1
|
Pretzler M, Rompel A. Tyrosinases: a family of copper-containing metalloenzymes. CHEMTEXTS 2024; 10:12. [PMID: 39624788 PMCID: PMC11608171 DOI: 10.1007/s40828-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/15/2024] [Indexed: 12/08/2024]
Abstract
Tyrosinases (TYRs) are a family of copper-containing metalloenzymes that are present in all domains of life. TYRs catalyze the reactions that start the biosynthesis of melanin, the main pigment of the animal kingdom, and are also involved in the formation of the bright colors seen on the caps of mushrooms and in the petals of flowers. TYRs catalyze the ortho-hydroxylation and oxidation of phenols and the oxidation of catechols to the respective o-quinones. They only need molecular oxygen to do that, and the products of TYRs-o-quinones-are highly reactive and will usually react with the next available nucleophile. This reactivity can be harnessed for pharmaceutical applications as well as in environmental and food biotechnology. The majority of both basic and applied research on TYRs utilizes "mushroom tyrosinase", a crude enzyme preparation derived from button mushroom (Agaricus bisporus) fruiting bodies. Access to pure TYR preparations comes almost exclusively from the production of recombinant TYRs as the purification of these enzymes from the natural source is usually very laborious and plagued by low yields. In this text an introduction into the biochemistry of the enzyme TYR will be given, followed by an overview of available structural data of TYRs, the current model for the catalytic mechanism, a survey of reports on the recombinant production of this important metalloenzyme family, and a review of the applications of TYRs for the synthesis of catechols, as biosensors, in bioremediation, for the cross-linking of proteins and medical hydrogels as well as for melanoma treatment. Graphical Abstract
Collapse
Affiliation(s)
- Matthias Pretzler
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Annette Rompel
- Institut für Biophysikalische Chemie, Fakultät für Chemie, Universität Wien, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
2
|
Zwies C, Vargas Rodríguez ÁM, Naumann M, Seifert F, Pietzsch M. Alternative strategies for the recombinant synthesis, DOPA modification and analysis of mussel foot proteins - A case study for Mefp-3 from Mytilus edulis. Protein Expr Purif 2024; 219:106483. [PMID: 38609025 DOI: 10.1016/j.pep.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
Mussel foot proteins (Mfps) possess unique binding properties to various surfaces due to the presence of L-3,4-dihydroxyphenylalanine (DOPA). Mytilus edulis foot protein-3 (Mefp-3) is one of several proteins in the byssal adhesive plaque. Its localization at the plaque-substrate interface approved that Mefp-3 plays a key role in adhesion. Therefore, the protein is suitable for the development of innovative bio-based binders. However, recombinant Mfp-3s are mainly purified from inclusion bodies under denaturing conditions. Here, we describe a robust and reproducible protocol for obtaining soluble and tag-free Mefp-3 using the SUMO-fusion technology. Additionally, a microbial tyrosinase from Verrucomicrobium spinosum was used for the in vitro hydroxylation of peptide-bound tyrosines in Mefp-3 for the first time. The highly hydroxylated Mefp-3, confirmed by MALDI-TOF-MS, exhibited excellent adhesive properties comparable to a commercial glue. These results demonstrate a concerted and simplified high yield production process for recombinant soluble and tag-free Mfp3-based proteins with on demand DOPA modification.
Collapse
Affiliation(s)
- Constanze Zwies
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany.
| | | | - Marcel Naumann
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Drug Design and Target Validation, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Franziska Seifert
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany
| | - Markus Pietzsch
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Weinbergweg 22, 06120, Halle (Saale), Germany
| |
Collapse
|
3
|
Fekry M, Dave KK, Badgujar D, Hamnevik E, Aurelius O, Dobritzsch D, Danielson UH. The Crystal Structure of Tyrosinase from Verrucomicrobium spinosum Reveals It to Be an Atypical Bacterial Tyrosinase. Biomolecules 2023; 13:1360. [PMID: 37759761 PMCID: PMC10526336 DOI: 10.3390/biom13091360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tyrosinases belong to the type-III copper enzyme family, which is involved in melanin production in a wide range of organisms. Despite similar overall characteristics and functions, their structures, activities, substrate specificities and regulation vary. The tyrosinase from the bacterium Verrucomicrobium spinosum (vsTyr) is produced as a pre-pro-enzyme in which a C-terminal extension serves as an inactivation domain. It does not require a caddie protein for copper ion incorporation, which makes it similar to eukaryotic tyrosinases. To gain an understanding of the catalytic machinery and regulation of vsTyr activity, we determined the structure of the catalytically active "core domain" of vsTyr by X-ray crystallography. The analysis showed that vsTyr is an atypical bacterial tyrosinase not only because it is independent of a caddie protein but also because it shows the highest structural (and sequence) similarity to plant-derived members of the type-III copper enzyme family and is more closely related to fungal tyrosinases regarding active site features. By modelling the structure of the pre-pro-enzyme using AlphaFold, we observed that Phe453, located in the C-terminal extension, is appropriately positioned to function as a "gatekeeper" residue. Our findings raise questions concerning the evolutionary origin of vsTyr.
Collapse
Affiliation(s)
- Mostafa Fekry
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Biophysics Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Khyati K. Dave
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Dilip Badgujar
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - Emil Hamnevik
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | | | - Doreen Dobritzsch
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
| | - U. Helena Danielson
- Department of Chemistry—BMC, Uppsala University, SE 751 23 Uppsala, Sweden; (M.F.); (K.K.D.); (D.B.); (E.H.); (D.D.)
- Science for Life Laboratory, Drug Discovery & Development Platform, Uppsala University, SE 751 23 Uppsala, Sweden
| |
Collapse
|
4
|
Modifying a bacterial tyrosinase zymogen for use in protease activity assays. Appl Microbiol Biotechnol 2022; 106:8285-8294. [PMID: 36404357 DOI: 10.1007/s00253-022-12284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/22/2022]
Abstract
Current clinical laboratory assays are not sufficient for determining the activity of many specific human proteases yet. In this study, we developed a general approach that enables the determination of activities of caspase-3 based on the proteolytic activation of the engineered zymogen of the recombinant tyrosinase from Verrucomicrobium spinosum (Vs-tyrosinase) by detecting the diphenolase activity in an increase in absorbance at 475 nm. Here, we designed three different zymogen constructs of Vs-tyrosinase, including RSL-pre-pro-TYR, Pre-pro-TYR, and Pro-TYR. The active domain was fused to the reactive site loop (RSL) of α1-proteinase inhibitor and/or its own signal peptide (pre) and/or its own C-terminal domain (pro) via a linker containing a specific caspase-3 cleavage site. Further studies revealed that both RSL peptide and TAT signal peptide were able to inhibit tyrosinase diphenolase activity, in which RSL-pre-pro-TYR had the lowest background signals. Therefore, a specific protease activity such as caspase-3 could be detected when a suitable zymogen was established. Our results could provide a new way to directly detect the activities of key human proteases, for instance, to monitor the efficacy and safety of tumor therapy by determining the activity of apoptosis-related caspase-3 in patients. KEY POINTS: • RSL inhibited the activity of Verrucomicrobium spinosum tyrosinase. • N-pre and C-terminal domain exerted stronger dual inhibition on the Vs-tyrosinase. • The activity of caspase-3 could be measured by the zymogen activation system.
Collapse
|
5
|
Agunbiade M, Le Roes-Hill M. Application of bacterial tyrosinases in organic synthesis. World J Microbiol Biotechnol 2021; 38:2. [PMID: 34817696 DOI: 10.1007/s11274-021-03186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/06/2021] [Indexed: 11/26/2022]
Abstract
Bacterial tyrosinases, as in the case of other bacterial oxidative enzymes, have been found to possess biochemical characteristics that typically make them more suited to applications requiring special operational conditions such as alkaline pH, high or low temperature, the presence of organic solvents, and the presence of inhibitors. Even though a great deal is known about fungal tyrosinases, bacterial tyrosinases still vastly remain underexplored for their potential application in organic synthesis. A literature survey in particular highlights the gaps in our knowledge pertaining to their biochemical properties. Bacterial tyrosinases have not only shown promise in the synthesis of medically important compounds such as L-3,4-dihydroxyphenylalanine (L-DOPA) and melanin but have also seen application in cross-linking reactions of proteins and the polymerization of environmental pollutants. Their ability to catalyse o-hydroxylation reactions have shown some degree of promise in the biocatalytic conversion of resveratrol to piceatannol, tyrosol to hydroxytyrosol, and many more. In this review, we will explore the world of bacterial tyrosinases, their current applications, and future perspectives for the application of these enzymes in organic synthesis.
Collapse
Affiliation(s)
- Mayowa Agunbiade
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, 7535, Bellville, South Africa
| | - Marilize Le Roes-Hill
- Applied Microbial and Health Biotechnology Institute, Cape Peninsula University of Technology, PO Box 1906, 7535, Bellville, South Africa.
| |
Collapse
|
6
|
Budisa N, Schneider T. Expanding the DOPA Universe with Genetically Encoded, Mussel-Inspired Bioadhesives for Material Sciences and Medicine. Chembiochem 2019; 20:2163-2190. [PMID: 30830997 DOI: 10.1002/cbic.201900030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Indexed: 12/21/2022]
Abstract
Catechols are a biologically relevant group of aromatic diols that have attracted much attention as mediators of adhesion of "bio-glue" proteins in mussels of the genus Mytilus. These organisms use catechols in the form of the noncanonical amino acid l-3,4-dihydroxyphenylalanine (DOPA) as a building block for adhesion proteins. The DOPA is generated post-translationally from tyrosine. Herein, we review the properties, natural occurrence, and reactivity of catechols in the design of bioinspired materials. We also provide a basic description of the mussel's attachment apparatus, the interplay between its different molecules that play a crucial role in adhesion, and the role of post-translational modifications (PTMs) of these proteins. Our focus is on the microbial production of mussel foot proteins with the aid of orthogonal translation systems (OTSs) and the use of genetic code engineering to solve some fundamental problems in the bioproduction of these bioadhesives and to expand their chemical space. The major limitation of bacterial expression systems is their intrinsic inability to introduce PTMs. OTSs have the potential to overcome these challenges by replacing canonical amino acids with noncanonical ones. In this way, PTM steps are circumvented while the genetically programmed precision of protein sequences is preserved. In addition, OTSs should enable spatiotemporal control over the complex adhesion process, because the catechol function can be masked by suitable chemical protection. Such caged residues can then be noninvasively unmasked by, for example, UV irradiation or thermal treatment. All of these features make OTSs based on genetic code engineering in reprogrammed microbial strains new and promising tools in bioinspired materials science.
Collapse
Affiliation(s)
- Nediljko Budisa
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany.,Chair of Chemical Synthetic Biology, Department of Chemistry, University of Manitoba, 144 Dysart Road, R3T 2N2, Winnipeg, MB, Canada
| | - Tobias Schneider
- Institute of Chemistry, Technical University of Berlin, Müller-Breslau-Strasse 10, Berlin, 10623, Germany
| |
Collapse
|
7
|
Tan D, Zhao JP, Ran GQ, Zhu XL, Ding Y, Lu XY. Highly efficient biocatalytic synthesis of L-DOPA using in situ immobilized Verrucomicrobium spinosum tyrosinase on polyhydroxyalkanoate nano-granules. Appl Microbiol Biotechnol 2019; 103:5663-5678. [PMID: 31127354 DOI: 10.1007/s00253-019-09851-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/28/2019] [Accepted: 04/12/2019] [Indexed: 01/01/2023]
Abstract
L-DOPA (3,4-dihydroxyphenyl-L-alanine) is a preferred drug for Parkinson's disease, and is currently in great demand every year worldwide. Biocatalytic conversion of L-tyrosine by tyrosinases is the most promising method for the low-cost production of L-DOPA in both research and industry. Yet, it has been hampered by low productivity, low conversion rate, and low stability of the biocatalyst, tyrosinase. An alternative tyrosinase TyrVs from Verrucomicrobium spinosum with more efficient expression in heterologous host and better stability than the commercially available Agaricus bisporus tyrosinase was identified in this study. Additionally, it was prepared as a novel nano-biocatalyst based on the distinct one-step in situ immobilization on the surface of polyhydroxyalkanoate (PHA) nano-granules. The resulting PHA-TyrVs nano-granules demonstrated improved L-DOPA-forming monophenolase activity of 9155.88 U/g (Tyr protein), which was 3.19-fold higher than that of free TyrVs. The nano-granules also exhibited remarkable thermo-stability, with an optimal temperature of 50 °C, and maintained more than 70% of the initial activity after incubation at 55 °C for 24 h. And an enhanced affinity of copper ion was observed in the PHA-TyrVs nano-granules, making them even better biocatalysts for L-DOPA production. Therefore, a considerable productivity of L-DOPA, amounting to 148.70 mg/L h, with a conversion rate of L-tyrosine of 90.62% can be achieved by the PHA-TyrVs nano-granules after 3 h of biocatalysis under optimized conditions, without significant loss of enzyme activity or L-DOPA yield after 8 cycles of repeated use. Our study provides an excellent and robust nano-biocatalyst for the cost-effective production of L-DOPA.
Collapse
Affiliation(s)
- Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Ji-Ping Zhao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Gan-Qiao Ran
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Xin-Liang Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Yan Ding
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China
| | - Xiao-Yun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049,, Shaanxi, People's Republic of China.
| |
Collapse
|