1
|
Ciuchcinski K, Kaczorowska AK, Biernacka D, Dorawa S, Kaczorowski T, Park Y, Piekarski K, Stanowski M, Ishikawa T, Stokke R, Steen IH, Dziewit L. Computational pipeline for sustainable enzyme discovery through (re)use of metagenomic data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125381. [PMID: 40252419 DOI: 10.1016/j.jenvman.2025.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Enzymes derived from extremophilic organisms, also known as extremozymes, offer sustainable and efficient solutions for industrial applications. Valued for their resilience and low environmental impact, extremozymes have found use as catalysts in various processes, ranging from dairy production to pharmaceutical manufacturing. However, discovery of novel extremozymes is often hindered by challenges such as culturing difficulties, underrepresentation of extreme environments in reference databases, and limitations of traditional sequence-based screening methods. In this work, we present a computational pipeline designed to discover novel enzymes from metagenomic data derived from extreme environments. This pipeline represents a versatile and sustainable approach that promotes reuse and recycling of existing datasets and minimises the need for additional environmental sampling. In its core, the algorithm integrates both traditional bioinformatic techniques and recent advances in structural prediction, enabling rapid and accurate identification of enzymes. However, due to its design, the algorithm relies heavily on existing databases, which can limit its effectiveness in situations where reference data is scarce or when encountering novel protein families. As a proof-of-concept, we applied the pipeline to metagenomic data from deep-sea hydrothermal vents, with a focus on β-galactosidases. The pipeline identified 11 potential candidate proteins, out of which 10 showed in vitro activity. One of the selected enzymes, βGal_UW07, showed strong potential for industrial applications. The enzyme exhibited optimal activity at 70 °C and was exceptionally resistant to high pH and the presence of metal ions and reducing agents. Overall, our results indicate that the pipeline is highly accurate and can play a key role in sustainable bioprospecting, leveraging existing metagenomic datasets and minimising in situ interventions in pristine regions.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Daria Biernacka
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland; Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Younginn Park
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Karol Piekarski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Michal Stanowski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Takao Ishikawa
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
2
|
Ignatova I, Arsov A, Petrova P, Petrov K. Prebiotic Effects of α- and β-Galactooligosaccharides: The Structure-Function Relation. Molecules 2025; 30:803. [PMID: 40005114 PMCID: PMC11858185 DOI: 10.3390/molecules30040803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Oligosaccharides containing galactosyl moieties belong to two main groups: raffinose family oligosaccharides (RFO, α-GOS) and lactose-type β-galactooligosaccharides (β-GOS), both well-known for their prebiotic effect. The present review investigates the vast amounts of recent research on the structures of GOS and their beneficial impact. It focuses on the molecular interactions between GOS and probiotics in vitro and in vivo, the enzymology of the processes, and the genetic prerequisites for the synthesis and degradation of GOS by probiotic bacteria. The preferences of probiotic strains belonging to the Bifidobacterium and Lactobacillus genera are elucidated to form and degrade GOS of a certain length, structure, and linkages between monomers. A brief overview of the industrial production of β-GOS by natural and recombinant strains included the methods and production efficiency evaluation.
Collapse
Affiliation(s)
- Ina Ignatova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (P.P.)
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (A.A.); (P.P.)
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
3
|
Wang J, Xiang Z, Liu D, Yan Q, Yang S, Jiang Z. Protein Engineering of a Novel β-Galactosidase from Thermus scotoductus for Efficient Synthesis of Lacto- N-Neotetraose from Chitin Powder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38613501 DOI: 10.1021/acs.jafc.4c01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
A novel β-galactosidase (TsGal48) from Thermus scotoductus was cloned, and the enzyme was biochemically characterized. TsGal48 catalyzed the synthesis of lacto-N-neotetraose (LNnT) from lactose via the transglycosylation reaction with a maximal yield of 20%, which is the highest yield for the synthesis of LNnT so far. To further improve the yield of LNnT, TsGal48 was successfully engineered by directed evolution and site-saturation mutagenesis. A mutated β-galactosidase (mTsGal48) was selected and characterized. mTsGal48 produced LNnT with a yield of 27.7 g/L, which is 1.4-fold higher than that of TsGal48 (19.7 g/L). Then, a developed strategy for LNnT synthesis from chitin powder was provided in a 30 L bioreactor. The reaction process included chitin powder hydrolysis, lacto-N-triose II (LNT2) synthesis, and LNnT synthesis. The reaction time was reduced from 44 to 17 h in chitin powder hydrolysis and LNT2 synthesis. The content of LNnT was up to 25 g/L in the multienzyme system. The green and efficient route may be suitable for large-scale production of LNnT from chitin powder.
Collapse
Affiliation(s)
- Jianyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhixuan Xiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
4
|
Li T, Li J, Yan Q, Yang S, Jiang Z. Biochemical characterization of a novel β-galactosidase from Lacticaseibacillus zeae and its application in synthesis of lacto-N-tetraose. J Dairy Sci 2023; 106:6623-6634. [PMID: 37210349 DOI: 10.3168/jds.2023-23221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/02/2023] [Indexed: 05/22/2023]
Abstract
Lacto-N-tetraose (LNT) is one of the most important components of human milk oligosaccharides, which has various beneficial health effects. β-Galactosidase is an important enzyme used in dairy processing. The transglycosylation activity of β-galactosidases offers an attractive approach for LNT synthesis. In this study, we reported for the first time the biochemical characterization of a novel β-galactosidase (LzBgal35A) from Lacticaseibacillus zeae. LzBgal35A belongs to glycoside hydrolases (GH) family 35 and shared the highest identity of 59.9% with other reported GH 35 members. The enzyme was expressed as soluble protein in Escherichia coli. The purified LzBgal35A displayed optimal activity at pH 4.5 and 55°C. It was stable within the pH range of 3.5 to 7.0 and up to 60°C. Moreover, LzBgal35A could catalyze the synthesis of LNT via transferring the galactose residue from o-nitrophenyl-β-galactopyranoside to lacto-N-triose II. Under optimal conditions, the conversion rate of LNT reached 45.4% (6.4 g/L) within 2 h, which was by far the highest yield of LNT synthesized through a β-galactosidase-mediated transglycosylation reaction. This study demonstrated that LzBgal35A has great potential application in LNT synthesis.
Collapse
Affiliation(s)
- Ting Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Jing Li
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China; College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, PR China
| | - Shaoqing Yang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China
| | - Zhengqiang Jiang
- Key Laboratory of China National Light Industry and Food Bioengineering, College of Food Science and Nutritional Engineering, China Agricultural University, Haidian District, Beijing 100083, PR China.
| |
Collapse
|
5
|
Li A, Zheng J, Han X, Yang S, Cheng S, Zhao J, Zhou W, Lu Y. Advances in Low-Lactose/Lactose-Free Dairy Products and Their Production. Foods 2023; 12:2553. [PMID: 37444291 PMCID: PMC10340681 DOI: 10.3390/foods12132553] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
With increasing health awareness worldwide, lactose intolerance has become a major concern of consumers, creating new market opportunities for low-lactose/lactose-free dairy foods. In recent years, through innovating processes and technologies, dairy manufacturers have significantly improved the variety, and functional and sensory qualities of low-lactose and lactose-free dairy products. Based on this, this paper first covers the pathology and epidemiology of lactose intolerance and market trends. Then, we focus on current advantages and disadvantages of different lactose hydrolysis technologies and improvements in these technologies to enhance nutritional value, and functional, sensory, and quality properties of lactose-free dairy products. We found that more and more cutting-edge technologies are being applied to the production of lactose-free dairy products, and that these technologies greatly improve the quality and production efficiency of lactose-free dairy products. Hopefully, our review can provide a theoretical basis for the marketing expansion and consumption guidance for low-lactose/lactose-free dairy products.
Collapse
Affiliation(s)
- Aili Li
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Jie Zheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Xueting Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Sijia Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Shihui Cheng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Jingwen Zhao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Wenjia Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China; (A.L.); (J.Z.); (X.H.); (S.Y.); (S.C.); (J.Z.); (W.Z.)
| | - Yan Lu
- National Research Center of Dairy Engineering and Technology, Green Food Research Institute of Heilongjiang, Northeast Agricultural University, Harbin 150086, China
| |
Collapse
|
6
|
Kalathinathan P, Sain A, Pulicherla K, Kodiveri Muthukaliannan G. A Review on the Various Sources of β-Galactosidase and Its Lactose Hydrolysis Property. Curr Microbiol 2023; 80:122. [PMID: 36862237 DOI: 10.1007/s00284-023-03220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
β-Galactosidase is a glycoside hydrolase enzyme that possesses both hydrolytic and transgalactosylation properties and has several benefits and advantages in the food and dairy industries. The catalytic process of β-galactosidase involves the transfer of a sugar residue from a glycosyl donor to an acceptor via a double-displacement mechanism. Hydrolysis prevails when water acts as an acceptor, resulting in the production of lactose-free products. Transgalactosylation prevails when lactose acts as an acceptor, resulting in the production of prebiotic oligosaccharides. β-Galactosidase is also obtained from many sources including bacteria, yeast, fungi, plants, and animals. However, depending on the origin of the β-galactosidase, the monomer composition and their bonds may differ, thereby influencing their properties and prebiotic efficacy. Thus, the increasing demand for prebiotics in the food industry and the search for new oligosaccharides have compelled researchers to search for novel sources of β-galactosidase with diverse properties. In this review, we discuss the properties, catalytic mechanisms, various sources and lactose hydrolysis properties of β-galactosidase.
Collapse
Affiliation(s)
- Pooja Kalathinathan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Avtar Sain
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | |
Collapse
|
7
|
A novel salt-tolerant GH42 β-galactosidase with transglycosylation activity from deep-sea metagenome. World J Microbiol Biotechnol 2022; 38:154. [PMID: 35796808 DOI: 10.1007/s11274-022-03348-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
β-Galactosidase is a widely adopted enzyme in the food and pharmaceutical industries. Metagenome techniques have the advantage of discovering novel functional genes, particularly potential genes from uncultivated microbes. In this study, a novel GH42 β-galactosidase isolated from a deep-sea metagenome was overexpressed in Escherichia coli BL21 (DE3) and purified by affinity chromatography. The optimal temperatures and pH of the enzyme for o-nitrophenyl-β-D-galactopyranoside (oNPG) and lactose were 40 ℃, 6.5 and 50 ℃, 7, respectively. The enzyme was stable at temperatures between 4 and 30 ℃ and within the pH range of 6-9. Moreover, it was highly tolerant to salt and inhibited by Zn2+ and Cu2+. The kinetic values of Km and kcat of the enzyme against oNPG were 1.1 mM and 57.8 s-1, respectively. Furthermore, it showed hydrolysis and transglycosylation activity to lactose and the extra monosaccharides could improve the productivity of oligosaccharides. Overall, this recombinant β-galactosidase is a potential biocatalyst for the hydrolysis of milk lactose and synthesis of functional oligosaccharides.
Collapse
|
8
|
Yan Y, Guan W, Li X, Gao K, Xu X, Liu B, Zhang W, Zhang Y. β-galactosidase GALA from Bacillus circulans with high transgalactosylation activity. Bioengineered 2021; 12:8908-8919. [PMID: 34606421 PMCID: PMC8806947 DOI: 10.1080/21655979.2021.1988370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
β-galactosidase catalyzes lactose hydrolysis and transfers reactions to produce prebiotics such as galacto-oligosaccharides (GOS) with potential applications in the food industry and pharmaceuticals. However, there is still a need for improved transgalactosylation activity of β-galactosidases and reaction conditions of GOS production in order to maximize GOS output and reduce production costs. In this study, a β-galactosidase gene, galA, from Bacillus circulans was expressed in Pichia pastoris, which not only hydrolyzed lactose but also had strong transgalactosylation activity to produce GOS. Response surface methodology was adopted to investigate the effects of temperature, enzyme concentration, pH, initial lactose concentration, and reaction time on the production of GOS and optimize the reaction conditions for GOS. The optimal pH for the enzyme was 6.0 and remained stable under neutral and basic conditions. Meanwhile, GALA showed most activity at 50°C and retained considerable activity at a lower temperature 30–40°C, indicating this enzyme could work under mild conditions. The enzyme concentration and temperature were found to be the critical parameters affecting the transgalactosylation activity. Response surface methodology showed that the optimal enzyme concentration, initial lactose concentration, temperature, pH, and reaction time were 3.03 U/mL, 500 g/L, 30°C, 5.08, and 4 h, respectively. Under such conditions, the maximum yield of GOS was 252.8 g/L, accounting for approximately 50.56% of the total sugar. This yield can be considered relatively high compared to those obtained from other sources of β-galactosidases, implying a great potential for GALA in the industrial production and application of GOS.
Collapse
Affiliation(s)
- Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weishi Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyi Li
- College of Letters and Science, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Kaier Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinxin Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Damin BIS, Kovalski FC, Fischer J, Piccin JS, Dettmer A. Challenges and perspectives of the β-galactosidase enzyme. Appl Microbiol Biotechnol 2021; 105:5281-5298. [PMID: 34223948 DOI: 10.1007/s00253-021-11423-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 11/29/2022]
Abstract
The enzyme β-galactosidase has great potential for application in the food and pharmaceutical industries due to its ability to perform the hydrolysis of lactose, a disaccharide present in milk and in dairy by-products. It can be used in free form, in batch processes, or in immobilized form, which allows continuous operation and provides greater enzymatic stability. The choice of method and support for enzyme immobilization is essential, as the performance of the biocatalyst is strongly influenced by the properties of the material used and by the interaction mechanisms between support and enzyme. Therefore, this review showed the main enzyme immobilization techniques, and the most used supports for the constitution of biocatalysts. Also, materials with the potential for immobilization of β-galactosidases and the importance of their biotechnological application are presented. KEY POINTS: • The main methods of immobilization are physical adsorption, covalent bonding, and crosslinking. • The structural conditions of the supports are determining factors in the performance of the biocatalysts. • Enzymatic hydrolysis plays an important role in the biotechnology industry.
Collapse
Affiliation(s)
- B I S Damin
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - F C Kovalski
- Faculty of Engineering and Architecture (FEAR), Chemical Engineering Course, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - J Fischer
- Institute of Exact Sciences and Geosciences (ICEG), Chemical Course, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - J S Piccin
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - A Dettmer
- Faculty of Agronomy and Veterinary Medicine (FAMV), Postgraduate Program in Food Science and Technology (PPGCTA), University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| |
Collapse
|
10
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Peprah Addai F, Wang T, Kosiba AA, Lin F, Zhen R, Chen D, Gu J, Shi H, Zhou Y. Integration of elastin-like polypeptide fusion system into the expression and purification of Lactobacillus sp. B164 β-galactosidase for lactose hydrolysis. BIORESOURCE TECHNOLOGY 2020; 311:123513. [PMID: 32417661 DOI: 10.1016/j.biortech.2020.123513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
An elastin-like polypeptide (ELP) sequence fused with Lactobacillus sp. B164 β-galactosidase modified with 6x-Histidine (β-Gal-LH) to produce recombinant β-Gal-Linker-ELP-His (β-Gal-LEH) was expressed in E. coli and purified via inverse thermal cycling (ITC) and nickel-nitrilotriacetic acid (Ni-NTA) resin. The β-galactosidase integrated with ELP-system showed an improved purification at 1.75 M (NH4)2SO4 after 1 round ITC (95.66% recovery rate and 13.04 purification fold) with better enzyme activity parameters compared to Ni-NTA. The enzyme maintained an optimal temperature (40 °C) and pH (7.5) for both β-Gal-LEH and β-Gal-LH. The results further showed that the ELP-fusion system improved the enzyme's thermal and storage stability. Moreover, the enzyme secondary structure was not changed by ELP-tag. Enzyme activity was completely inactivated by Hg2+, Cd2+ and Cu2+, unaffected by Ca2+, EDTA and urea, but partially activated by Mn2+ at lower concentration. Compared to commercial β-galactosidases, β-Gal-LEH exhibited similar biocatalytic efficiency on lactose and could potentially catalyze transgalactosylation.
Collapse
Affiliation(s)
- Frank Peprah Addai
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Taotao Wang
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Anthony A Kosiba
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, PR China
| | - Ren Zhen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Dongfeng Chen
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Jie Gu
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Haifeng Shi
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| | - Yang Zhou
- Institute of Life Sciences, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|