrating the splitting of formic acid to hydrogen gas during early-to-mid fermentation. The Kreb's cycle was the main competitive metabolic branch of biohydrogen synthesis at 24 h of fermentation. Lactic and acetic acid fermentation and late ethanol accumulation competed the carbon skeleton of biohydrogen synthesis after 72 h of fermentation, indicating that these competitive pathways are regulated in middle-to-late fermentation (48-96 h). This study is the first to elucidate the metabolic mechanisms of mixed sugar utilisation and biohydrogen synthesis based on genomic information.
Collapse
Affiliation(s)
- Yanbin Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China
| | - Qin Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, China.
| | - Zhanwen Liu
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Hui Jiang
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Qinghua Jia
- College of Life Science, Tarim University, Alaer, 843300, Xinjiang, China
| |
Collapse
|
6
|
Xu QT, Chen WX, Chen RP, Yu L. The role of anthraquinone-2-sulfonate on biohydrogen production by Klebsiella strain and mixed culture. BIORESOURCE TECHNOLOGY 2021; 334:125243. [PMID: 33957459 DOI: 10.1016/j.biortech.2021.125243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
The role of anthraquinone-2-sulfonate (AQS) on biohydrogen production was explored in this study. The hydrogen molar yield (HMY) of the batch experiment with 0.2 mM AQS was not significantly improved comparing to that without AQS, but the acetate and ethanol yields were increased by 12.1% and 9.82%, respectively. According to the metabolites flux analysis, e- balance calculations and stoichiometry results, the biogenic anthrahydroquinone-2,6,-disulfonate (AH2QS) preferred to improve the H2 generation that catalyzed by hydrogenase, but not likely affect the H2 generation that through formate cleavage pathway (FCP). However, comparing to the mix culture without AQS, the hydrogen production rate and hydrogen yield were increased by 20.97% of 1.96%, respectively, in the presence of AQS. The results of this study provided better understanding of the role of AQS on biohydrogen production by the strain that follows FCP, and the synergistic biohydrogen production by the co-culture that follows FCP and butyrate/acetate pathway.
Collapse
Affiliation(s)
- Qing-Tao Xu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Xin Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China.
| |
Collapse
|
7
|
Zhang Q, You S, Li Y, Qu X, Jiang H. Enhanced biohydrogen production from cotton stalk hydrolysate of Enterobacter cloacae WL1318 by overexpression of the formate hydrogen lyase activator gene. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:94. [PMID: 32489423 PMCID: PMC7245044 DOI: 10.1186/s13068-020-01733-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/16/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND Biohydrogen production from lignocellulose has become an important hydrogen production method due to its diversity, renewability, and cheapness. Overexpression of the formate hydrogen lyase activator (fhlA) gene is a promising tactic for enhancement of hydrogen production in facultative anaerobic Enterobacter. As a species of Enterobacter, Enterobacter cloacae was reported as a highly efficient hydrogen-producing bacterium. However, little work has been reported in terms of cloning and expressing the fhlA gene in E. cloacae for lignocellulose-based hydrogen production. RESULTS In this study, the formate hydrogen lyase activator (fhlA) gene was cloned and overexpressed in Enterobacter cloacae WL1318. We found that the recombinant strain significantly enhanced cumulative hydrogen production by 188% following fermentation of cotton stalk hydrolysate for 24 h, and maintained improved production above 30% throughout the fermentation process compared to the wild strain. Accordingly, overexpression of the fhlA gene resulted in an enhanced hydrogen production potential (P) and maximum hydrogen production rate (R m), as well as a shortened lag phase time (λ) for the recombinant strain. Additionally, the recombinant strain also displayed improved glucose (12%) and xylose (3.4%) consumption and hydrogen yield Y(H2/S) (37.0%) compared to the wild strain. Moreover, the metabolites and specific enzyme profiles demonstrated that reduced flux in the competitive branch, including succinic, acetic, and lactic acids, and ethanol generation, coupled with increased flux in the pyruvate node and formate splitting branch, benefited hydrogen synthesis. CONCLUSIONS The results conclusively prove that overexpression of fhlA gene in E. cloacae WL1318 can effectively enhance the hydrogen production from cotton stalk hydrolysate, and reduce the metabolic flux in the competitive branch. It is the first attempt to engineer the fhlA gene in the hydrogen-producing bacterium E. cloacae. This work provides a highly efficient engineered bacterium for biohydrogen production from fermentation of lignocellulosic hydrolysate in the future.
Collapse
Affiliation(s)
- Qin Zhang
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Shaolin You
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Yanbin Li
- College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000 Anhui China
| | - Xiaowei Qu
- College of Life Science, Tarim University, Alaer, 843300 Xinjiang China
| | - Hui Jiang
- College of Life Science, Tarim University, Alaer, 843300 Xinjiang China
| |
Collapse
|
8
|
Li W, Cheng C, Cao G, Ren N. Enhanced biohydrogen production from sugarcane molasses by adding Ginkgo biloba leaves. BIORESOURCE TECHNOLOGY 2020; 298:122523. [PMID: 31830657 DOI: 10.1016/j.biortech.2019.122523] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/27/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
Low H2 yield from biomass impedes the industrial application of biohydrogen production. To improve H2 yield, the effect of Ginkgo biloba leaf (GL) on H2 production was investigated in this study. In batch fermentation with sugarcane molasses (SM), the addition of GL improved H2 yield by 28.03%. SM medium was optimized with response surface methodology (RSM) to determine the best concentrations of GL, SM, and an inexpensive nitrogen source-corn steep liquor (CSL). A maximum yield of 1.58 mol-H2/mol-hexose from SM was obtained when GL, CSL and SM hexose were 2.31 g/L, 2.28 g/L and 10 g/L, respectively. As observed with metabolic flux analysis, GL enhanced H2 conversion from SM via altering the metabolic flux distribution of E. harbinense from ethanol pathway towards acetate pathway. This study demonstrated the promotion effect of GL on H2 production from SM, raising a novel method for enhanced biohydrogen production in large scales.
Collapse
Affiliation(s)
- Weiming Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chi Cheng
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Guangli Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Liu J, Li H, Zhao G, Caiyin Q, Qiao J. Redox cofactor engineering in industrial microorganisms: strategies, recent applications and future directions. J Ind Microbiol Biotechnol 2018; 45:313-327. [PMID: 29582241 DOI: 10.1007/s10295-018-2031-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
Abstract
NAD and NADP, a pivotal class of cofactors, which function as essential electron donors or acceptors in all biological organisms, drive considerable catabolic and anabolic reactions. Furthermore, they play critical roles in maintaining intracellular redox homeostasis. However, many metabolic engineering efforts in industrial microorganisms towards modification or introduction of metabolic pathways, especially those involving consumption, generation or transformation of NAD/NADP, often induce fluctuations in redox state, which dramatically impede cellular metabolism, resulting in decreased growth performance and biosynthetic capacity. Here, we comprehensively review the cofactor engineering strategies for solving the problematic redox imbalance in metabolism modification, as well as their features, suitabilities and recent applications. Some representative examples of in vitro biocatalysis are also described. In addition, we briefly discuss how tools and methods from the field of synthetic biology can be applied for cofactor engineering. Finally, future directions and challenges for development of cofactor redox engineering are presented.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Huiling Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Guangrong Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
10
|
Zhao C, Zhao Q, Li Y, Zhang Y. Engineering redox homeostasis to develop efficient alcohol-producing microbial cell factories. Microb Cell Fact 2017; 16:115. [PMID: 28646866 PMCID: PMC5483285 DOI: 10.1186/s12934-017-0728-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/16/2017] [Indexed: 12/11/2022] Open
Abstract
The biosynthetic pathways of most alcohols are linked to intracellular redox homeostasis, which is crucial for life. This crucial balance is primarily controlled by the generation of reducing equivalents, as well as the (reduction)-oxidation metabolic cycle and the thiol redox homeostasis system. As a main oxidation pathway of reducing equivalents, the biosynthesis of most alcohols includes redox reactions, which are dependent on cofactors such as NADH or NADPH. Thus, when engineering alcohol-producing strains, the availability of cofactors and redox homeostasis must be considered. In this review, recent advances on the engineering of cellular redox homeostasis systems to accelerate alcohol biosynthesis are summarized. Recent approaches include improving cofactor availability, manipulating the affinity of redox enzymes to specific cofactors, as well as globally controlling redox reactions, indicating the power of these approaches, and opening a path towards improving the production of a number of different industrially-relevant alcohols in the near future.
Collapse
Affiliation(s)
- Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Qiuwei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road Chaoyang District, Beijing, 100101 China
| |
Collapse
|