1
|
Maity S, Mallick N. Role of cultivation parameters in carbohydrate accretion for production of bioethanol and C-phycocyanin from a marine cyanobacterium Leptolyngbya valderiana BDU 41001: A sustainable approach. BIORESOURCE TECHNOLOGY 2024; 411:131209. [PMID: 39181513 DOI: 10.1016/j.biortech.2024.131209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024]
Abstract
The investigation aimed to augment carbohydrate accumulation in the marine cyanobacterium Leptolyngbya valderiana BDU 41001 to facilitate bioethanol production. Under the standardised physiochemical condition (SPC), i.e. 90 µmol photon m-2 s-1 light intensity, initial culture pH 8.5, 35 °C temperature and mixing at 150 rpm increased the carbohydrate productivity ∼70 % than the control, while a 47 % rise in content was obtained under the nitrate (N)-starved condition. Therefore, a two-stage cultivation strategy was implemented, combining SPC at the 1st stage and N starvation at the 2nd stage, resulting in 80 % augmentation of carbohydrate yield, which enhanced the bioethanol yield by ∼86 % as compared to the control employing immobilised yeast fermentation. Moreover, biomass utilisation was maximised by extracting C-phycocyanin, where a ∼77 % rise in productivity was recorded under the SPC. This study highlights the potential of L. valderiana for pilot-scale biorefinery applications, advancing the understanding of sustainable biofuel production.
Collapse
Affiliation(s)
- Sudatta Maity
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Nirupama Mallick
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
2
|
Powell JA, Burgess SC. How modularity and heterotrophy complicate the understanding of the causes of thermal performance curves: the case of feeding rate in a filter-feeding animal. J Exp Biol 2024; 227:jeb247776. [PMID: 38920135 PMCID: PMC11418027 DOI: 10.1242/jeb.247776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Warming global temperatures have consequences for biological rates. Feeding rates reflect the intake of energy that fuels survival, growth and reproduction. However, temperature can also affect food abundance and quality, as well as feeding behavior, which all affect feeding rate, making it challenging to understand the pathways by which temperature affects the intake of energy. Therefore, we experimentally assessed how clearance rate varied across a thermal gradient in a filter-feeding colonial marine invertebrate (the bryozoan Bugula neritina). We also assessed how temperature affects phytoplankton as a food source, and zooid states within a colony that affect energy budgets and feeding behavior. Clearance rate increased linearly from 18°C to 32°C, a temperature range that the population experiences most of the year. However, temperature increased algal cell size, and decreased the proportion of feeding zooids, suggesting indirect effects of temperature on clearance rates. Temperature increased polypide regression, possibly as a stress response because satiation occurred quicker, or because phytoplankton quality declined. Temperature had a greater effect on clearance rate per feeding zooid than it did per total zooids. Together, these results suggest that the effect of temperature on clearance rate at the colony level is not just the outcome of individual zooids feeding more in direct response to temperature but also emerges from temperature increasing polypide regression and the remaining zooids increasing their feeding rates in response. Our study highlights some of the challenges for understanding why temperature affects feeding rates, especially for understudied, yet ecologically important, marine colonial organisms.
Collapse
Affiliation(s)
- Jackson A. Powell
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| | - Scott C. Burgess
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306-4296, USA
| |
Collapse
|
3
|
Ortíz-Sánchez E, Guillén-Garcés RA, Morales-Arrieta S, Ugochukwu Okoye P, Olvera-Vargas H, Sebastian PJ, Arias DM. Cultivation of carbohydrate-rich microalgae with great settling properties using cooling tower wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38999-39014. [PMID: 37410327 PMCID: PMC11186883 DOI: 10.1007/s11356-023-28432-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Wastewater treatment and simultaneous production of value-added products with microalgae represent a sustainable alternative. Industrial wastewater, characterized by high C/N molar ratios, can naturally improve the carbohydrate content in microalgae without the need for any external source of carbon while degrading the organic matter, macro-nutrients, and micro-nutrients. This study aimed to understand the treatment, reuse, and valorization mechanisms of real cooling tower wastewater (CWW) from a cement-processing industry mixed with domestic wastewater (DW) to produce microalgal biomass with potential for synthesis of biofuels or other value-added products. For this purpose, three photobioreactors with different hydraulic retention times (HRT) were inoculated simultaneously using the CWW-DW mixture. Macro- and micro-nutrient consumption and accumulation, organic matter removal, algae growth, and carbohydrate content were monitored for 55 days. High COD (> 80%) and macronutrient removals (> 80% of N and P) were achieved in all the photoreactors, with heavy metals below the limits established by local standards. The best results showed maximum algal growth of 1.02 g SSV L-1 and 54% carbohydrate accumulation with a C/N ratio of 31.24 mol mol-1. Additionally, the harvested biomass presented a high Ca and Si content, ranging from 11 to 26% and 2 to 4%, respectively. Remarkably, big flocs were produced during microalgae growth, which enhanced natural settling for easy biomass harvesting. Overall, this process represents a sustainable alternative for CWW treatment and valorization, as well as a green tool for generating carbohydrate-rich biomass with the potential to produce biofuels and fertilizers.
Collapse
Affiliation(s)
- Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Rosa Angélica Guillén-Garcés
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
| | - Sandra Morales-Arrieta
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, 62550, Jiutepec, Morelos, CP, Mexico
| | - Patrick Ugochukwu Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Hugo Olvera-Vargas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico
| | - Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco s/n, Col. Centro, 62580, Temixco, Morelos, CP, Mexico.
| |
Collapse
|
4
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Li D, Zhao Q. Study of carbon fixation and carbon partitioning of evolved Chlorella sp.'s strain under different carbon dioxide conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
6
|
Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. BIOLOGY 2022; 11:biology11081146. [PMID: 36009773 PMCID: PMC9405046 DOI: 10.3390/biology11081146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Microalgae-based biorefineries allow the simultaneous production of microalgae biomass enriched in a particular macromolecule and high-added and low-value products if a proper selection of the microalgae species and the cultivation conditions are adequate for the purpose. This review discusses the challenges and future trends related to microalgae-based biorefineries stressing the multi-product approach and the use of raw wastewater or pretreated wastewater to improve the cost-benefit ratio of biomass and products. Emphasis is given to the production of biomass enriched in carbohydrates. Microalgae-bioactive compounds as potential therapeutical and health promoters are also discussed. Future and novel trends following the circular economy strategy are also discussed. Abstract Microalgae have demonstrated a large potential in biotechnology as a source of various macromolecules (proteins, carbohydrates, and lipids) and high-added value products (pigments, poly-unsaturated fatty acids, peptides, exo-polysaccharides, etc.). The production of biomass at a large scale becomes more economically feasible when it is part of a biorefinery designed within the circular economy concept. Thus, the aim of this critical review is to highlight and discuss challenges and future trends related to the multi-product microalgae-based biorefineries, including both phototrophic and mixotrophic cultures treating wastewater and the recovery of biomass as a source of valuable macromolecules and high-added and low-value products (biofertilizers and biostimulants). The therapeutic properties of some microalgae-bioactive compounds are also discussed. Novel trends such as the screening of species for antimicrobial compounds, the production of bioplastics using wastewater, the circular economy strategy, and the need for more Life Cycle Assessment studies (LCA) are suggested as some of the future research lines.
Collapse
|
7
|
Mensi F, Ben Ghedifa A, Rajhi H. Effects of seawater sulfur starvation and enrichment on Gracilaria gracilis growth and biochemical composition. Sci Rep 2022; 12:11095. [PMID: 35773380 PMCID: PMC9247063 DOI: 10.1038/s41598-022-15303-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
The genus Gracilaria, largest biomass producer in coastal regions, encompasses a wide range of species including Gracilaria gracilis. Nowadays, there is a spate of interest in its culture in lagoon where the water sulfate concentration is variable. A laboratory culture was carried out to determine the sulfate concentration effect on their growth as well as their biochemical composition, which were 2.5, 27 or 50 mM, referred to as SSS (sulfur starved seawater), SW (seawater) and SES (sulfur enriched seawater).We found that the sulfate content of the surrounding medium is a key parameter influencing both the alga growth and its composition. However, seawater proved to be the most suitable environment to sustain alga growth, proteins, R-phycoerythrin and agar yields, but sulfur enrichment and starvation affects them. The sulfate degree of agar and therefore its quality is related to the medium sulfate concentration. We conclude that sulfur starvation (2.5 mM) for three weeks, led to severe growth retardation, lower agar yield and quality and indicated the limit potential of G. gracilis for mariculture under these conditions. These results demonstrated that the success of G. gracilis culture in the lagoon is feasible if sulfate concentration is closer to that of seawater.
Collapse
Affiliation(s)
- Fethi Mensi
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie.
| | - Aziz Ben Ghedifa
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie
| | - Hayfa Rajhi
- Institut National des Sciences et Technologies de la Mer-Centre Kheiredine, 29 Rue Général Kheiredine, 2015, Le Kram, Tunisie
| |
Collapse
|
8
|
Pan Y, Shen Y, Zhang H, Ran X, Xie T, Zhang Y, Yao C. Fine-tuned regulation of photosynthetic performance via γ-aminobutyric acid (GABA) supply coupled with high initial cell density culture for economic starch production in microalgae. BIORESOUR BIOPROCESS 2022; 9:52. [PMID: 38647858 PMCID: PMC10992858 DOI: 10.1186/s40643-022-00541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Microalgal starch is considered as renewable and sustainable feedstock for biofuels and biorefinery. High cell density culture is favourable for photoautotrophic starch production in microalgae in the aspects of productivity and economy, but it often encounters low starch content or extra stress exposure that limits the production. This study aimed to economically enhance photosynthetic starch production from CO2 fixation in a green microalga Tetraselmis subcordiformis by regulating photosynthetic stress status with a signalling molecule γ-aminobutyric acid (GABA) combined with the application of high initial cell density culture. By increasing initial cell density (ICD) from the normal of 1.1 g L-1 (NICD) to as high as 2.8 g L-1 (HICD), the starch content, yield, and theoretical productivity were improved by 7%, 63%, and 42%, respectively. The addition of GABA under HICD resulted in 14%, 19%, and 26% of further enhancement in starch content, yield, and theoretical productivity, respectively. GABA exhibited distinct regulatory mechanisms on photosynthesis and stress status under HICD relative to NICD. GABA augmented excessive light energy absorption and electron transfer through photosystem II that reinforced the photoinhibition under NICD, while alleviated the stress reversely under HICD, both of which facilitated starch production by enabling a suitable stress status while simultaneously maintaining a sufficient photosynthetic activity. The increase of ICD and/or GABA supply particularly boosted amylopectin accumulation, leading to the changes in starch composition and was more favourable for fermentation-based biofuels production. Preliminary techno-economic analysis showed that the highest net extra benefit of 9.64 $ m-3 culture could be obtained under HICD with 2.5 mM GABA supply where high starch content (62%DW) and yield (2.5 g L-1) were achieved. The combined HICD-GABA regulation was a promising strategy for economic starch production from CO2 by microalgae for sustainable biomanufacturing.
Collapse
Affiliation(s)
- Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuhan Shen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Haoyu Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiuyuan Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
9
|
Tan FHP, Nadir N, Sudesh K. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects. Front Bioeng Biotechnol 2022; 10:879476. [PMID: 35646848 PMCID: PMC9133917 DOI: 10.3389/fbioe.2022.879476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The search for biodegradable plastics has become the focus in combating the global plastic pollution crisis. Polyhydroxyalkanoates (PHAs) are renewable substitutes to petroleum-based plastics with the ability to completely mineralize in soil, compost, and marine environments. The preferred choice of PHA synthesis is from bacteria or archaea. However, microbial production of PHAs faces a major drawback due to high production costs attributed to the high price of organic substrates as compared to synthetic plastics. As such, microalgal biomass presents a low-cost solution as feedstock for PHA synthesis. Photoautotrophic microalgae are ubiquitous in our ecosystem and thrive from utilizing easily accessible light, carbon dioxide and inorganic nutrients. Biomass production from microalgae offers advantages that include high yields, effective carbon dioxide capture, efficient treatment of effluents and the usage of infertile land. Nevertheless, the success of large-scale PHA synthesis using microalgal biomass faces constraints that encompass the entire flow of the microalgal biomass production, i.e., from molecular aspects of the microalgae to cultivation conditions to harvesting and drying microalgal biomass along with the conversion of the biomass into PHA. This review discusses approaches such as optimization of growth conditions, improvement of the microalgal biomass manufacturing technologies as well as the genetic engineering of both microalgae and PHA-producing bacteria with the purpose of refining PHA production from microalgal biomass.
Collapse
Affiliation(s)
| | | | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
10
|
Solís-Salinas CE, Patlán-Juárez G, Okoye PU, Guillén-Garcés A, Sebastian PJ, Arias DM. Long-term semi-continuous production of carbohydrate-enriched microalgae biomass cultivated in low-loaded domestic wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149227. [PMID: 34332386 DOI: 10.1016/j.scitotenv.2021.149227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/28/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The production of carbohydrate-enriched biomass from waste streams as a sustainable biofuel precursor is a noteworthy endeavor. This study investigates the long-term microalgae cultivated under low domestic wastewater loads and different hydraulic retention times (HRT) in a semi-continuous photobioreactor. The influence of operational conditions, the microalgae interaction with carbon, nutrients availability, and microbial population in terms of carbohydrate content were elucidated. The results revealed that the operation at similar low nutrients and carbon loads maintained at three different hydraulic retention times (HRT) of 10, 8, and 6 days caused different patterns in nutrients uptake and biomass composition. Particularly, the carbohydrate accumulation was greatly influenced by the unbalance in the N:P ratios than complete depletion of the nutrients. Hence, during the period operated at HRT of 10 d, high nutrients removal efficiencies were observed while gradually increasing carbohydrate content up to 57% in dry cell weight (DCW). Afterward, the decrease to 8 and 6 d of HRT showed lower nutrient consumption with depleted alkalinity, reaching an appreciably high carbohydrate accumulation of up to 46%, and 56%, respectively. The biomass concentration decreased in the order of HRT of 10, 8, and 6 days. This study demonstrated that microalgae adapted to low carbon and nutrient loads could still accumulate high carbohydrate at shorter HRT using domestic wastewater as substrate.
Collapse
Affiliation(s)
- Cesar E Solís-Salinas
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico; Tecnológico Nacional de México/Instituto Tecnológico Superior de Cintalapa, Carretera Panamericana km. 995, 30400 Cintalapa, Chiapas, Mexico
| | - Guadalupe Patlán-Juárez
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico; Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col, Lomas del Texcal, Jiutepec, Morelos CP 62550. Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - A Guillén-Garcés
- Tecnológico Nacional de México/Instituto Tecnológico Superior de Cintalapa, Carretera Panamericana km. 995, 30400 Cintalapa, Chiapas, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
| | - Dulce María Arias
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico.
| |
Collapse
|
11
|
Coordinating Carbon Metabolism and Cell Cycle of Chlamydomonasreinhardtii with Light Strategies under Nitrogen Recovery. Microorganisms 2021; 9:microorganisms9122480. [PMID: 34946081 PMCID: PMC8707240 DOI: 10.3390/microorganisms9122480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nutrient supplementation is common in microalgae cultivation to enhance the accumulation of biomass and biofunctional products, while the recovery mechanism from nutrient starvation is less investigated. In this study, the influence of remodeled carbon metabolism on cell cycle progression was explored by using different light wavelengths under N-repletion and N-recovery. The results suggested that blue light enhanced cell enlargement and red light promoted cell division under N-repletion. On the contrary, blue light promoted cell division by stimulating cell cycle progression under N-recovery. This interesting phenomenon was ascribed to different carbon metabolisms under N-repletion and N-recovery. Blue light promoted the recovery of photosystem II and redirected carbon skeletons into proteins under N-recovery, which potentially accelerated cell recovery and cell cycle progression. Although red light also facilitated the recovery of photosystem II, it mitigated the degradation of polysaccharide and then arrested almost all the cells in the G1 phase. By converting light wavelengths at the 12 h of N-recovery with blue light, red and white lights were proved to increase biomass concentration better than continuous blue light. These results revealed different mechanisms of cell metabolism of Chlamydomonas reinhardtii during N-recovery and could be applied to enhance cell vitality of microalgae from nutrient starvation and boost biomass production.
Collapse
|
12
|
Arias DM, Ortíz-Sánchez E, Okoye PU, Rodríguez-Rangel H, Balbuena Ortega A, Longoria A, Domínguez-Espíndola R, Sebastian PJ. A review on cyanobacteria cultivation for carbohydrate-based biofuels: Cultivation aspects, polysaccharides accumulation strategies, and biofuels production scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148636. [PMID: 34323759 DOI: 10.1016/j.scitotenv.2021.148636] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/03/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Cyanobacterial biomass has constituted a crucial third and fourth-generation biofuel material, with great potential to synthesize a wide range of metabolites, mainly carbohydrates. Lately, carbohydrate-based biofuels from cyanobacteria, such as bioethanol, biohydrogen, and biobutanol, have attracted attention as a sustainable alternative to petroleum-based products. Cyanobacteria can perform a simple process of saccharification, and extracted carbohydrates can be converted into biofuels with two alternatives; the first one consists of a fermentative process based on bacteria or yeasts, while the second alternative consists of an internal metabolic process of their own in intracellular carbohydrate content, either by the natural or genetic engineered process. This study reviewed carbohydrate-enriched cyanobacterial biomass as feedstock for biofuels. Detailed insights on technical strategies and limitations of cultivation, polysaccharide accumulation strategies for further fermentation process were provided. Advances and challenges in bioethanol, biohydrogen, and biobutanol production by cyanobacteria synthesis and an independent fermentative process are presented. Critical outlook on life-cycle assessment and techno-economical aspects for large-scale application of these technologies were discussed.
Collapse
Affiliation(s)
- Dulce María Arias
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Edwin Ortíz-Sánchez
- Universidad Politécnica del Estado de Morelos, Boulevard Cuauhnáhuac No. 566 Col. Lomas del Texcal, Jiutepec, Morelos CP, 62550, Mexico
| | - Patrick U Okoye
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico.
| | - Hector Rodríguez-Rangel
- Division de Estudios de Posgrado e Investigación, Tecnológico Nacional de México Campus Culiacán, Juan de Dios Batiz 310 pte. Col Guadalupe, CP, 80220 Culiacàn, Mexico
| | - A Balbuena Ortega
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Adriana Longoria
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - Ruth Domínguez-Espíndola
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| | - P J Sebastian
- Instituto de Energías Renovables-Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP, 62580, Mexico
| |
Collapse
|
13
|
Ran W, Xiang Q, Pan Y, Xie T, Zhang Y, Yao C. Enhancing Photosynthetic Starch Production by γ-Aminobutyric Acid Addition in a Marine Green Microalga Tetraselmis subcordiformis under Nitrogen Stress. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunyun Pan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tonghui Xie
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
14
|
Ren L, Sun X, Zhang L, Zhao Q, Huang H. Identification of active pathways of Chlorella protothecoides by elementary mode analysis integrated with fluxomic data. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Ran W, Wang H, Liu Y, Qi M, Xiang Q, Yao C, Zhang Y, Lan X. Storage of starch and lipids in microalgae: Biosynthesis and manipulation by nutrients. BIORESOURCE TECHNOLOGY 2019; 291:121894. [PMID: 31387839 DOI: 10.1016/j.biortech.2019.121894] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/28/2023]
Abstract
Microalgae accumulate starch and lipid as storage metabolites under nutrient depletion, which can be used as sustainable feedstock for biorefinery. Omics analysis coupled with enzymatic and genetic verifications uncovered a partial picture of pathways and important enzymes or regulators related to starch and lipid biosynthesis as well as the carbon partitioning between them under nutrient depletion conditions. Depletion of macronutrients (N, P, and S) resulted in considerable enhancement of starch and/or lipid content in microalgae, but the accompanying declined photosynthesis hampered the achievements of high concentrations. This review summarized the current knowledge on the pathways and the committed steps as well as their carbon allocation involved in starch and lipid biosynthesis, and focused on the manipulation of different nutrients and the alleviation of oxidative stress for enhanced storage metabolites production. The biological and engineering approaches to cope with the conflict between biomass production and storage metabolites accumulation are proposed.
Collapse
Affiliation(s)
- Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Haitao Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Yinghui Liu
- Information Management Center of Sichuan University, Chengdu, Sichuan 610065, China
| | - Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
16
|
Li D, Yuan Y, Cheng D, Zhao Q. Effect of light quality on growth rate, carbohydrate accumulation, fatty acid profile and lutein biosynthesis of Chlorella sp. AE10. BIORESOURCE TECHNOLOGY 2019; 291:121783. [PMID: 31326682 DOI: 10.1016/j.biortech.2019.121783] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Microalgae are feedstocks for multiple product development based on algal biorefinery concept. The effects of light quality (white, red and blue light emitting diodes) and macro-element starvations on Chlorella sp. AE10 were investigated under 20% CO2 and 850 µmol m-2 d-1. Nitrogen and phosphorus starvations had negative effects on its growth rate. The biomass productivities were decreased from day 1 and the highest one was 1.90 g L-1 d-1 under white light conditions. Phosphorus starvation promoted carbohydrate accumulation under three LED light sources conditions and the highest carbohydrate content was 75.9% using red light. Blue light increased lutein content to 9.58 mg g-1. The content of saturated fatty acids was significantly increased from 37.51% under blue light and full culture medium conditions to 77.44% under blue light and nitrogen starvation conditions. Chlorella sp. AE10 was a good candidate for carbohydrate and lutein productions.
Collapse
Affiliation(s)
- Dengjin Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
17
|
Oh SH, Chang YK, Lee JH. Identification of significant proxy variable for the physiological status affecting salt stress-induced lipid accumulation in Chlorella sorokiniana HS1. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:242. [PMID: 31632454 PMCID: PMC6790037 DOI: 10.1186/s13068-019-1582-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Current efforts on the optimization of the two-stage cultivation using stress-induced lipid accumulation have mostly focused only on the lipid induction stage. Although recent studies have shown that stress-induced lipid accumulation is affected by the physiological status of the cells harvested at the preceding cultivation stage, this issue has hardly been examined hitherto. Such a study needs to be carried out in a systematic way in order to induce lipid accumulation in a consistent and predictable manner with regard for variances seen at the cultivation stage. RESULTS After a photoautotrophic cultivation of Chlorella sorokiniana HS1 in a modified BG11, harvested cells were re-suspended in the fresh medium, and then NaCl was added as the sole stress inducer with light illumination to induce additional accumulation of lipid. Effects of culture temperature on the lipid accumulation were analyzed by the Kruskal-Wallis test. From the microscopic observation, we had observed a definite increase in lipid body induced by the stress since the cell entered a stationary phase. A multiple linear regression model was developed so as to identify significant parameters to be included for the estimation of lipid induction. As a result, several key parameters at the end of cultivation, such as cell weight, total lipid content, chlorophyll a in a cell, and Fv/Fm, were identified as the important proxy variables for the cell's physiological status, and the modeling accuracy was achieved by 87.6%. In particular, the variables related to Fv/Fm were shown to have the largest influence, accounting for 65.7% of the total variance, and the Fv/Fm had an optimal point of maximum induction at below its average. Clustering analysis using the K-means algorithm indicated that the algae which are 0.15 pg cell-1 or less in chlorophyll concentration, regardless of other conditions, had achieved high induction results. CONCLUSION Experimental results showed that it usually achieves high lipid induction after the cells naturally end their division and begin to synthesize lipid. The amount of lipid induction could be estimated by the selected proxy variables, and the estimation method can be adapted according to practical situations such as those with limited measurements.
Collapse
Affiliation(s)
- Seung Hwan Oh
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
- Advanced Biomass R&D Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| | - Jay Hyung Lee
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 Republic of Korea
| |
Collapse
|
18
|
Cheng D, Li X, Yuan Y, Zhao Q. Kinetic model for effects of simulated flue gas onto growth profiles of Chlorella sp. AE10 and Chlorella sp. Cv. Biotechnol Appl Biochem 2019; 67:783-789. [PMID: 31584216 DOI: 10.1002/bab.1829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/22/2019] [Indexed: 11/11/2022]
Abstract
Microalgae are potential candidate for biofuel production as alternative one for fossil fuels. CO2 in flue gas is available carbon source to support microalgae growth. In this study, the effects of different concentrations of the simulated flue gas onto algal growth and photosynthetic activity were evaluated for both Chlorella sp. AE10 and Chlorella sp. Cv. The growth profiles were correlated by a simple kinetic model. It was indicated that the simulated flue gas led to low pH and the photosynthetic activity was partially destroyed. Chlorella sp. Cv can tolerate full simulated flue gas, 10% CO2 + 200 ppm NOx + 100 ppm SOx . The pH in medium maintained at 6 and the photosynthetic activity was more than 0.6 at the first 6 days. If the concentration of NOx was more 100 ppm and that of SOx was more than 50 ppm, the pH was declined to 4 at day 2 or 3 for Chlorella sp. AE10. At the same time, the related photosynthetic activities of Chlorella sp. AE10 were less than 0.4, which was not suitable for algal growth. It was shown that Chlorella sp. Cv could be used for CO2 fixation from the simulated flue gas.
Collapse
Affiliation(s)
- Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,ShanghaiTech University, Shanghai, People's Republic of China
| | - Xuyang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People's Republic of China.,School of Life Science, Shanghai University, Shanghai, People's Republic of China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,ShanghaiTech University, Shanghai, People's Republic of China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, People's Republic of China.,ShanghaiTech University, Shanghai, People's Republic of China.,School of Pharmaceutical Science, Nanjing Tech University, Nanjing, People's Republic of China
| |
Collapse
|
19
|
Qi M, Yao C, Sun B, Cao X, Fei Q, Liang B, Ran W, Xiang Q, Zhang Y, Lan X. Application of an in situ CO 2-bicarbonate system under nitrogen depletion to improve photosynthetic biomass and starch production and regulate amylose accumulation in a marine green microalga Tetraselmis subcordiformis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:184. [PMID: 31341515 PMCID: PMC6631860 DOI: 10.1186/s13068-019-1523-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Microalgal starch is regarded as a promising alternative to crop-based starch for biorefinery such as the production of biofuels and bio-based chemicals. The single or separate use of inorganic carbon source, e.g., CO2 and NaHCO3, caused aberrant pH, which restricts the biomass and starch production. The present study applied an in situ CO2-NaHCO3 system to regulate photosynthetic biomass and starch production along with starch quality in a marine green microalga Tetraselmis subcordiformis under nitrogen-depletion (-N) and nitrogen-limitation (±N) conditions. RESULTS The CO2 (2%)-NaHCO3 (1 g L-1) system stabilized the pH at 7.7 in the -N cultivation, under which the optimal biomass and starch accumulation were achieved. The biomass and starch productivity under -N were improved by 2.1-fold and 1.7-fold, respectively, with 1 g L-1 NaHCO3 addition compared with the one without NaHCO3 addition. NaHCO3 addition alleviated the high-dCO2 inhibition caused by the single CO2 aeration, and provided sufficient effective carbon source HCO3 - for the maintenance of adequate photosynthetic efficiency and increase in photoprotection to facilitate the biomass and starch production. The amylose content was also increased by 44% under this CO2-bicarbonate system compared to the single use of CO2. The highest starch productivity of 0.73 g L-1 day-1 under -N cultivation and highest starch concentration of 4.14 g L-1 under ±N cultivation were both achieved with the addition of 1 g L-1 NaHCO3. These levels were comparable to or exceeded the current achievements reported in studies. The addition of 5 g L-1 NaHCO3 under ±N cultivation led to a production of high-amylose starch (59.3% of total starch), which could be used as a source of functional food. CONCLUSIONS The in situ CO2-NaHCO3 system significantly improved the biomass and starch production in T. subcordiformis. It could also regulate the starch quality with varied relative amylose content under different cultivation modes for diverse downstream applications that could promote the economic feasibility of microalgal starch-based biofuel production. Adoption of this system in T. subcordiformis would facilitate the CO2 mitigation couple with its starch-based biorefinery.
Collapse
Affiliation(s)
- Man Qi
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Binhuan Sun
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xupeng Cao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
- Division of Solar Energy, Dalian National Laboratory of Clean Energy, Dalian, 116023 Liaoning China
- Biotechnology Department, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 Liaoning China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Bobo Liang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi China
| | - Wenyi Ran
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Qi Xiang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Yongkui Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| | - Xianqiu Lan
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065 Sichuan China
| |
Collapse
|
20
|
Cheng D, Li X, Yuan Y, Yang C, Tang T, Zhao Q, Sun Y. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:2931-2938. [PMID: 30373069 DOI: 10.1016/j.scitotenv.2018.10.070] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Carbon dioxide and other greenhouse gas emissions leads to global warming. Biological capture through microalgae is a potential approach for solving this environmental problem. It is still a technical challenge to enhance the tolerance of microalgae to flue gas if CO2 is fixed from flue gas directly. A new strain, Chlorella sp. Cv was obtained through adaptive evolution (46 cycles) against simulated flue gas (10% CO2, 200 ppm NOx and 100 ppm SOx). It was confirmed that Chlorella sp. Cv could tolerate simulated flue gas conditions and the maximum CO2 fixation rate was 1.2 g L-1 d-1. In a two-stage process, the biomass concentration was 2.7 g L-1 and the carbohydrate content was 68.4%. Comparative transcriptomic analysis was performed for Chlorella sp. Cv under simulated flue gas and control conditions (10% CO2). These responses against simulated flue gas uncovered the significant difference between the evolved strain and the original strain. The metabolic responses to flue gas were explored with focus on various specific genes. Upregulation of several genes related to photosynthesis, oxidative phosphorylation, CO2 fixation, sulfur metabolism and nitrogen metabolism was beneficial for the evolved strain to tolerate the simulated flue gas. The upregulation of genes related to extracellular sulfur transport and nitrate reductase was essential to utilize the sulfate and nitrate from dissolved SOx and NOx. The results in this study are helpful to establish a new process for CO2 capture directly from industrial flue gas.
Collapse
Affiliation(s)
- Dujia Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xuyang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; School of Life Science, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yizhong Yuan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Chengyu Yang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Tao Tang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China
| | - Quanyu Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing, China.
| | - Yuhan Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210, China; ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|