1
|
Oleaginous yeasts: Biodiversity and cultivation. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
2
|
Singh S, Pandey D, Saravanabhupathy S, Daverey A, Dutta K, Arunachalam K. Liquid wastes as a renewable feedstock for yeast biodiesel production: Opportunities and challenges. ENVIRONMENTAL RESEARCH 2022; 207:112100. [PMID: 34619127 DOI: 10.1016/j.envres.2021.112100] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/07/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Microbial lipids (bacterial, yeast, or algal) production and its utilization as a feedstock for biodiesel production in a sustainable and economical way along with waste degradation is a promising technology. Oleaginous yeasts have demonstrated multiple advantages over algae and bacteria such as high lipid yields, lipid similarity to vegetable oil, and requirement of lesser area for cultivation. Oleaginous yeasts grown on lignocellulosic solid waste as renewable feedstocks have been widely reported and reviewed. Recently, industrial effluents and other liquid wastes have been evaluated as feedstocks for biodiesel production from oleaginous yeasts. The idea of the utilization of wastewater for the growth of oleaginous yeasts for simultaneous wastewater treatment and lipid production is gaining attention among researchers. However, the detailed knowledge on the economic aspects of different process involved during the conversion of oleaginous yeast into lipids hinders its large-scale application. Therefore, this review aims to provide an overview of yeast-derived biodiesel production by utilizing industrial effluents and other liquid wastes as feedstocks. Various technologies for biomass harvesting, lipid extraction and the economic aspects specifically focused on yeast biodiesel production were also analyzed and reported in this review. The utilization of liquid wastes and the incorporation of cost-efficient harvesting and lipid extraction strategy would facilitate large-scale commercialization of biodiesel production from oleaginous yeasts in near future.
Collapse
Affiliation(s)
- Sangeeta Singh
- National Institute of Technology Rourkela, Odisha, 769008, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| | | | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India.
| | - Kasturi Dutta
- National Institute of Technology Rourkela, Odisha, 769008, India.
| | - Kusum Arunachalam
- School of Environment and Natural Resources, Doon University, Dehradun, 248001, India
| |
Collapse
|
3
|
Wingfield BD, De Vos L, Wilson AM, Duong TA, Vaghefi N, Botes A, Kharwar RN, Chand R, Poudel B, Aliyu H, Barbetti MJ, Chen S, de Maayer P, Liu F, Navathe S, Sinha S, Steenkamp ET, Suzuki H, Tshisekedi KA, van der Nest MA, Wingfield MJ. IMA Genome - F16 : Draft genome assemblies of Fusarium marasasianum, Huntiella abstrusa, two Immersiporthe knoxdaviesiana isolates, Macrophomina pseudophaseolina, Macrophomina phaseolina, Naganishia randhawae, and Pseudocercospora cruenta. IMA Fungus 2022; 13:3. [PMID: 35197126 PMCID: PMC8867778 DOI: 10.1186/s43008-022-00089-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa.
| | - Lieschen De Vos
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Andi M Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Tuan A Duong
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ravindra Nath Kharwar
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Barsha Poudel
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Australia
| | - Habibu Aliyu
- Institute of Process Engineering in Life Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Martin J Barbetti
- School of Agriculture and Environment and the UWA Institute of Agriculture, University of Western Australia, Perth, Australia
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | - Pieter de Maayer
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - FeiFei Liu
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang, Guangdong Province, China
| | | | - Shagun Sinha
- Center of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, India
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Emma T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Hiroyuki Suzuki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| | - Kalonji A Tshisekedi
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Magriet A van der Nest
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
4
|
Patel A, Sarkar O, Rova U, Christakopoulos P, Matsakas L. Valorization of volatile fatty acids derived from low-cost organic waste for lipogenesis in oleaginous microorganisms-A review. BIORESOURCE TECHNOLOGY 2021; 321:124457. [PMID: 33316701 DOI: 10.1016/j.biortech.2020.124457] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
To meet environmental sustainability goals, microbial oils have been suggested as an alternative to petroleum-based products. At present, microbial fermentation for oil production relies on pure sugar-based feedstocks. However, these feedstocks are expensive and are in limited supply. Volatile fatty acids, which are generated as intermediates during anaerobic digestion of organic waste have emerged as a renewable feedstock that has the potential to replace conventional sugar sources for microbial oil production. They comprise short-chain (C2 to C6) organic acids and are employed as building blocks in the chemical industry. The present review discusses the use of oleaginous microorganisms for the production of biofuels and added-value products starting from volatile fatty acids as feedstocks. The review describes the metabolic pathways enabling lipogenesis from volatile fatty acids, and focuses on strategies to enhance lipid accumulation in oleaginous microorganisms by tuning the ratios of volatile fatty acids generated via anaerobic fermentation.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87 Luleå, Sweden.
| |
Collapse
|
5
|
Vieira NM, Dos Santos RCV, Germano VKDC, Ventorim RZ, de Almeida ELM, da Silveira FA, Ribeiro Júnior JI, da Silveira WB. Isolation of a new Papiliotrema laurentii strain that displays capacity to achieve high lipid content from xylose. 3 Biotech 2020; 10:382. [PMID: 32802724 DOI: 10.1007/s13205-020-02373-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
In this work, we isolated and selected oleaginous yeasts from rock field soils from two National Parks in Brazil (Caparaó and Serra dos Órgãos) with the potential to accumulate oil from xylose, the main pentose sugar found in lignocellulosic biomass. From the 126 isolates, two were selected based on their lipid contents. They were taxonomically identified as Papiliotrema laurentii (UFV-1 and UFV-2). Of the two, P. laurentii UFV-1 was selected as the best lipid producer. Under unoptimized conditions, lipid production by P. laurentii UFV-1 was higher in glucose than in xylose. To improve its lipid production from xylose, we applied response surface methodology (RSM) with a face-centered central composite design (CCF). We evaluated the effects of agitation rate, initial cell biomass (OD600), carbon/nitrogen ratio (C/N ratio) and pH on lipid production. P. laurentii UFV-1 recorded the highest lipid content, 63.5% (w/w) of the cell dry mass, under the following conditions: C/N ratio = 100:1, pH value = 7.0, initial OD600 = 0.8 and agitation = 300 rpm. Under these optimized conditions, biomass, lipid titer and volumetric lipid productivity were 9.31 g/L, 5.90 g/L and 0.082 g/L.h, respectively. Additionally, we determined the fatty acid composition of P. laurentii UFV-1 as follows: C14:0 (0.5%), C16:0 (28.4-29.4%), C16:1 (0.2%), C18:0 (9.5-11%), C18:1 (58.6-60.5%), and C20:0 (0.7-0.8%). Based on this composition, the predicted properties of biodiesel showed that P. laurentii UFV-1 oil is suitable for use as feedstock in biodiesel production.
Collapse
Affiliation(s)
- Nívea Moreira Vieira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Raquel Cristina Vieira Dos Santos
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Vanessa Kely de Castro Germano
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Rafaela Zandonade Ventorim
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Eduardo Luís Menezes de Almeida
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | - Fernando Augusto da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| | | | - Wendel Batista da Silveira
- Laboratory of Microbial Physiology, Department of Microbiology, Federal University of Viçosa, Av. P. H. Rolfs, s/n, Viçosa, MG 36570-900 Brazil
| |
Collapse
|
6
|
Gebbie L, Dam TT, Ainscough R, Palfreyman R, Cao L, Harrison M, O'Hara I, Speight R. A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnol 2020; 20:12. [PMID: 32111201 PMCID: PMC7049217 DOI: 10.1186/s12896-020-00609-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sugarcane bagasse is a major source of lignocellulosic biomass, yet its economic potential is not fully realised. To add value to bagasse, processing is needed to gain access to the embodied recalcitrant biomaterials. When bagasse is stored in piles in the open for long periods it is colonised by microbes originating from the sugarcane, the soil nearby or spores in the environment. For these microorganisms to proliferate they must digest the bagasse to access carbon for growth. The microbial community in bagasse piles is thus a potential resource for the discovery of useful and novel microbes and industrial enzymes. We used culturing and metabarcoding to understand the diversity of microorganisms found in a uniquely undisturbed bagasse storage pile and screened the cultured organisms for fibre-degrading enzymes. RESULTS Samples collected from 60 to 80 cm deep in the bagasse pile showed hemicellulose and partial lignin degradation. One hundred and four microbes were cultured from different layers and included a high proportion of oleaginous yeast and biomass-degrading fungi. Overall, 70, 67, 70 and 57% of the microbes showed carboxy-methyl cellulase, xylanase, laccase and peroxidase activity, respectively. These percentages were higher in microbes selectively cultured from deep layers, with all four activities found for 44% of these organisms. Culturing and amplicon sequencing showed that there was less diversity and therefore more selection in the deeper layers, which were dominated by thermophiles and acid tolerant organisms, compared with the top of pile. Amplicon sequencing indicated that novel fungi were present in the pile. CONCLUSIONS A combination of culture-dependent and independent methods was successful in exploring the diversity in the bagasse pile. The variety of species that was found and that are known for biomass degradation shows that the bagasse pile was a valuable selective environment for the identification of new microbes and enzymes with biotechnological potential. In particular, lignin-modifying activities have not been reported previously for many of the species that were identified, suggesting future studies are warranted.
Collapse
Affiliation(s)
- Leigh Gebbie
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Tuan Tu Dam
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Rebecca Ainscough
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robin Palfreyman
- Metabolomics Australia, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Li Cao
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Mark Harrison
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Ian O'Hara
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia
| | - Robert Speight
- Queensland University of Technology, 2 George St, Brisbane, QLD, 4000, Australia.
| |
Collapse
|
7
|
Llamas M, Magdalena JA, González-Fernández C, Tomás-Pejó E. Volatile fatty acids as novel building blocks for oil-based chemistry via oleaginous yeast fermentation. Biotechnol Bioeng 2019; 117:238-250. [PMID: 31544974 DOI: 10.1002/bit.27180] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 02/06/2023]
Abstract
Microbial oils are proposed as a suitable alternative to petroleum-based chemistry in terms of environmental preservation. These oils have traditionally been studied using sugar-based feedstock, which implies high costs, substrate limitation, and high contamination risks. In this sense, low-cost carbon sources such as volatile fatty acids (VFAs) are envisaged as promising building blocks for lipid biosynthesis to produce oil-based bioproducts. VFAs can be generated from a wide variety of organic wastes through anaerobic digestion and further converted into lipids by oleaginous yeasts (OYs) in a fermentation process. These microorganisms can accumulate in the form of lipid bodies, lipids of up to 60% wt/wt of their biomass. In this context, OY is a promising biotechnological tool for biofuel and bioproduct generation using low-cost VFA media as substrates. This review covers recent advances in microbial oil production from VFAs. Production of VFAs via anaerobic digestion processes and the involved metabolic pathways are reviewed. The main challenges as well as recent approaches for lipid overproduction are also discussed.
Collapse
Affiliation(s)
- Mercedes Llamas
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| | | | | | - Elia Tomás-Pejó
- Biotechnological Processes Unit, IMDEA Energy, Móstoles, Spain
| |
Collapse
|
8
|
Tamilalagan A, Singaram J. Oxidation stability of yeast biodiesel using Rancimat analysis: validation using infrared spectroscopy and gas chromatography-mass spectrometry. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3075-3090. [PMID: 30506440 DOI: 10.1007/s11356-018-3619-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/29/2018] [Indexed: 06/09/2023]
Abstract
Biodiesel and single cell oils obtained from oleaginous yeasts grown in industrial waste are attractive alternatives to the conventional fuels. However, there are only few articles dealing with the stability of the microbial biofuels. Hence, this study aimed at characterizing the storage time of biodiesels using Rancimat methods. The microbial oil and the biodiesel obtained from microbial oil have been characterized with storage stability due to various oxidizing and thermal damage. Here, the microbial fuels were subject to Rancimat analysis and found to have high thermal-oxidative stability of 18 and 8.78 h for biodiesel and oil, respectively. The storage stability resulting from storage conditions was extrapolated for biodiesel and oil and has been found to be 1.62 and 0.54 years, respectively. The infrared spectroscopic analysis reveals the degree of oxidation found after the induction time was reached and shows the characteristic peaks for degradation products. Gas chromatography revealed the compounds that were responsible for the stability as well as the amount of degradation products left.
Collapse
Affiliation(s)
| | - Jayanthi Singaram
- Government College of Engineering, Bodinayakkanur, Tamil Nadu, India
| |
Collapse
|
9
|
An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms. Molecules 2018; 23:molecules23071562. [PMID: 29958398 PMCID: PMC6100488 DOI: 10.3390/molecules23071562] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/20/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Microbial oils, obtained from oleaginous microorganisms are an emerging source of commercially valuable chemicals ranging from pharmaceuticals to the petroleum industry. In petroleum biorefineries, the microbial biomass has become a sustainable source of renewable biofuels. Biodiesel is mainly produced from oils obtained from oleaginous microorganisms involving various upstream and downstream processes, such as cultivation, harvesting, lipid extraction, and transesterification. Among them, lipid extraction is a crucial step for the process and it represents an important bottleneck for the commercial scale production of biodiesel. Lipids are synthesized in the cellular compartment of oleaginous microorganisms in the form of lipid droplets, so it is necessary to disrupt the cells prior to lipid extraction in order to improve the extraction yields. Various mechanical, chemical and physicochemical pretreatment methods are employed to disintegrate the cellular membrane of oleaginous microorganisms. The objective of the present review article is to evaluate the various pretreatment methods for efficient lipid extraction from the oleaginous cellular biomass available to date, as well as to discuss their advantages and disadvantages, including their effect on the lipid yield. The discussed mechanical pretreatment methods are oil expeller, bead milling, ultrasonication, microwave, high-speed and high-pressure homogenizer, laser, autoclaving, pulsed electric field, and non-mechanical methods, such as enzymatic treatment, including various emerging cell disruption techniques.
Collapse
|