1
|
Kaur R, Jain R, Budholiya N, Rathore AS. Long term culturing of CHO cells: phenotypic drift and quality attributes of the expressed monoclonal antibody. Biotechnol Lett 2023; 45:357-370. [PMID: 36707452 DOI: 10.1007/s10529-023-03346-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/13/2022] [Accepted: 01/05/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Establishing cell lines with enhanced protein production requires a deep understanding of the cellular dynamics and cell line stability. The aim of the study is to investigate the impact of long term culturing (LTC) on cell morphology and altered cellular functions possibly leading to phenotypic drift, impacting product yield and quality. Study highlights the orthogonal cellular and analytical assay toolbox to define cell line stability for optimal culture performance and product quality. METHODS We investigated recombinant monoclonal antibody (mAb) expressing CHO cells for 60 passages or 180 generations and assessed the cell growth characteristics and morphology by confocal and scanning electron microscopy. Quality attributes of expressed mAb is accessed by performing charge variants, glycan, and host cell protein analysis. RESULTS We observed a 1.65-fold increase in viable cell population and 1.3-fold increase in cell specific growth rate. A 2.5-fold decrease in antibody titer and abatement of actin filament indicate cellular phenotypic drift. Mitochondrial membrane potential (∆ΨM) signified cell health and metabolic activity during LTC. Host cell protein production is reduced by 1.8-fold. Charge heterogeneity was perturbed with 12.5% and 43% reduction in abundance of acidic and basic charge variants respectively. Glycan profile indicated a decline in fucosylation with 17% increase in galactosylated species as compared with early passaged cells. CONCLUSION LTC impinges on cellular phenotype as well as the quality of the expressed antibody, suggesting a defined subculturing limit to retain stable protein expression and cell morphology to achieve consistent product quality. Study signifies the changes in cellular and metabolic markers, suggesting cellular and analytical toolbox which could play a significant role in defining cell characteristics and ensured product quality.
Collapse
Affiliation(s)
- Rajinder Kaur
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Ritu Jain
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Niharika Budholiya
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anurag S Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
| |
Collapse
|
2
|
Adherent and suspension baby hamster kidney cells have a different cytoskeleton and surface receptor repertoire. PLoS One 2021; 16:e0246610. [PMID: 34086711 PMCID: PMC8177424 DOI: 10.1371/journal.pone.0246610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Animal cell culture, with single cells growing in suspension, ideally in a chemically defined environment, is a mainstay of biopharmaceutical production. The synthetic environment lacks exogenous growth factors and usually requires a time-consuming adaptation process to select cell clones that proliferate in suspension to high cell numbers. The molecular mechanisms that facilitate the adaptation and that take place inside the cell are largely unknown. Especially for cell lines that are used for virus antigen production such as baby hamster kidney (BHK) cells, the restriction of virus growth through the evolution of undesired cell characteristics is highly unwanted. The comparison between adherently growing BHK cells and suspension cells with different susceptibility to foot-and-mouth disease virus revealed differences in the expression of cellular receptors such as integrins and heparan sulfates, and in the organization of the actin cytoskeleton. Transcriptome analyses and growth kinetics demonstrated the diversity of BHK cell lines and confirmed the importance of well-characterized parental cell clones and mindful screening to make sure that essential cellular features do not get lost during adaptation.
Collapse
|
3
|
Klingler F, Mathias S, Schneider H, Buck T, Raab N, Zeh N, Shieh YW, Pfannstiel J, Otte K. Unveiling the CHO surfaceome: Identification of cell surface proteins reveals cell aggregation-relevant mechanisms. Biotechnol Bioeng 2021; 118:3015-3028. [PMID: 33951178 DOI: 10.1002/bit.27811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/07/2021] [Accepted: 04/25/2021] [Indexed: 01/12/2023]
Abstract
Chinese hamster ovary (CHO) suspension cells are the main production hosts for biopharmaceuticals. For the improvement of production processes, it is essential to understand the interaction between CHO cells and their microenvironment. While the cellular membrane is the crucial surface barrier between the inner and outer cell compartments, the subgroup of cell surface proteins (surfaceome) is of particular interest due to its potential to react to external factors and initiate cell communication and interaction pathways. Therefore, the CHO surfaceome was explored for the first time by enriching exposed N-glycosylated membrane proteins before tandem mass spectrometry (MS/MS) analyses, identifying a total of 449 surface proteins, including 34 proteins specific for production cells. Functional annotation and classification located most proteins to the cell surface belonging mainly to the protein classes of receptors, enzymes, and transporters. In addition, adhesion molecules as cadherins, integrins, Ig superfamily and extracellular matrix (ECM) proteins as collagens, laminins, thrombospondin, fibronectin, and tenascin were significantly enriched, which are involved in mechanisms for the formation of cell junctions, cell-cell and cell-ECM adhesion as focal adhesions. As cell adhesion and aggregation counteracts scalable production of biopharmaceuticals, experimental validation confirmed differential expression of integrin β1 (ITGB1) and β3, CD44, laminin, and fibronectin on the surface of aggregation-prone CHO production cells. The subsequent modulation of the central interaction protein ITGB1 by small interfering RNA knockdown substantially counteracted cell aggregation pointing toward novel engineering routes for aggregation reduction in biopharmaceutical production cells and exemplifying the potential of the surfaceome for specified engineering strategies.
Collapse
Affiliation(s)
- Florian Klingler
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Sven Mathias
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany.,Early Stage Bioprocess Development, Bioprocess Development Biologicals, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Helga Schneider
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Theresa Buck
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nadja Raab
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Nikolas Zeh
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Yu-Wei Shieh
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| | - Jens Pfannstiel
- Core Facility Mass Spectrometry, University of Hohenheim, Stuttgart, Germany
| | - Kerstin Otte
- Institute of Applied Biotechnology, University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
4
|
Park S, Kim JY, Ryu KH, Kim AY, Kim J, Ko YJ, Lee EG. Production of a Foot-and-Mouth Disease Vaccine Antigen Using Suspension-Adapted BHK-21 Cells in a Bioreactor. Vaccines (Basel) 2021; 9:vaccines9050505. [PMID: 34068378 PMCID: PMC8153295 DOI: 10.3390/vaccines9050505] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
The baby hamster kidney-21 (BHK-21) cell line is a continuous cell line used to propagate foot-and-mouth disease (FMD) virus for vaccine manufacturing. BHK-21 cells are anchorage-dependent, although suspension cultures would enable rapid growth in bioreactors, large-scale virus propagation, and cost-effective vaccine production with serum-free medium. Here, we report the successful adaptation of adherent BHK-21 cells to growth in suspension to a viable cell density of 7.65 × 106 cells/mL on day 3 in serum-free culture medium. The suspension-adapted BHK-21 cells showed lower adhesion to five types of extracellular matrix proteins than adherent BHK-21 cells, which contributed to the suspension culture. In addition, a chemically defined medium (selected by screening various prototype media) led to increased FMD virus production yields in the batch culture, even at a cell density of only 3.5 × 106 cells/mL. The suspension BHK-21 cell culture could be expanded to a 200 L bioreactor from a 20 mL flask, which resulted in a comparable FMD virus titer. This platform technology improved virus productivity, indicating its potential for enhancing FMD vaccine production.
Collapse
Affiliation(s)
- Soonyong Park
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
| | - Ji Yul Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kyoung-Hwa Ryu
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
| | - Ah-Young Kim
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (A.-Y.K.); (Y.-J.K.)
| | - Jaemun Kim
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon 34113, Korea
| | - Young-Joon Ko
- Center for FMD Vaccine Research, Animal and Plant Quarantine Agency, Gimcheon 39660, Korea; (A.-Y.K.); (Y.-J.K.)
| | - Eun Gyo Lee
- Bioprocess Engineering Center, KRIBB, 30 Yeongudanjiro Ochang-eup, Chungju-si 28116, Korea; (S.P.); (J.Y.K.); (K.-H.R.); (J.K.)
- Correspondence: ; Tel.: +82-043-240-6633
| |
Collapse
|
5
|
Wu S, Rish AJ, Skomo A, Zhao Y, Drennen JK, Anderson CA. Rapid serum-free/suspension adaptation: Medium development using a definitive screening design for Chinese hamster ovary cells. Biotechnol Prog 2021; 37:e3154. [PMID: 33864359 DOI: 10.1002/btpr.3154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/20/2021] [Accepted: 04/10/2021] [Indexed: 12/17/2022]
Abstract
The biopharmaceutical industry prefers to culture the mammalian cells in suspension with a serum-free media (SFM) due to improved productivity and process consistency. However, mammalian cells preferentially grow as adherent cells in a complete medium (CM) containing serum. Therefore, cells require adaptation from adherence in CM to suspension culture in SFM. This work proposes an adaptation method that includes media supplementation during the adaption of Chinese hamster ovary cells. As a result, the adaptation was accelerated compared to the traditional repetitive subculturing. Ca2+ /Mg2+ supplementation significantly reduced the doubling time compared to the adaptation without supplementation during the adaptation of adherent cells from 100% CM to 75% CM (p < 0.05). Furthermore, a definitive screening design (DSD) was applied to select essential nutrients during the adaptation from 10% CM to 0% CM. The main effects of Ca2+ and Dulbecco's modified essential medium (DMEM) were found significant to both viable cell density and viability at harvest. Additionally, the interaction term between Ca2+ and DMEM was found significant, which highlights the ability of DSD to capture interaction terms. Eventually, the media supplementation method resulted in adaptation SFM in 27 days, compared to the previously reported 66 days. Additionally, the membrane surface integrin expression was found significantly decreased when adherent cells were adapted to suspension. Moreover, the Ca2+ /Mg2+ supplementation correlated with faster integrin recovery after trypsinization. However, faster integrin recovery did not contribute to the accelerated cell growth when subculturing from 100% CM to 75% CM.
Collapse
Affiliation(s)
- Suyang Wu
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Adam J Rish
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Alec Skomo
- Rangos School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Yuxiang Zhao
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - James K Drennen
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| | - Carl A Anderson
- Graduate School for Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.,Duquesne Center for Pharmaceutical Technology, Duquesne University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Berger A, Le Fourn V, Masternak J, Regamey A, Bodenmann I, Girod P, Mermod N. Overexpression of transcription factor Foxa1 and target genes remediate therapeutic protein production bottlenecks in Chinese hamster ovary cells. Biotechnol Bioeng 2020; 117:1101-1116. [PMID: 31956982 PMCID: PMC7079004 DOI: 10.1002/bit.27274] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/12/2020] [Indexed: 12/13/2022]
Abstract
Despite extensive research conducted to increase protein production from Chinese hamster ovary (CHO) cells, cellular bottlenecks often remain, hindering high yields. In this study, a transcriptomic analysis led to the identification of 32 genes that are consistently upregulated in high producer clones and thus might mediate high productivity. Candidate genes were associated with functions such as signaling, protein folding, cytoskeleton organization, and cell survival. We focused on two engineering targets, Erp27, which binds unfolded proteins and the Erp57 disulfide isomerase in the endoplasmic reticulum, and Foxa1, a pioneering transcription factor involved in organ development. Erp27 moderate overexpression increased production of an easy-to-express antibody, whereas Erp27 and Erp57 co-overexpression increased cell density, viability, and the yield of difficult-to-express proteins. Foxa1 overexpression increased cell density, cell viability, and easy- and difficult-to-express protein yields, whereas it decreased reactive oxygen species late in fed-batch cultures. Foxa1 overexpression upregulated two other candidate genes that increased the production of difficult- and/or easy-to-express proteins, namely Ca3, involved in protecting cells from oxidative stress, and Tagap, involved in signaling and cytoskeleton remodeling. Overall, several genes allowing to overcome CHO cell bottlenecks were identified, including Foxa1, which mediated multiple favorable metabolic changes that improve therapeutic protein yields.
Collapse
Affiliation(s)
- Audrey Berger
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
- Present address: Laboratory of Microsystems LMIS4Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | | | - Jacqueline Masternak
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
7
|
Pourcel L, Buron F, Arib G, Le Fourn V, Regamey A, Bodenmann I, Girod P, Mermod N. Influence of cytoskeleton organization on recombinant protein expression by CHO cells. Biotechnol Bioeng 2020; 117:1117-1126. [PMID: 31956990 PMCID: PMC7079171 DOI: 10.1002/bit.27277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/27/2019] [Accepted: 01/11/2020] [Indexed: 12/12/2022]
Abstract
In this study, we assessed the importance of cytoskeleton organization in the mammalian cells used to produce therapeutic proteins. Two cytoskeletal genes, Actin alpha cardiac muscle 1 (ACTC1) and a guanosine triphosphate GTPase-activating protein (TAGAP), were found to be upregulated in highly productive therapeutic protein-expressing Chinese hamster ovary (CHO) cells selected by the deprivation of vitamin B5. We report here that the overexpression of the ACTC1 protein was able to improve significantly recombinant therapeutic production, as well as to decrease the levels of toxic lactate metabolic by-products. ACTC1 overexpression was accompanied by altered as well as decreased polymerized actin, which was associated with high protein production by CHO cell cultured in suspension. We suggest that the depolymerization of actin and the possible modulation of integrin signaling, as well as changes in basal metabolism, may be driving the increase of protein secretion by CHO cells.
Collapse
Affiliation(s)
- Lucille Pourcel
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | - Flavien Buron
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of BiotechnologyUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
8
|
Bjånes T, Kotopoulis S, Murvold ET, Kamčeva T, Gjertsen BT, Gilja OH, Schjøtt J, Riedel B, McCormack E. Ultrasound- and Microbubble-Assisted Gemcitabine Delivery to Pancreatic Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12020141. [PMID: 32046005 PMCID: PMC7076495 DOI: 10.3390/pharmaceutics12020141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a major cause of cancer death worldwide. Poor drug delivery to tumours is thought to limit chemotherapeutic treatment efficacy. Sonoporation combines ultrasound (US) and microbubbles to increase the permeability of cell membranes. We assessed gemcitabine uptake combined with sonoporation in vitro in three PDAC cell lines (BxPC-3, MIA PaCa-2 and PANC-1). Cells were cultured in hypoxic bioreactors, while gemcitabine incubation ± sonoporation was conducted in cells with operational or inhibited nucleoside membrane transporters. Intracellular active metabolite (dFdCTP), extracellular gemcitabine, and inactive metabolite (dFdU) concentrations were measured with liquid chromatography tandem mass spectrometry. Sonoporation with increasing US intensities resulted in decreasing extracellular gemcitabine concentrations in all three cell lines with inhibited membrane transporters. In cells with inhibited membrane transporters, without sonoporation, dFdCTP concentrations were reduced down to 10% of baseline. Sonoporation partially restored gemcitabine uptake in these cells, as indicated by a moderate increase in dFdCTP concentrations (up to 37% of baseline) in MIA PaCa-2 and PANC-1. In BxPC-3, gemcitabine was effectively inactivated to dFdU, which might represent a protective mechanism against dFdCTP accumulation in these cells. Intracellular dFdCTP concentrations did not change significantly following sonoporation in any of the cell lines with operational membrane transporters, indicating that the gemcitabine activation pathway may have been saturated with the drug. Sonoporation allowed a moderate increase in gemcitabine transmembrane uptake in all three cell lines, but pre-existing nucleoside transporters were the major determinants of gemcitabine uptake and retention.
Collapse
Affiliation(s)
- Tormod Bjånes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Correspondence: (T.B.); (E.M.)
| | - Spiros Kotopoulis
- Phoenix Solutions AS, Ullernchausseen 64, 0379 Oslo, Norway;
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | | | - Tina Kamčeva
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
| | - Bjørn Tore Gjertsen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen 5021, Norway
| | - Odd Helge Gilja
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen 5021, Norway;
- Department of Clinical Medicine, University of Bergen, Bergen 5021, Norway
| | - Jan Schjøtt
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Bettina Riedel
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen 5021, Norway; (T.K.); (J.S.); (B.R.)
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
| | - Emmet McCormack
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen 5021, Norway;
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen 5021, Norway
- Correspondence: (T.B.); (E.M.)
| |
Collapse
|
9
|
Wan M, Zhu Y, Zou J. Novel near-infrared fluorescent probe for live cell imaging. Exp Ther Med 2020; 19:1213-1218. [PMID: 32010291 PMCID: PMC6966234 DOI: 10.3892/etm.2019.8323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 11/06/2019] [Indexed: 12/02/2022] Open
Abstract
Near infrared (NIR) fluorescent probes play a crucial role in biological system imaging. A novel NIR fluorescent probe, IR787, was designed in the present study. Compared with indocyanine green (ICG), IR787 showed lower background fluorescent interference and higher fluorescence enhancement. Fluorescence intensities were detected by a Cary Eclipse fluorescence spectrophotometer. The interference of intracellular ions (Cu2+, Ca2+, Mg2+ and Zn2+) on the measurement was negligible, which indicated a good photostability of IR787. MTT assay demonstrated that cell viability of human lung adenocarcinoma epithelial cell line A549 was not significantly affected by the use of the IR787 probe compared with the ICG probe. This result suggested that the IR787 probe was safe for in vitro cell imaging. In vitro NIR optical imaging experiments further revealed cellular uptake and strong intracellular NIR fluorescence of the IR787 probe in A549 cells. The excitation wavelength was 787 nm for IR787. Compared with the previously reported NIR fluorescent probe ICG, the IR787 NIR fluorescent probe had improved prospects for intracellular imaging. IR787 may play a pivotal role in the understanding cell biology, pharmacology and disease diagnosis.
Collapse
Affiliation(s)
- Meng Wan
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yubing Zhu
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Jianjun Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
10
|
Tossolini I, López-Díaz FJ, Kratje R, Prieto CC. Characterization of cellular states of CHO-K1 suspension cell culture through cell cycle and RNA-sequencing profiling. J Biotechnol 2018; 286:56-67. [DOI: 10.1016/j.jbiotec.2018.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023]
|
11
|
Yang J, He MT, Huang X, Wang QS, Pi J, Wang HJ, Rahhal AH, Luo SM, Zha ZG. Atomic Force Microscopy-Based Nanoscopy of Chondrogenically Differentiating Human Adipose-Derived Stem Cells: Nanostructure and Integrin β1 Expression. NANOSCALE RESEARCH LETTERS 2018; 13:333. [PMID: 30353236 PMCID: PMC6199198 DOI: 10.1186/s11671-018-2722-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/17/2018] [Indexed: 05/08/2023]
Abstract
Integrin β1 is known to be involved in differentiation, migration, proliferation, wound repair, tissue development, and organogenesis. In order to analyze the binding probability between integrin β1 ligand and cluster of differentiation 29 (CD29) receptors, atomic force microscopy (AFM) was used to detect native integrin β1-coupled receptors on the surface of human adipose-derived stem cells (hADSc). The binding probability of integrin β1 ligand-receptor interaction was probed by integrin β1-functionalized tips on hADSc during early chondrogenic differentiation at the two-dimensional cell culture level. Cell morphology and ultrastructure of hADSc were measured by AFM, which demonstrated that long spindled cells became polygonal cells with decreased length/width ratios and increased roughness during chondrogenic induction. The binding of integrin β1 ligand and CD29 receptors was detected by β1-functionalized tips for living hADSc. A total of 1200 curves were recorded at 0, 6, and 12 days of chondrogenic induction. Average rupture forces were, respectively, 61.8 ± 22.2 pN, 60 ± 20.2 pN, and 67.2 ± 22.0 pN. Rupture events were 19.58 ± 1.74%, 28.03 ± 2.05%, and 33.4 ± 1.89%, respectively, which demonstrated that binding probability was increased between integrin β1 ligand and receptors on the surface of hADSc during chondrogenic induction. Integrin β1 and the β-catenin/SOX signaling pathway were correlated during chondrogenic differentiation. The results of this investigation imply that AFM offers kinetic and visual insight into the changes in integrin β1 ligand-CD29 receptor binding on hADSc during chondrogenesis. Changes in cellular morphology, membrane ultrastructure, and the probability of ligand-transmembrane receptor binding were demonstrated to be useful markers for evaluation of the chondrogenic differentiation process.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ming-Tang He
- Longgang Orthopedics Hospital of Shenzhen, Shenzhen, People’s Republic of China
| | - Xun Huang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
- Department of Materials Science and Engineering, Jinan University, Guangzhou, People’s Republic of China
| | - Qiu-Shi Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL USA
| | - Hua-Jun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Ali Hasan Rahhal
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Si-Min Luo
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou, 510630 People’s Republic of China
| |
Collapse
|
12
|
Muro S. Alterations in Cellular Processes Involving Vesicular Trafficking and Implications in Drug Delivery. Biomimetics (Basel) 2018; 3:biomimetics3030019. [PMID: 31105241 PMCID: PMC6352689 DOI: 10.3390/biomimetics3030019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Endocytosis and vesicular trafficking are cellular processes that regulate numerous functions required to sustain life. From a translational perspective, they offer avenues to improve the access of therapeutic drugs across cellular barriers that separate body compartments and into diseased cells. However, the fact that many factors have the potential to alter these routes, impacting our ability to effectively exploit them, is often overlooked. Altered vesicular transport may arise from the molecular defects underlying the pathological syndrome which we aim to treat, the activity of the drugs being used, or side effects derived from the drug carriers employed. In addition, most cellular models currently available do not properly reflect key physiological parameters of the biological environment in the body, hindering translational progress. This article offers a critical overview of these topics, discussing current achievements, limitations and future perspectives on the use of vesicular transport for drug delivery applications.
Collapse
Affiliation(s)
- Silvia Muro
- Institute for Bioscience and Biotechnology Research and Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain.
- Institute for Bioengineering of Catalonia (IBEC) of the Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Guzniczak E, Jimenez M, Irwin M, Otto O, Willoughby N, Bridle H. Impact of poloxamer 188 (Pluronic F-68) additive on cell mechanical properties, quantification by real-time deformability cytometry. BIOMICROFLUIDICS 2018; 12:044118. [PMID: 30867863 PMCID: PMC6404947 DOI: 10.1063/1.5040316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Advances in cellular therapies have led to the development of new approaches for cell product purification and formulation, e.g., utilizing cell endogenous properties such as size and deformability as a basis for separation from potentially harmful undesirable by-products. However, commonly used additives such as Pluronic F-68 and other poloxamer macromolecules can change the mechanical properties of cells and consequently alter their processing. In this paper, we quantified the short-term effect of Pluronic F-68 on the mechanotype of three different cell types (Jurkat cells, red blood cells, and human embryonic kidney cells) using real-time deformability cytometry. The impact of the additive concentration was assessed in terms of cell size and deformability. We observed that cells respond progressively to the presence of Pluronic F-68 within first 3 h of incubation and become significantly stiffer (p-value < 0.001) in comparison to a serum-free control and a control containing serum. We also observed that the short-term response manifested as cell stiffening is true (p-value < 0.001) for the concentration reaching 1% (w/v) of the poloxamer additive in tested buffers. Additionally, using flow cytometry, we assessed that changes in cell deformability triggered by addition of Pluronic F-68 are not accompanied by size or viability alterations.
Collapse
Affiliation(s)
- Ewa Guzniczak
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Melanie Jimenez
- School of Engineering, Biomedical Engineering Division, University of Glasgow, Glasgow G12 8LT, United Kingdom
| | - Matthew Irwin
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Oliver Otto
- ZIK HIKE, Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, Biomechanics, University of Greifswald, Fleischmannstraße 42-44, 17489 Greifswald, Germany
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| | - Helen Bridle
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Science, Heriot-Watt University, Edinburgh Campus, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
14
|
Lima AF, May G, Díaz-Colunga J, Pedreiro S, Paiva A, Ferreira L, Enver T, Iborra FJ, Pires das Neves R. Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation. Sci Rep 2018; 8:7210. [PMID: 29740078 PMCID: PMC5940679 DOI: 10.1038/s41598-018-25517-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/12/2018] [Indexed: 11/23/2022] Open
Abstract
Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34+ umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.
Collapse
Affiliation(s)
- A F Lima
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Faculty of Science and Technology, University Nova of Lisbon (MIT-Portugal PhD Program), 2829-516, Caparica, Portugal
| | - G May
- University College London, Gower Street, London, WC1E 6BT, UK
| | - J Díaz-Colunga
- Centro Nacional de Biotecnología, CSIC. Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - S Pedreiro
- Unidade de Gestão Operacional de Citometria, Centro Hospitalar e Universitário de Coimbra, 3000-075, Coimbra, Portugal
| | - A Paiva
- Unidade de Gestão Operacional de Citometria, Centro Hospitalar e Universitário de Coimbra, 3000-075, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine,University of Coimbra, 3004-504, Coimbra, Portugal
| | - L Ferreira
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal.,Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - T Enver
- University College London, Gower Street, London, WC1E 6BT, UK
| | - F J Iborra
- Centro Nacional de Biotecnología, CSIC. Darwin 3, Campus de Cantoblanco, 28049, Madrid, Spain
| | - R Pires das Neves
- UC-Biotech, CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal. .,Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal.
| |
Collapse
|
15
|
Adaption of FMDV Asia-1 to Suspension Culture: Cell Resistance Is Overcome by Virus Capsid Alterations. Viruses 2017; 9:v9080231. [PMID: 28820470 PMCID: PMC5580488 DOI: 10.3390/v9080231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/07/2017] [Accepted: 08/14/2017] [Indexed: 01/19/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) causes a highly contagious disease with catastrophic economic impact for affected countries. BHK21 suspension cells are preferred for the industrial production of FMDV vaccine antigen, but not all virus strains can be successfully propagated in these cells. Serotype Asia-1 is often affected by this phenomenon. In this study, the Asia-1 strain Shamir was used to examine viral, cellular and environmental factors that contribute to resistance to cell culture infection. Cell media composition, pH and ammonium chloride concentration did not affect Asia-1 differently than other serotypes. Virus replication after transfection of viral genome was not impaired, but the adhesion to the cells was markedly reduced for Asia-1 in comparison to serotype A. The Asia-1 Shamir virus was successfully adapted to grow in the resistant cells by using a closely related but susceptible cell line. Sequence analysis of the adapted virus revealed two distinct mutations in the capsid protein VP1 that might mediate cell attachment and entry.
Collapse
|
16
|
Kirshenbaum AS, Cruse G, Desai A, Bandara G, Leerkes M, Lee CCR, Fischer ER, O’Brien KJ, Gochuico BR, Stone K, Gahl WA, Metcalfe DD. Immunophenotypic and Ultrastructural Analysis of Mast Cells in Hermansky-Pudlak Syndrome Type-1: A Possible Connection to Pulmonary Fibrosis. PLoS One 2016; 11:e0159177. [PMID: 27459687 PMCID: PMC4961407 DOI: 10.1371/journal.pone.0159177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Hermansky-Pudlak Syndrome type-1 (HPS-1) is an autosomal recessive disorder caused by mutations in HPS1 which result in reduced expression of the HPS-1 protein, defective lysosome-related organelle (LRO) transport and absence of platelet delta granules. Patients with HPS-1 exhibit oculocutaneous albinism, colitis, bleeding and pulmonary fibrosis postulated to result from a dysregulated immune response. The effect of the HPS1 mutation on human mast cells (HuMCs) is unknown. Since HuMC granules classify as LROs along with platelet granules and melanosomes, we set out to determine if HPS-1 cutaneous and CD34+ culture-derived HuMCs have distinct granular and cellular characteristics. Cutaneous and cultured CD34+-derived HuMCs from HPS-1 patients were compared with normal cutaneous and control HuMCs, respectively, for any morphological and functional differences. One cytokine-independent HPS-1 culture was expanded, cloned, designated the HP proMastocyte (HPM) cell line and characterized. HPS-1 and idiopathic pulmonary fibrosis (IPF) alveolar interstitium showed numerous HuMCs; HPS-1 dermal mast cells exhibited abnormal granules when compared to healthy controls. HPS-1 HuMCs showed increased CD63, CD203c and reduced mediator release following FcɛRI aggregation when compared with normal HuMCs. HPM cells also had the duplication defect, expressed FcɛRI and intracytoplasmic proteases and exhibited less mediator release following FcɛRI aggregation. HPM cells constitutively released IL-6, which was elevated in patients' serum, in addition to IL-8, fibronectin-1 (FN-1) and galectin-3 (LGALS3). Transduction with HPS1 rescued the abnormal HPM morphology, cytokine and matrix secretion. Microarray analysis of HPS-1 HuMCs and non-transduced HPM cells confirmed upregulation of differentially expressed genes involved in fibrogenesis and degranulation. Cultured HPS-1 HuMCs appear activated as evidenced by surface activation marker expression, a decrease in mediator content and impaired releasibility. The near-normalization of constitutive cytokine and matrix release following rescue by HPS1 transduction of HPM cells suggests that HPS-1 HuMCs may contribute to pulmonary fibrosis and constitute a target for therapeutic intervention.
Collapse
Affiliation(s)
- Arnold S. Kirshenbaum
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Glenn Cruse
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Maarten Leerkes
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Chyi-Chia R. Lee
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth R. Fischer
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kevin J. O’Brien
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bernadette R. Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kelly Stone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William A. Gahl
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|