1
|
Perużyńska M, Birger R, Kłos P, Kwiecień H, Struk Ł, Sośnicki JG, Lafanechère L, Droździk M. The Co-Administration of Paclitaxel with Novel Pyridine and Benzofuran Derivatives that Inhibit Tubulin Polymerisation: A Promising Anticancer Strategy. Pharmaceutics 2025; 17:223. [PMID: 40006590 PMCID: PMC11859455 DOI: 10.3390/pharmaceutics17020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Paclitaxel (PTX), a crucial microtubule-stabilising agent in cancer treatment, is limited by its adverse effects and hydrophobic nature, which necessitate the use of toxic solvents. This study proposes a novel approach combining PTX with new microtubule-destabilising compounds at low, safe doses that are ineffective when used individually. Objective: The aim was to evaluate the therapeutic efficacy of combining PTX with previously described pyridine (S1, S22) and benzofuran derivatives (13b, 14), which have demonstrated promising anticancer properties by inhibiting microtubule polymerisation. Methods: The PrestoBlue assay was used to determine the optimal concentrations of each compound, enabling synergistic interactions with a low dose of PTX in HeLa cervical cancer cells. The combined effects of the compounds and PTX on apoptosis, cell cycle distribution, and mitotic spindle formation were then evaluated. Results: The results showed that compounds 13b (1 µM), 14 (0.1 µM), S1 (2 µM), and S22 (2 µM) enhanced the proapoptotic and antimitotic effects of 1 nM PTX, which was ineffective alone. Notably, live-cell imaging revealed that the concurrent use of S1 and PTX produced effects similar to those of a higher PTX concentration (5 nM). Conclusions: These findings suggest that these compounds enhance the anticancer efficacy of low-dose PTX, potentially paving the way for more effective and safer cancer therapies.
Collapse
Affiliation(s)
- Magdalena Perużyńska
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (R.B.); (M.D.)
| | - Radosław Birger
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (R.B.); (M.D.)
| | - Patrycja Kłos
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Halina Kwiecień
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland;
| | - Łukasz Struk
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland; (Ł.S.); (J.G.S.)
| | - Jacek G. Sośnicki
- Department of Organic and Physical Chemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów 42, 71-065 Szczecin, Poland; (Ł.S.); (J.G.S.)
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, University Grenoble Alpes, CNRS UMR 5309, INSERM U1209, F-38700 Grenoble, France;
| | - Marek Droździk
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstanców Wielkopolskich 72, 70-111 Szczecin, Poland; (R.B.); (M.D.)
| |
Collapse
|
2
|
Boța M, Vlaia L, Jîjie AR, Marcovici I, Crişan F, Oancea C, Dehelean CA, Mateescu T, Moacă EA. Exploring Synergistic Interactions between Natural Compounds and Conventional Chemotherapeutic Drugs in Preclinical Models of Lung Cancer. Pharmaceuticals (Basel) 2024; 17:598. [PMID: 38794168 PMCID: PMC11123751 DOI: 10.3390/ph17050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
In the current work, the synergy between natural compounds and conventional chemotherapeutic drugs is comprehensively reviewed in light of current preclinical research findings. The prognosis for lung cancer patients is poor, with a 5-year survival rate of 18.1%. The use of natural compounds in combination with conventional chemotherapeutic drugs has gained significant attention as a potential novel approach in the treatment of lung cancer. The present work highlights the importance of finding more effective therapies to increase survival rates. Chemotherapy is a primary treatment option for lung cancer but it has limitations such as reduced effectiveness because cancer cells become resistant. Natural compounds isolated from medicinal plants have shown promising anticancer or chemopreventive properties and their synergistic effect has been observed when combined with conventional therapies. The combined use of an anti-cancer drug and a natural compound exhibits synergistic effects, enhancing overall therapeutic actions against cancer cells. In conclusion, this work provides an overview of the latest preclinical research on medicinal plants and plant-derived compounds as alternative or complementary treatment options for lung cancer chemotherapy and discusses the potential of natural compounds in treating lung cancer with minimal side effects.
Collapse
Affiliation(s)
- Mihaela Boța
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
| | - Lavinia Vlaia
- Department II—Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (M.B.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Alex-Robert Jîjie
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Iasmina Marcovici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Flavia Crişan
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Cristian Oancea
- Discipline of Pneumology, Department of Infectious Diseases, “Victor Babeș” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania;
| | - Cristina Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| | - Tudor Mateescu
- Department of Thoracic Surgery, Clinical Hospital for Infectious Diseases and Pneumophthiology Dr. Victor Babes, 13 Gheorghe Adam Street, RO-300310 Timisoara, Romania;
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania; (I.M.); (F.C.); (C.A.D.); (E.-A.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, RO-300041 Timisoara, Romania
| |
Collapse
|
3
|
Ajayi T, Hosseinian S, Schaefer AJ, Fuller CD. Combination Chemotherapy Optimization with Discrete Dosing. INFORMS JOURNAL ON COMPUTING 2024; 36:434-455. [PMID: 38883557 PMCID: PMC11178284 DOI: 10.1287/ijoc.2022.0207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Chemotherapy drug administration is a complex problem that often requires expensive clinical trials to evaluate potential regimens; one way to alleviate this burden and better inform future trials is to build reliable models for drug administration. This paper presents a mixed-integer program for combination chemotherapy (utilization of multiple drugs) optimization that incorporates various important operational constraints and, besides dose and concentration limits, controls treatment toxicity based on its effect on the count of white blood cells. To address the uncertainty of tumor heterogeneity, we also propose chance constraints that guarantee reaching an operable tumor size with a high probability in a neoadjuvant setting. We present analytical results pertinent to the accuracy of the model in representing biological processes of chemotherapy and establish its potential for clinical applications through a numerical study of breast cancer.
Collapse
Affiliation(s)
| | | | - Andrew J. Schaefer
- Department of Computational Applied Mathematics and Operations Research, Rice University, Houston, Texas 77005
| | - Clifton D. Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
4
|
Mushtaq Z, Aslam M, Imran M, Abdelgawad MA, Saeed F, Khursheed T, Umar M, Abdulmonem WA, Ghorab AHA, Alsagaby SA, Tufail T, Raza MA, Hussain M, Al JBawi E. Polymethoxyflavones: an updated review on pharmacological properties and underlying molecular mechanisms. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023. [DOI: 10.1080/10942912.2023.2189568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Affiliation(s)
- Zarina Mushtaq
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mahwish Aslam
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal-Pakistan, Narowal, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Farhan Saeed
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tara Khursheed
- Department of Nutrition and Dietetics, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Maryam Umar
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed H. Al Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Suliman A. Alsagaby
- Department of Medical Laboratory sciences, College of Applied Medical Sciences, Majmaah University, AI Majmaah, Saudi Arabia
| | - Tabussam Tufail
- University Institute of Diet & Nutritional Sciences, the University of Lahore, Lahore, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | | |
Collapse
|
5
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Zhang X, Zhao L, Xiao J, Wang Y, Li Y, Zhu C, Zhang H, Zhang Y, Zhu X, Dong Y. 5-Demethylnobiletin mediates cell cycle arrest and apoptosis via the ERK1/2/AKT/STAT3 signaling pathways in glioblastoma cells. Front Oncol 2023; 13:1143664. [PMID: 37139163 PMCID: PMC10149914 DOI: 10.3389/fonc.2023.1143664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
5-Demethylnobiletin is the active ingredient in citrus polymethoxyflavones that could inhibit the proliferation of several tumor cells. However, the anti-tumor effect of 5-Demethylnobiletin on glioblastoma and the underlying molecular mechanisms are remains unknown. In our study, 5-Demethylnobiletin markedly inhibited the viability, migration and invasion of glioblastoma U87-MG, A172 and U251 cells. Further research revealed that 5-Demethylnobiletin induces cell cycle arrest at the G0/G1 phase in glioblastoma cells by downregulating Cyclin D1 and CDK6 expression levels. Furthermore, 5-Demethylnobiletin significantly induced glioblastoma cells apoptosis by upregulating the protein levels of Bax and downregulating the protein level of Bcl-2, subsequently increasing the expression of cleaved caspase-3 and cleaved caspase-9. Mechanically, 5-Demethylnobiletin trigged G0/G1 phase arrest and apoptosis by inhibiting the ERK1/2, AKT and STAT3 signaling pathway. Furthermore, 5-Demethylnobiletin inhibition of U87-MG cell growth was reproducible in vivo model. Therefore, 5-Demethylnobiletin is a promising bioactive agent that might be used as glioblastoma treatment drug.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinlong Xiao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yunmeng Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chaoqun Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154285. [PMID: 35809375 DOI: 10.1016/j.phymed.2022.154285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 5-Demethylnobiletin (5DN) is a polymethoxyflavone (PMF) primarily found in citrus fruits. It has various health-promoting properties and hence has attracted significant attention from scholars worldwide. PURPOSE This review is the first to systematically summarize the recent research progress of 5DN, including its pharmacological activity, mechanism of action, pharmacokinetics, and toxicological effects. In addition, the pharmacological mechanism of action of 5DN has been discussed from a molecular biological perspective, and data from in vivo and in vitro animal studies have been compiled to provide a more thorough understanding of 5DN as a potential lead drug. METHODS Data were extracted from SciFinder, PubMed, ScienceDirect and China National Knowledge Infrastructure (CNKI) from database inception to January 2022. RESULTS 5DN has broad pharmacological activities. It exerts anti-inflammatory effects, promotes apoptosis and autophagy, and induces melanogenesis mainly by regulating the JAK2/STAT3, caspase-dependent apoptosis, ROS-AKT/mTOR, MAPK and PKA-CREB signaling pathways. 5DN can be used for treating diseases such as cancer, inflammation-related diseases, rheumatoid arthritis, and neurodegenerative diseases. To date, there have been only a few toxicological studies on 5DN, and both in vitro and in vivo on 5DN have not revealed significant toxic side effects. Pharmacokinetic studies have revealed that the metabolites of 5DN are mainly 5,3'-didemethylnobiletin (M1); 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), in either, glucuronide-conjugated or monomeric form. The pharmacokinetic products of 5DN, especially M1, possess better activity than 5DN for the treatment of cancer. CONCLUSION The anticancer effects of 5DN and its metabolites warrant further investigation as potential drug candidates, especially through in vivo studies. In addition, the therapeutic effects of 5DN in neurodegenerative diseases should be examined in more experimental models, and the absorption and metabolism of 5DN should be further investigated in vivo.
Collapse
Affiliation(s)
- Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
8
|
Chen PY, Wang CY, Tsao EC, Chen YT, Wu MJ, Ho CT, Yen JH. 5-Demethylnobiletin Inhibits Cell Proliferation, Downregulates ID1 Expression, Modulates the NF-κB/TNF-α Pathway and Exerts Antileukemic Effects in AML Cells. Int J Mol Sci 2022; 23:ijms23137392. [PMID: 35806401 PMCID: PMC9266321 DOI: 10.3390/ijms23137392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the dysregulation of hematopoietic cell proliferation, resulting in the accumulation of immature myeloid cells in bone marrow. 5-Demethylnobiletin (5-demethyl NOB), a citrus 5-hydroxylated polymethoxyflavone, has been reported to exhibit various bioactivities, such as antioxidant, anti-inflammatory and anticancer properties. In this study, we investigated the antileukemic effects of 5-demethyl NOB and its underlying molecular mechanisms in human AML cells. We found that 5-demethyl NOB (20−80 μM) significantly reduced human leukemia cell viability, and the following trend of effectiveness was observed: THP-1 ≈ U-937 > HEL > HL-60 > K562 cells. 5-Demethyl NOB (20 and 40 μM) modulated the cell cycle through the regulation of p21, cyclin E1 and cyclin A1 expression and induced S phase arrest. 5-Demethyl NOB also promoted leukemia cell apoptosis and differentiation. Microarray-based transcriptome, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) analysis showed that the expression of inhibitor of differentiation/DNA binding 1 (ID1), a gene associated with the GO biological process (BP) cell population proliferation (GO: 0008283), was most strongly suppressed by 5-demethyl NOB (40 μM) in THP-1 cells. We further demonstrated that 5-demethyl NOB-induced ID1 reduction was associated with the inhibition of leukemia cell growth. Moreover, DEGs involved in the hallmark gene set NF-κB/TNF-α signaling pathway were markedly enriched and downregulated by 5-demethyl NOB. Finally, we demonstrated that 5-demethyl NOB (20 and 40 μM), combined with cytarabine, synergistically reduced THP-1 and U-937 cell viability. Our current findings support that 5-demethyl NOB dramatically suppresses leukemia cell proliferation and may serve as a potential phytochemical for human AML chemotherapy.
Collapse
Affiliation(s)
- Pei-Yi Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan;
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - En-Ci Tsao
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Yu-Ting Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan;
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA;
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 97004, Taiwan; (E.-C.T.); (Y.-T.C.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
- Correspondence: ; Tel.: +886-3-856-5301 (ext. 2683)
| |
Collapse
|
9
|
Ng CX, Affendi MM, Chong PP, Lee SH. The Potential of Plant-Derived Extracts and Compounds to Augment Anticancer Effects of Chemotherapeutic Drugs. Nutr Cancer 2022; 74:3058-3076. [PMID: 35675271 DOI: 10.1080/01635581.2022.2069274] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plant extracts comprise a complex mixture of natural compounds with diverse biological activities including anticancer activities. This has made the use of plant extracts a trending strategy in cancer treatment. In addition, plants' active constituents such as polyphenols could confer protective effects on normal cells against damage by free radicals as well as lessen the toxicity of chemotherapeutic drugs. Recently, many emerging studies revealed the combinatory uses of plant extracts and individual therapeutic compounds that could be a promising panacea in hampering multiple signaling pathways involved in cancer development and progression. Besides enhancing the therapeutic efficacy, this has also been proven to reduce the dosage of chemotherapeutic drugs used, and hence overcome multiple drug resistance and minimize treatment side effects. Notably, combined use of plant extracts with chemotherapeutics drugs was shown to enhance anticancer effects through modulating various signaling pathways, such as P13K/AKT, NF-κB, JNK, ERK, WNT/β-catenin, and many more. Hence, this review aims to comprehensively summarize both In Vitro and In Vivo mechanisms of actions of well-studied plant extracts, such as Ganoderma Lucidum, Korean red ginseng, Garcinia sp., curcumin, and luteolin extracts in augmenting anticancer properties of the conventional chemotherapeutic drugs from an extensive literature search of recent publications.
Collapse
Affiliation(s)
- Chu Xin Ng
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Muzaira Mazrul Affendi
- School of Health Sciences, Faculty of Medicine and Health Sciences, International Medical University, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sau Har Lee
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor's University, Selangor, Malaysia
| |
Collapse
|
10
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
11
|
Mao K, Zhang W, Yu L, Yu Y, Liu H, Zhang X. Transferrin-Decorated Protein-Lipid Hybrid Nanoparticle Efficiently Delivers Cisplatin and Docetaxel for Targeted Lung Cancer Treatment. Drug Des Devel Ther 2021; 15:3475-3486. [PMID: 34413632 PMCID: PMC8369919 DOI: 10.2147/dddt.s296253] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE Non-small cell lung cancer (NSCLC) therapy faces the barriers including drug resistance. A transferrin-functionalized protein-lipid hybrid nanoparticle (PLHN) was designed loading both cisplatin (CIS) and docetaxel (DTX) for the lung cancer treatment. METHODS CIS and DTX were loaded into the hybrid nanoparticle and then decorated with transferrin (Tf). The Tf-functionalized protein-lipid hybrid nanoparticle (Tf-CIS/DTX-PLHN) was investigated by determining the release behavior, cytotoxicity in vitro, and anticancer efficiency in vivo. RESULTS Tf-CIS/DTX-PLHN showed a nano-size of 189.5 ± 5.9 nm, and a surface tested to be -16.9 ± 2.1 mV. Tf-CIS/DTX-PLHN exhibited obviously better antitumor ability in vitro and in vivo compared with the non Tf contained CIS and DTX co-loaded lipid nanoparticles (CIS/DTX-LN), single drug loaded nanoparticles, and free drugs. CONCLUSION Since remarkable enhanced efficiency of Tf and synergistic effect of the drugs, it could inhibit the lung tumor growth and help with the lung cancer treatment.
Collapse
Affiliation(s)
- Kaiping Mao
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Weina Zhang
- Department of Plastic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Lan Yu
- Department of Cancer Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, People’s Republic of China
| | - Yi Yu
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Haixia Liu
- Department of Thoracic surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People’s Republic of China
| | - Xiaotao Zhang
- Department of Cancer Stereotactic Radiotherapy, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, 266042, People’s Republic of China
| |
Collapse
|
12
|
Zhang Y, Liu Y, Wang N, Liu H, Gou J, He H, Zhang Y, Yin T, Wang Y, Tang X. Preparation of mPEG-b-PLA/TM-2 Micelle Lyophilized Products by Mixed Lyoprotectors and Antitumor Effect In Vivo. AAPS PharmSciTech 2021; 22:38. [PMID: 33409712 DOI: 10.1208/s12249-020-01885-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/18/2020] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to encapsulate the poorly water-soluble drug TM-2 into polymer micelles using mPEG2k-b-PLA2.4k to increase its aqueous solubility and improve its therapeutic effect for liver cancer. Furthermore, in order to achieve long-term storage, the micelle solution was successfully freeze-dried. This study theoretically clarified the possibility of enhancing the water solubility of TM-2 using mPEG2k-b-PLA2.4k micelles as well as the protective effects of mixed lyoprotectants. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were performed, which showed that the drug has a good affinity with the polymer (χ = 0.489) according to Flory-Huggins theory and that lyoprotectants reduced the crystallinity of PEG in mPEG2k-b-PLA2.4k and played a space-protective role in the lyophilization process. In vivo experiments showed that micellization could improve the drug bioavailability and give a high therapeutic effect with a tumor inhibition rate of 84.5% under the tolerated dose.
Collapse
|
13
|
Guo S, Zhang Y, Wu Z, Zhang L, He D, Li X, Wang Z. Synergistic combination therapy of lung cancer: Cetuximab functionalized nanostructured lipid carriers for the co-delivery of paclitaxel and 5-Demethylnobiletin. Biomed Pharmacother 2019; 118:109225. [PMID: 31325705 DOI: 10.1016/j.biopha.2019.109225] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Lung cancer remains the leading cause of cancer associated deaths worldwide. Recent efforts have been focused on combinational and nanoparticulate therapies that can efficiently deliver multiple therapeutics. Herein, we reported cetuximab (CET) functionalized, paclitaxel (PTX) and 5-Demethylnobiletin (DMN) co-loaded nanostructured lipid carriers (NLCs) (CET-PTX/DMN-NLCs). The morphology, particle size, zeta potential, stability and drug release were tested. Cellular uptake, cell viability, synergistic effects and in vivo anti-tumor effects were evaluated on human lung adenocarcinoma cells (A549 cells), human embryonic lung cells (MRC-5 cells) and A549 paclitaxel-resistant cells bearing mice models. NLCs had sizes of around 130 nm and zeta potentials of +20-30 mV. The release of drugs from NLCs was relatively fast at the first 12 h and then became slow until completion of sustained release behavior. Cells uptake of CET-PTX/DMN-NLCs (65.8%) was remarkably higher than that of PTX/DMN-NLCs (35.5%) in A549 cells. The combination treatment with PTX and DMN synergistically decreases the viability of cells than the single PTX-NLCs and DMN-NLCs. CET-PTX/DMN-NLCs exhibited the most remarkable in vivo tumor inhibition efficiency, which suspended the tumor growth from 1010.23 to 211.18 mm3 at the end of the study. The highest tumor accumulation amount and low toxicity made CET-PTX/DMN-NLCs a promising system for the synergistic combination therapy of lung cancer.
Collapse
Affiliation(s)
- Shenghu Guo
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Yuehua Zhang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Zheng Wu
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Lei Zhang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Dongwei He
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Xing Li
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China
| | - Zhiyu Wang
- Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei Province, PR China.
| |
Collapse
|
14
|
Chen S, Zhang Z, Zhang J. Emodin enhances antitumor effect of paclitaxel on human non-small-cell lung cancer cells in vitro and in vivo. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1145-1153. [PMID: 31114158 PMCID: PMC6489594 DOI: 10.2147/dddt.s196319] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/04/2019] [Indexed: 01/25/2023]
Abstract
Background: Non-small-cell lung cancer (NSCLC) was known as the most malignant tumor. Paclitaxel (PTX) is the effective drug used for the treatment of NSCLC; however, it also exhibits severe side effects. Emodin could induce apoptosis of NSCLC cells and serve as a potential cancer therapeutic agent. However, the effects of combination of emodin with PTX on NSCLC remain unclear. Thus, this study aimed to investigate the effects of emodin in combination with PTX on A549 cells. Materials and methods: The effects of combination treatment on the proliferation, apoptosis and invasion of NSCLC cells were evaluated by CCK-8, flow cytometric and TUNEL assays, respectively. In addition, Western blotting was used to detect the expressions of Bax, Bcl-2, active caspase 3, p-Akt and ERK in cells. Results: Combination of emodin with PTX synergistically inhibited the proliferation of A549 cells in vitro. In addition, we found that emodin significantly enhanced PTX-induced apoptosis in A549 cells via increasing the expressions of Bax and active caspase 3 and decreasing the levels of Bcl-2, p-Akt and p-ERK. Moreover, emodin markedly enhanced antitumor effect of PTX on A549 xenograft without significant side effects in vivo. Conclusion: Our findings indicated that emodin could significantly enhance antitumor effect of PTX in vitro and in vivo. Therefore, the combination of emodin with PTX may serve as a potential strategy for the treatment of patients with NSCLC.
Collapse
Affiliation(s)
- Shuifang Chen
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Zeying Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Jianli Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, People's Republic of China
| |
Collapse
|
15
|
Tung YC, Chou YC, Hung WL, Cheng AC, Yu RC, Ho CT, Pan MH. Polymethoxyflavones: Chemistry and Molecular Mechanisms for Cancer Prevention and Treatment. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40495-019-00170-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|