1
|
de Prado E, Mangas-Sánchez J, Gotor-Fernández V. Chemoenzymatic synthesis of Tamsulosin. Org Biomol Chem 2025; 23:2244-2253. [PMID: 39885818 DOI: 10.1039/d4ob02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Several chemoenzymatic pathways have been developed for the stereoselective production of the drug tamsulosin. The interest in the exclusive synthesis of its (R)-enantiomer lies in the greater activity compared to that displayed by its (S)-counterpart for the treatment of kidney stones and benign prostatic hyperplasia disease. Using different types of biocatalysts such as lipases, alcohol dehydrogenases and transaminases, three complementary strategies have been studied to introduce chirality into a key synthetic precursor. The first approach involved the lipase-catalyzed kinetic resolution of a racemic amine precursor, although low conversions and selectivities were found. A second strategy consisted in the synthesis of a chiral alcohol intermediate through a bioreduction proccess catalyzed by ADHs, with the identification of stereocomplementary redox enzymes capable of producing both enantiomers. The (S)-alcohol, obtained with ADH-A from Rhodococcus ruber, was subsequently converted into the corresponding amine through a telescoped approach. Alternatively, transaminases were also employed for the biotransamination of the previously studied intermediate ketone, which led directly to the enantiopure (R)-amine in high yield. Finally, the active pharmaceutical ingredient was prepared in enantiopure form and in 49% overall yield from the ketone precursor by a two-step sequential transformation of the chiral amine building block. These findings highlight the importance and versatility of enzyme catalysis for the stereoselective synthesis of drugs.
Collapse
Affiliation(s)
- Enol de Prado
- Organic and Inorganic Chemistry Department, Instituto Universitario de Química Organometálica "Enrique Moles", University of Oviedo. Avenida Julián Clavería 8, 33006 Oviedo, Asturias, Spain.
| | - Juan Mangas-Sánchez
- Organic and Inorganic Chemistry Department, Instituto Universitario de Química Organometálica "Enrique Moles", University of Oviedo. Avenida Julián Clavería 8, 33006 Oviedo, Asturias, Spain.
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Instituto Universitario de Química Organometálica "Enrique Moles", University of Oviedo. Avenida Julián Clavería 8, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Listro R, Rossino G, Cavalloro V, Rossi D, Boiocchi M, Robescu MS, Bavaro T, Franchini S, Sorbi C, De Amici M, Linciano P, Collina S. 1,3-Dithiolane as a Privileged Scaffold in Bioactive Derivatives: Chiral Resolution and Assignment of Absolute Configuration. Int J Mol Sci 2024; 25:12880. [PMID: 39684589 DOI: 10.3390/ijms252312880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The 1,3-dithiolane ring has been recently rehabilitated as a chemical scaffold in drug design. However, for derivatives that are substituted in position 4, the introduction of a chiral center on the heterocycle demands the separation and characterization of the stereoisomers. We report the first chiral resolution and absolute configuration (AC) assignment for (1,4-dithiaspiro[4.5]decan-2-yl)methanol (R/S)-1, a key synthon for dithiolane-based biologically active compounds. Using (semi)preparative enantioselective HPLC, we isolated enantiomeric 1. The AC was assigned by using (+)-1 for the enantioselective synthesis of (+)-BS148, a sigma receptor modulator. An X-ray diffraction analysis established the (R)-configuration of (+)-BS148 and, by extension, of (+)-1. This method provides a reliable approach for preparing enantiopure 1,3-dithiolane scaffolds and establishes reference standards for AC determination of related compounds.
Collapse
Affiliation(s)
- Roberta Listro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Giacomo Rossino
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Valeria Cavalloro
- Department of Earth and Environmental Sciences, University of Pavia, Via Sant'Epifanio 14, 27100 Pavia, Italy
| | - Daniela Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Massimo Boiocchi
- Centro Grandi Strumenti, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Silvia Franchini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Claudia Sorbi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Shu L, Lv Y, Chen Z, Huang Y, Zhang M, Jin Z, Li T, Chi YR. Design, synthesis and Anti-PVY activity of planar chiral thiourea derivatives incorporated with [2.2]Paracyclophane. PEST MANAGEMENT SCIENCE 2024; 80:4450-4458. [PMID: 38662600 DOI: 10.1002/ps.8149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 05/09/2024]
Abstract
BACKGROUND Potato virus Y (PVY) is a prominent representative of plant viruses. It can inflict severe damage upon Solanaceae plants, leading to global dissemination and substantial economic losses. To discover new antiviral agents, a class of planar chiral thiourea molecules through the key step of N-heterocyclic carbene-catalyzed nitrile formation reaction was synthesized with excellent optical purities for antiviral evaluations against plant virus PVY. RESULTS The absolute configurations of the planar chiral compounds exhibited obvious distinctions in the anti-PVY activities. Notability, compound (S)-4u exhibited remarkable curative activities against PVY, with a half maximal effective concentration (EC50) of 349.3 μg mL-1, which was lower than that of the ningnanmycin (NNM) (EC50 = 400.8 μg mL-1). Additionally, The EC50 value for the protective effects of (S)-4u was 146.2 μg mL-1, which was superior to that of NNM (276.4 μg mL-1). Furthermore, the mechanism-of-action of enantiomers of planar chiral compound 4u was investigated through molecular docking, defensive enzyme activity tests and chlorophyll content tests. CONCLUSION Biological mechanism studies have demonstrated that the configuration of planar chiral target compounds plays a crucial role in the molecular interaction with PVY-CP, enhancing the activity of defense enzymes and affecting chlorophyll content. The current study has provided significant insights into the roles played by planar chiralities in plant protection against viruses. This paves the way for the development of novel green pesticides bearing planar chiralities with excellent optical purities. © 2024 Society of Chemical Industry.
Collapse
Grants
- RG7/20 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- MOE2018-T3-1-003 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2, and MOE AcRF Tier 3 Award
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- QianjiaoheKY(2020)004 Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules, Department of Education, Guizhou Province
- 2022YFD1700300 National Key Research and Development Program of China
- 111Program, D20023 the Program of Introducing Talents of Discipline to Universities of China
- GuidaTegangHezi(2023)23 Natural Science Foundation of Guizhou University
- [2019]1020 the Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2021]Key033 the Science and Technology Department of Guizhou Province
- 32172459 National Natural Science Foundation of China
- 21961006 National Natural Science Foundation of China
- 22371057 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Liangzhen Shu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Ya Lv
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhongyin Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yixian Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Meng Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhichao Jin
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Tingting Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Yonggui Robin Chi
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Ma J, Huang W, Huang X, Yang N, Gong J, Xie Z, Li G, Liao Q, Chen Y. Construction of dual-chiral covalent organic frameworks for enantioselective separation. J Chromatogr A 2024; 1728:465014. [PMID: 38797135 DOI: 10.1016/j.chroma.2024.465014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Developing novel chiral stationary phases (CSPs) with versatility is of great importance in enantiomer separation. This study fabricated a dual-chiral covalent organic framework (PA-CA COF) via successive post-synthetic modifications. The chiral trans-1,2-cyclohexanediamine (CA) and (D)-penicillamine (PA) groups were periodically aligned within nanochannels of the COF, allowing selective recognition of enantiomers through intermolecular interactions. It can be a versatile high-performance liquid chromatography (HPLC) CSP for separating a wide range of enantiomers, including chiral pharmaceutical intermediates and chiral drugs. With separation performance comparable to commercial chiral columns and even greater versatility, the PA-CA COF@SiO2 column held promise for practical applications. Chiral separation results combined with molecular simulation indicated that the mixed mode of PA and CA resulted in the broad separation capability of PA-CA COF. The introduction of the dual-chiral COFs concept opens up a new avenue for chiral recognition and separation, holding great potential for practical enantiomer separation.
Collapse
Affiliation(s)
- Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenyi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Na Yang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
5
|
Quiroga I, Hernández-González JA, Bautista-Rodríguez E, Benítez-Rojas AC. Exploring the Structurally Conserved Regions and Functional Significance in Bacterial N-Terminal Nucleophile (Ntn) Amide-Hydrolases. Int J Mol Sci 2024; 25:6850. [PMID: 38999960 PMCID: PMC11241749 DOI: 10.3390/ijms25136850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/14/2024] Open
Abstract
The initial adoption of penicillin as an antibiotic marked the start of exploring other compounds essential for pharmaceuticals, yet resistance to penicillins and their side effects has compromised their efficacy. The N-terminal nucleophile (Ntn) amide-hydrolases S45 family plays a key role in catalyzing amide bond hydrolysis in various compounds, including antibiotics like penicillin and cephalosporin. This study comprehensively analyzes the structural and functional traits of the bacterial N-terminal nucleophile (Ntn) amide-hydrolases S45 family, covering penicillin G acylases, cephalosporin acylases, and D-succinylase. Utilizing structural bioinformatics tools and sequence analysis, the investigation delineates structurally conserved regions (SCRs) and substrate binding site variations among these enzymes. Notably, sixteen SCRs crucial for substrate interaction are identified solely through sequence analysis, emphasizing the significance of sequence data in characterizing functionally relevant regions. These findings introduce a novel approach for identifying targets to enhance the biocatalytic properties of N-terminal nucleophile (Ntn) amide-hydrolases, while facilitating the development of more accurate three-dimensional models, particularly for enzymes lacking structural data. Overall, this research advances our understanding of structure-function relationships in bacterial N-terminal nucleophile (Ntn) amide-hydrolases, providing insights into strategies for optimizing their enzymatic capabilities.
Collapse
Affiliation(s)
- Israel Quiroga
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Juan Andrés Hernández-González
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| | - Elizabeth Bautista-Rodríguez
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
- Department of Health Sciences, Universidad Autónoma de Tlaxcala, Sur 11, Barrio de Guardia, Zacatelco 90070, Mexico
| | - Alfredo C Benítez-Rojas
- Department of Life and Health Sciences, Universidad Popular Autónoma del Estado de Puebla, 13 Poniente No. 1927, Barrio de Santiago, Puebla 72410, Mexico
| |
Collapse
|
6
|
Chen M, Jin T, Nian B, Cheng W. Solvent Tolerance Improvement of Lipases Enhanced Their Applications: State of the Art. Molecules 2024; 29:2444. [PMID: 38893320 PMCID: PMC11173743 DOI: 10.3390/molecules29112444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Lipases, crucial catalysts in biochemical synthesis, find extensive applications across industries such as food, medicine, and cosmetics. The efficiency of lipase-catalyzed reactions is significantly influenced by the choice of solvents. Polar organic solvents often result in a decrease, or even loss, of lipase activity. Conversely, nonpolar organic solvents induce excessive rigidity in lipases, thereby affecting their activity. While the advent of new solvents like ionic liquids and deep eutectic solvents has somewhat improved the activity and stability of lipases, it fails to address the fundamental issue of lipases' poor solvent tolerance. Hence, the rational design of lipases for enhanced solvent tolerance can significantly boost their industrial performance. This review provides a comprehensive summary of the structural characteristics and properties of lipases in various solvent systems and emphasizes various strategies of protein engineering for non-aqueous media to improve lipases' solvent tolerance. This study provides a theoretical foundation for further enhancing the solvent tolerance and industrial properties of lipases.
Collapse
Affiliation(s)
| | | | | | - Wenjun Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China; (M.C.); (T.J.); (B.N.)
| |
Collapse
|
7
|
Siódmiak J, Dulęba J, Kocot N, Mastalerz R, Haraldsson GG, Marszałł MP, Siódmiak T. A New Approach in Lipase-Octyl-Agarose Biocatalysis of 2-Arylpropionic Acid Derivatives. Int J Mol Sci 2024; 25:5084. [PMID: 38791124 PMCID: PMC11121684 DOI: 10.3390/ijms25105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The use of lipase immobilized on an octyl-agarose support to obtain the optically pure enantiomers of chiral drugs in reactions carried out in organic solvents is a great challenge for chemical and pharmaceutical sciences. Therefore, it is extremely important to develop optimal procedures to achieve a high enantioselectivity of the biocatalysts in the organic medium. Our paper describes a new approach to biocatalysis performed in an organic solvent with the use of CALB-octyl-agarose support including the application of a polypropylene reactor, an appropriate buffer for immobilization (Tris base-pH 9, 100 mM), a drying step, and then the storage of immobilized lipases in a climatic chamber or a refrigerator. An immobilized lipase B from Candida antarctica (CALB) was used in the kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification with methanol, reaching a high enantiomeric excess (eep = 89.6 ± 2.0%). As part of the immobilization optimization, the influence of different buffers was investigated. The effect of the reactor material and the reaction medium on the lipase activity was also studied. Moreover, the stability of the immobilized lipases: lipase from Candida rugosa (CRL) and CALB during storage in various temperature and humidity conditions (climatic chamber and refrigerator) was tested. The application of the immobilized CALB in a polypropylene reactor allowed for receiving over 9-fold higher conversion values compared to the results achieved when conducting the reaction in a glass reactor, as well as approximately 30-fold higher conversion values in comparison with free lipase. The good stability of the CALB-octyl-agarose support was demonstrated. After 7 days of storage in a climatic chamber or refrigerator (with protection from humidity) approximately 60% higher conversion values were obtained compared to the results observed for the immobilized form that had not been stored. The new approach involving the application of the CALB-octyl-agarose support for reactions performed in organic solvents indicates a significant role of the polymer reactor material being used in achieving high catalytic activity.
Collapse
Affiliation(s)
- Joanna Siódmiak
- Department of Laboratory Medicine, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| | - Jacek Dulęba
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| | - Natalia Kocot
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Doctoral School of Medical and Health Sciences, Jagiellonian University, Łazarza 16, 31-530 Kraków, Poland
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Rafał Mastalerz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | | | - Michał Piotr Marszałł
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
| | - Tomasz Siódmiak
- Department of Medicinal Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-089 Bydgoszcz, Poland; (J.D.); (N.K.); (R.M.); (M.P.M.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Medical Biotechnology and Laboratory Medicine, Pomeranian Medical University in Szczecin, 71-251 Szczecin, Poland
| |
Collapse
|
8
|
Kong X, Gui Q, Liu H, Qian F, Wang P. Efficient Synthesis of Chiral Aryl Alcohol with a Novel Kosakonia radicincitans Isolate in Tween 20/L-carnitine: Lysine-Containing Synergistic Reaction System. Appl Biochem Biotechnol 2024; 196:1509-1526. [PMID: 37428385 DOI: 10.1007/s12010-023-04641-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Chiral trifluoromethyl alcohols as vital intermediates are of great interest in fine chemicals and especially in pharmaceutical synthesis. In this work, a novel isolate Kosakonia radicincitans ZJPH202011 was firstly employed as biocatalyst for the synthesis of (R)-1-(4-bromophenyl)-2,2,2-trifluoroethanol ((R)-BPFL) with good enantioselectivity. By optimizing fermentation conditions and bioreduction parameters in aqueous buffer system, the substrate concentration of 1-(4-bromophenyl)-2,2,2-trifluoroethanone (BPFO) was doubled from 10 to 20 mM, and the enantiomeric excess (ee) value for (R)-BPFL increased from 88.8 to 96.4%. To improve biocatalytic efficiency by strengthening the mass-transfer rate, natural deep-eutectic solvents, surfactants and cyclodextrins (CDs) were introduced separately in the reaction system as cosolvent. Among them, L-carnitine: lysine (C: Lys, molar ratio 1:2), Tween 20 and γ-CD manifested higher (R)-BPFL yield compared with other same kind of cosolvents. Furthermore, based on the excellent performance of both Tween 20 and C: Lys (1:2) in enhancing BPFO solubility and ameliorating cell permeability, a Tween 20/C: Lys (1:2)-containing integrated reaction system was then established for efficient bioproduction of (R)-BPFL. After optimizing the critical factors involved in BPFO bioreduction in this synergistic reaction system, BPFO loading increased up to 45 mM and the yield reached 90.0% within 9 h, comparatively only 37.6% yield was acquired in neat aqueous buffer. This is the first report on K. radicincitans cells as new biocatalyst applied in (R)-BPFL preparation, and the developed Tween 20/C: Lys-containing synergistic reaction system has great potential for the synthesis of various chiral alcohols.
Collapse
Affiliation(s)
- Xiangxin Kong
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Qian Gui
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hanyu Liu
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Qian
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu Wang
- Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
9
|
Salama S, Mostafa HS, Husseiny S, Sebak M. Actinobacteria as Microbial Cell Factories and Biocatalysts in The Synthesis of Chiral Intermediates and Bioactive Molecules; Insights and Applications. Chem Biodivers 2024; 21:e202301205. [PMID: 38155095 DOI: 10.1002/cbdv.202301205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Actinobacteria are one of the most intriguing bacterial phyla in terms of chemical diversity and bioactivities of their reported biomolecules and natural products, including various types of chiral molecules. Actinobacterial genera such as Detzia, Mycobacterium, and Streptomyces are among the microbial sources targeted for selective reactions such as asymmetric biocatalysis catalyzed by whole cells or enzymes induced in their cell niche. Remarkably, stereoselective reactions catalyzed by actinobacterial whole cells or their enzymes include stereoselective oxidation, stereoselective reduction, kinetic resolution, asymmetric hydrolysis, and selective transamination, among others. Species of actinobacteria function with high chemo-, regio-, and enantio-selectivity under benign conditions, which could help current industrial processing. Numerous selective enzymes were either isolated from actinobacteria or expressed from actinobacteria in other microbes and hence exploited in the production of pure organic compounds difficult to obtain chemically. In addition, different species of actinobacteria, especially Streptomyces species, function as natural producers of chiral molecules of therapeutic importance. Herein, we discuss some of the most outstanding contributions of actinobacteria to asymmetric biocatalysis, which are important in the organic and/or pharmaceutical industries. In addition, we highlight the role of actinobacteria as microbial cell factories for chiral natural products with insights into their various biological potentialities.
Collapse
Affiliation(s)
- Sara Salama
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| | - Heba Sayed Mostafa
- Food Science Department, Faculty of Agriculture, Cairo University, 12613, Giza, Egypt
| | - Samah Husseiny
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62517, Beni-Suef, Egypt
| | - Mohamed Sebak
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62514, Beni-Suef, Egypt
| |
Collapse
|
10
|
Chen Y, Huang S, Xia L, Hu Y, Li G. Synergetic Multichiral Covalent Organic Framework for Enantioselective Recognition and Separation. Anal Chem 2024; 96:1380-1389. [PMID: 38197385 DOI: 10.1021/acs.analchem.3c05227] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
In enantiomer recognition and separation, a highly enantioselective approach with universal applicability is urgently desired but hard to realize, especially in the case of chiral molecules. To resolve the trade-off between enantioselectivity and universality, a glutathione (GSH) and methylated cyclodextrins (MCD)-functionalized covalent organic framework (GSH-MCD COF) with porosity and abundant chiral surfaces is presented that was designed and synthesized for recognition and separation of various enantiomers. As expected, the GSH-MCD COF can be used as chiral stationary phases for the separation of various enantiomers, including aromatic alcohols, aromatic acids, amides, amino acids, and organic acids, with performance and versatility even superior to some widely used commercial chiral chromatographic columns. Furthermore, the synthesized GSH-MCD COF shows high enantioselectivity for the rapid recognition and identification of enantiomers and chiral metabolites when coupling to Raman spectroscopy. Molecular simulations suggest that the COF provides a confined microenvironment for cyclodextrins and peptides that dictates the separation and recognition capability. This work provides a strategy to synthesize synergetic multichiral COF and achieve separations and recognitions of enantiomers in complex samples.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Simin Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
11
|
Alamoudi M, Özdemir A, Dertli E, Bolubaid M, Alidrisi HM, Taylan O, Yılmaz MT, Şahin E. Optimization of asymmetric bioreduction conditions of 1-indanone by Leuconostoc mesenteroides N6 using a face-centered design-based multi-objective optimization model. Prep Biochem Biotechnol 2024; 54:12-18. [PMID: 37083050 DOI: 10.1080/10826068.2023.2201942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
There has been an increasing interest in biocatalysts over the past few decades in order to obtain high efficiency, high yield, and environmentally benign procedures aiming at the manufacture of pharmacologically relevant chemicals. Lactic Acid Bacteria (LAB), a microbial group, can be employed as biocatalysts while performing asymmetric reduction of prochiral ketones. In this study, Leuconostoc mesenteroides N6 was used for the asymmetric bioreduction 1-indanone. And then, a novel and innovative face-centered design-based multi-objective optimization model was used to optimize experimental conditions. Also, the experimental design factors were defined as agitation speed, incubation period, pH, and temperature for optimization to acquire the maximum enantiomeric excess (ee) and conversion rate (cr) values. When using the face-centered design-based multi-objective optimization model, the optimum culture conditions corresponded to 96.34 and 99.42%, ee and cr responses, respectively, were pH = 5.87, incubation temperature = 35 °C, incubation period = 50.88 h, and agitation speed = 152.60 rpm. Notably, the validation experiment under the optimum model conditions confirmed the model results. This study demonstrated the importance of the optimization and the efficiency of the face-centered design-based multi-objective model.
Collapse
Affiliation(s)
- Mohammed Alamoudi
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Akın Özdemir
- Department of Industrial Engineering, Faculty of Engineering, Ondokuz Mayıs University, Samsun, Turkey
| | - Enes Dertli
- Food Engineering Department, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul, Turkey
| | - Mohammed Bolubaid
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan M Alidrisi
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Osman Taylan
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa Tahsin Yılmaz
- Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Engin Şahin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bayburt University, Bayburt, Turkey
| |
Collapse
|
12
|
Ganjave SD, O'Niel RA, Wangikar PP. Rate of dilution and redox ratio influence the refolding efficiency of recombinant fungal dehydrogenases. Int J Biol Macromol 2023; 250:126163. [PMID: 37549766 DOI: 10.1016/j.ijbiomac.2023.126163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Dehydrogenases from fungi are attracting attention as industrial biocatalysts due to their high activity and chiral selectivity. However, these enzymes form insoluble aggregates when overexpressed in E. coli, limiting their industrial application. In the present study, we report the systematic development of a refolding process for selected, industrially relevant fungal dehydrogenases, viz., formate dehydrogenase from Candida boidinii (CbFDH) and formate and alcohol dehydrogenases from Geotrichum candium (GcFDH and GcADH, respectively). We first employed a screen to evaluate the effects of different variables on refolding including the buffer system, additives, and rate of dilution. The extent of refolding was determined by enzyme assays, circular dichroism, and tryptophan fluorescence. Our results showed that glycerol and reducing environment are essential for refolding of these dehydrogenases. Further, slow dilution of solubilized protein over 16 h dramatically improved the recovery of refolded enzymes compared to rapid dilution. The importance of slow dilution was further confirmed in a 10-fold scaled-up refolding trial. Overall, we demonstrate a robust method for refolding of fungal dehydrogenases, thus improving their availability for various biocatalytic applications.
Collapse
Affiliation(s)
- Snehal D Ganjave
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchika Annie O'Niel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pramod P Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
13
|
Zhao J, Wu M, Luo J, Shi L, Li H. N-Heterocyclic carbene-catalyzed enantioselective annulation of 2-amino-1 H-indoles and bromoenals for the synthesis of chiral 2-aryl-2,3-dihydropyrimido[1,2- a]indol-4 (1 H)-ones. Org Biomol Chem 2023; 21:6675-6680. [PMID: 37540068 DOI: 10.1039/d3ob01006f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
An efficient N-heterocyclic carbene (NHC)-catalyzed enantioselective [3 + 3] annulation of 2-bromoenals with 2-amino-1H-indoles has been developed. A series of functionalized 2-aryl-2,3-dihydropyrimido[1,2-a]indol-4(1H)-ones were synthesized using NHCs as the catalyst in good yields with high to excellent enantioselectivities.
Collapse
Affiliation(s)
- Jianbo Zhao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Min Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Jiamin Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Lei Shi
- Döhler Food & Beverage Ingredients (Shanghai) Co., Ltd, 739 Shennan Road, Shanghai 201108, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
14
|
Wang N, Li X. Mining of a novel reductase and its application for asymmetric reduction of p-methoxyacetophenone. Lett Appl Microbiol 2023; 76:ovad091. [PMID: 37533205 DOI: 10.1093/lambio/ovad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
(R)-1-(4-methoxyphenyl) ethanol [(R)-1b] is an essential precursor for the synthesis of aryl propanoic acids' anti-inflammatatory drugs. Biocatalysts for (R)-1b preparation are limited and reductase has problems of low substrate concentration and low conversion rate. As a result, there is a constant need for discovering novel biocatalysts with excellent catalytic performances. In this study, a novel reductase LpSDR from Lacisediminihabitans profunda for the biocatalytic reduction of p-methoxyacetophenone (1a) to (R)-1b was obtained based on gene-mining technology, and some key reaction parameters were also investigated to improve the conversion rate of 1a using whole cells of recombinant Escherichia coli expressing reductase LpSDR as biocatalysts. It was found that the optimal concentration of isopropanol, ZnSO4·7H2O solution, 1a, and recombinant E. coli resting cells, the optimal reaction temperature, buffer pH, and reaction time were 1.95 mol l-1, 0.75 mmol l-1, 75 mmol l-1, 250 g (wet weight) l-1, 28°C, 7.0, and 21 h, respectively. Under the above conditions, a conversion rate of 99.5% and an enantiomeric excess of 99.6% were obtained, which were superior to the corresponding values previously reported. This study provides a novel reductase LpSDR, which is helpful in reducing 1a to (R)-1b.
Collapse
Affiliation(s)
- Nengqiang Wang
- College of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, Guangxi, China
- Key Laboratory of the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Education Department of Guangxi Zhuang Autonomous Region, Baise 533000, Guangxi, China
| | - Xiaojun Li
- Department of Fundamental Medicine, Xinyu University, Xinyu 338004, Jiangxi, China
| |
Collapse
|
15
|
Wang R, Jianyao J, Liu X, Yaru C, Xu Q, Xue F. Construction of metal-organic framework-based multienzyme system for L-tert-leucine production. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02900-6. [PMID: 37452834 DOI: 10.1007/s00449-023-02900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Chiral compounds are important drug intermediates that play a critical role in human life. Herein, we report a facile method to prepare multi-enzyme nano-devices with high catalytic activity and stability. The self-assemble molecular binders SpyCatcher and SpyTag were fused with leucine dehydrogenase and glucose dehydrogenase to produce sc-LeuDH (SpyCatcher-fused leucine dehydrogenase) and GDH-st (SpyTag-fused glucose dehydrogenase), respectively. After assembling, the cross-linked enzymes LeuDH-GDH were formed. The crosslinking enzyme has good pH stability and temperature stability. The coenzyme cycle constant of LeuDH-GDH was always higher than that of free double enzymes. The yield of L-tert-leucine synthesis by LeuDH-GDH was 0.47 times higher than that by free LeuDH and GDH. To further improve the enzyme performance, the cross-linked LeuDH-GDH was immobilized on zeolite imidazolate framework-8 (ZIF-8) via bionic mineralization, forming LeuDH-GDH @ZIF-8. The created co-immobilized enzymes showed even better pH stability and temperature stability than the cross-linked enzymes, and LeuDH-GDH@ZIF-8 retains 70% relative conversion rate in the first four reuses. In addition, the yield of LeuDH-GDH@ZIF-8 was 0.62 times higher than that of LeuDH-GDH, and 1.38 times higher than that of free double enzyme system. This work provides a novel method for developing multi-enzyme nano-device, and the ease of operation of this method is appealing for the construction of other multi-enzymes @MOF systems for the applications in the kinds of complex environment.
Collapse
Affiliation(s)
- Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Jia Jianyao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Chen Yaru
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| | - Feng Xue
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
16
|
Li M, Yuan D, Wu B, Hong M. Engineering UiO-68-Typed Homochiral Metal-Organic Frameworks for the Enantiomeric Separation of Fmoc-AAs and Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22241-22250. [PMID: 37125930 DOI: 10.1021/acsami.3c01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Homochiral metal-organic frameworks (HMOFs) have been widely investigated in the application of enantiomeric separation. Nonetheless, it remains a significant challenge to explore the effect of multiple weak interactions between HMOF adsorbents and chiral adsorbates on enantiomeric separation performance still. In this work, robust chiral amine-alcohol-functionalized UiO-68-typed Zr-HMOFs 1-3 with the same hydrogen-bonding sites but slightly different π-binding sites were prepared for the enantioseparation of amino acid derivatives (Fmoc-AAs) with large π-binding groups. As a consequence of multiple host-guest interactions, these Zr-HMOFs exhibit speedy adsorption and high adsorption capacity for Fmoc-L/D-AAs and dissimilar enantioselectivity for the adsorption of their enantiomers. Materials 1 and 2 exhibit excellent enantioselective separation performance for Fmoc-valine with a single terminal π-binding group, while material 3 displays excellent enantioselective separation performance for Fmoc-phenylalanine and Fmoc-tryptophan with π-binding groups at both ends. As evidently demonstrated by our experimental and density functional theory (DFT) computational results, when the number of π-binding groups preset in the confined chiral space of adsorbents matches the number of π-binding groups of chiral adsorbates, the synergism of π-π or σ-π interactions will increase enantioselectivity; otherwise, the competition interactions from redundant identical binding sites will weaken enantioselectivity. Our case not only provides a tremendously typical system for investigating the collaborative discrimination of multiple weak interactions and exploring the impact of relatively excessive binding sites of HMOF adsorbents or chiral adsorbates on the enantioselective separation performance but also provides guidance for targeted functional modifications of high-performance chiral porous materials.
Collapse
Affiliation(s)
- Mengna Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Benlai Wu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of the Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
| |
Collapse
|
17
|
Bučko M, Kaniaková K, Hronská H, Gemeiner P, Rosenberg M. Epoxide Hydrolases: Multipotential Biocatalysts. Int J Mol Sci 2023; 24:7334. [PMID: 37108499 PMCID: PMC10138715 DOI: 10.3390/ijms24087334] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Epoxide hydrolases are attractive and industrially important biocatalysts. They can catalyze the enantioselective hydrolysis of epoxides to the corresponding diols as chiral building blocks for bioactive compounds and drugs. In this review article, we discuss the state of the art and development potential of epoxide hydrolases as biocatalysts based on the most recent approaches and techniques. The review covers new approaches to discover epoxide hydrolases using genome mining and enzyme metagenomics, as well as improving enzyme activity, enantioselectivity, enantioconvergence, and thermostability by directed evolution and a rational design. Further improvements in operational and storage stabilization, reusability, pH stabilization, and thermal stabilization by immobilization techniques are discussed in this study. New possibilities for expanding the synthetic capabilities of epoxide hydrolases by their involvement in non-natural enzyme cascade reactions are described.
Collapse
Affiliation(s)
- Marek Bučko
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Katarína Kaniaková
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Helena Hronská
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| | - Peter Gemeiner
- Department of Glycobiotechnology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia;
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia; (K.K.); (H.H.); (M.R.)
| |
Collapse
|
18
|
Madden KS, Todd PM, Urata K, Russell AJ, Vincent KA, Reeve HA. A pharmacophore-based approach to demonstrating the scope of alcohol dehydrogenases. Bioorg Med Chem 2023; 83:117255. [PMID: 36966660 DOI: 10.1016/j.bmc.2023.117255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
Barriers to the ready adoption of biocatalysis into asymmetric synthesis for early stage medicinal chemistry are addressed, using ketone reduction by alcohol dehydrogenase as a model reaction. An efficient substrate screening approach is used to show the wide substrate scope of commercial alcohol dehydrogenase enzymes, with a high tolerance to chemical groups employed in drug discovery (heterocycle, trifluoromethyl and nitrile/nitro groups) observed. We use our screening data to build a preliminary predictive pharmacophore-based screening tool using Forge software, with a precision of 0.67/1, demonstrating the potential for developing substrate screening tools for commercially available enzymes without publicly available structures. We hope that this work will facilitate a culture shift towards adopting biocatalysis alongside traditional chemical catalytic methods in early stage drug discovery.
Collapse
|
19
|
Wu S, Wu Y, Sun B, Zhang P, Tang K. Experimental and optimization for kinetic resolution of 1-(4-(trifluoromethyl)phenyl)ethanol enantiomers by lipase-catalyzed transesterification in organic phase. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Sun C, Wu S, Wu Y, Sun B, Zhang P, Tang K. Lipase AK from Pseudomonas fluorescens immobilized on metal organic frameworks for efficient biosynthesis of enantiopure (S)-1-(4-bromophenyl) ethanol. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
21
|
Pei R, Fu X, Tian L, Zhou SF, Jiang W. Enhancing the biocatalytic synthesis of chiral drug intermediate by rational design an aldo-keto reductase from Bacillus megaterium YC4-R4. Enzyme Microb Technol 2022; 160:110074. [PMID: 35709659 DOI: 10.1016/j.enzmictec.2022.110074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/12/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022]
Abstract
In recent years, with the increasing number of patients with depression, the efficient synthesis of the first-line antidepressant drug duloxetine intermediate (S-N,N-dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamine, S-DHTP) has attracted great attention. The wild-type AKR3-2-9 from Bacillus megaterium YC4-R4 exhibits high application potential of catalyzing N,N-dimethyl-3-keto-3-(2-thienyl)-1-propanamine (DKTP) to prepare S-DHTP, but there is still much room for improvement. In this work, rational design was carried out to enhance the catalytic potential of AKR3-2-9. Notably, compared to the wild-type AKR3-2-9, three mutants (Ile189Val, Asn256Asp, and Ile189Val + Asn256Asp) were obtained, and their catalytic efficiencies were increased by 1.3 times, 2.3 times, and 1.31 times, respectively. Besides, the thermal stability and organic solvent resistance were improved. More importantly, when the concentration of the substrate DKTP was 0.5 g/L, the catalytic yields of Ile189Val, Asn256Asp and Ile189Val + Asn256Asp were increased by 1.45 times, 1.86 times, and 2.05 times, respectively. Besides, the corresponding optical purities of the three mutants were 92.7 %, 94.3 % and 93.8 %. The above results indicated that the rational design of the AKR of Bacillus megaterium YC4-R4 enhanced its potential for biocatalytic preparation of S-DHTP.
Collapse
Affiliation(s)
- Rui Pei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China; School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China
| | - Libing Tian
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China.
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian 361021, China.
| |
Collapse
|
22
|
Ivshina I, Bazhutin G, Tyumina E. Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: Through the past into the future. Front Microbiol 2022; 13:967127. [PMID: 36246215 PMCID: PMC9557007 DOI: 10.3389/fmicb.2022.967127] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Active pharmaceutical ingredients present a substantial risk when they reach the environment and drinking water sources. As a new type of dangerous pollutants with high chemical resistance and pronounced biological effects, they accumulate everywhere, often in significant concentrations (μg/L) in ecological environments, food chains, organs of farm animals and humans, and cause an intense response from the aquatic and soil microbiota. Rhodococcus spp. (Actinomycetia class), which occupy a dominant position in polluted ecosystems, stand out among other microorganisms with the greatest variety of degradable pollutants and participate in natural attenuation, are considered as active agents with high transforming and degrading impacts on pharmaceutical compounds. Many representatives of rhodococci are promising as unique sources of specific transforming enzymes, quorum quenching tools, natural products and novel antimicrobials, biosurfactants and nanostructures. The review presents the latest knowledge and current trends regarding the use of Rhodococcus spp. in the processes of pharmaceutical pollutants’ biodegradation, as well as in the fields of biocatalysis and biotechnology for the production of targeted pharmaceutical products. The current literature sources presented in the review can be helpful in future research programs aimed at promoting Rhodococcus spp. as potential biodegraders and biotransformers to control pharmaceutical pollution in the environment.
Collapse
|
23
|
Wang M, Zhou X, Wang Z, Chen Y. Enzyme-catalyzed allylic oxidation reactions: A mini-review. Front Chem 2022; 10:950149. [PMID: 36046724 PMCID: PMC9420900 DOI: 10.3389/fchem.2022.950149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Chiral allylic oxidized products play an increasingly important role in the pharmaceutical, agrochemical, and pharmaceutical industries. Biocatalytic C–H oxyfunctionalization to synthesize allylic oxidized products has attracted great attention in recent years, with the ability to simplify synthetic approaches toward complex compounds. As a result, scientists have found some new enzymes and mutants through techniques of gene mining and enzyme-directed evolution in recent years. This review summarizes the recent developments in biocatalytic selective oxidation of olefins by different kinds of biocatalysts.
Collapse
Affiliation(s)
- Maoyao Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaojian Zhou
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Zhongqiang Wang
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yongzheng Chen
- Key Laboratory of Biocatalysis and Chiral Drug Synthesis of Guizhou Province, Green Pharmaceuticals Engineering Research Center of Guizhou Province, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yongzheng Chen,
| |
Collapse
|
24
|
Zhong H, Zeng Q, Huang Z, Li L. Preparation and Evaluation of a Ferrocenediamide Bridge bis(β-Cyclodextrin)-Bonded Chiral Stationary Phase for HPLC. Chromatographia 2022. [DOI: 10.1007/s10337-022-04171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zhu C, Yang K, Wang H, Fang Y, Feng L, Zhang J, Xiao Z, Wu X, Li Y, Fu Y, Zhang W, Wang KY, Zhou HC. Enantioseparation in Hierarchically Porous Assemblies of Homochiral Cages. ACS CENTRAL SCIENCE 2022; 8:562-570. [PMID: 35647277 PMCID: PMC9136985 DOI: 10.1021/acscentsci.1c01571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Efficient enantioselective separation using porous materials requires tailored and diverse pore environments to interact with chiral substrates; yet, current cage materials usually feature uniform pores. Herein, we report two porous assemblies, PCC-60 and PCC-67, using isostructural octahedral cages with intrinsic microporous cavities of 1.5 nm. The PCC-67 adopts a densely packed mode, while the PCC-60 is a hierarchically porous assembly featuring interconnected 2.4 nm mesopores. Compared with PCC-67, the PCC-60 demonstrates excellent enantioselectivity and recyclability in separating racemic diols and amides. This solid adsorbent PCC-60 is further utilized as a chiral stationary phase for high-performance liquid chromatography (HPLC), enabling the complete separation of six valuable pharmaceutical intermediates. According to quantitative dynamic experiments, the hierarchical pores facilitate the mass transfer within the superstructure, shortening the equilibrium time for adsorbing chiral substrates. Notably, this hierarchically porous material PCC-60 indicates remarkably higher enantiomeric excess (ee) values in separating racemates than PCC-67 with uniform microporous cavities. Control experiments confirm that the presence of mesopores enables the PCC-60 to separate bulky substrates. These results uncover the traditionally underestimated role of hierarchical porosity in porous-superstructure-based enantioseparation.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Keke Yang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hongzhao Wang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yu Fang
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, P. R. China
| | - Liang Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang Wu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yougui Li
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yanming Fu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wencheng Zhang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
26
|
Li J, Mu X, Wu T, Xu Y. High coenzyme affinity chimeric amine dehydrogenase based on domain engineering. BIORESOUR BIOPROCESS 2022; 9:33. [PMID: 38647888 PMCID: PMC10992376 DOI: 10.1186/s40643-022-00528-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
NADH-dependent phenylalanine amine dehydrogenase (F-AmDH) engineered from phenylalanine dehydrogenase (PheDH) catalyzes the synthesis of aromatic chiral amines from prochiral ketone substrates. However, its low coenzyme affinity and catalytic efficiency limit its industrial application. Here, we developed a chimeric amine dehydrogenase, cFLF-AmDH, based on the relative independence of the structure at the domain level, combined with a substrate-binding domain from F-AmDH and a high-affinity cofactor-binding domain from leucine amine dehydrogenase (L-AmDH). The kinetic parameters indicated that cFLF-AmDH showed a twofold improvement in affinity for NADH and a 4.4-fold increase in catalytic efficiency (kcat/Km) compared with the parent F-AmDH. Meanwhile, cFLF-AmDH also showed higher thermal stability, with the half-life increased by 60% at 55 °C and a broader substrate spectrum, than the parent F-AmDH. Molecular dynamics simulations suggested that the constructed cFLF-AmDH had a more stable structure than the parent F-AmDH, thereby improving the affinity of the coenzyme. The reaction rate increased by 150% in the reductive amination reaction catalyzed by cFLF-AmDH. When the NAD+ concentration was 0.05 mM, the conversion rate was increased by 150%. These results suggest that the chimeric protein by domain shuffling from different domain donors not only increased the cofactor affinity and catalytic efficiency, but also changed the specificity and thermal stability. Our study highlights that domain engineering is another effective method for creating biodiversity with different catalytic properties.
Collapse
Affiliation(s)
- Jialin Li
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
27
|
Iyer M, Shreshtha I, Baradia H, Chattopadhyay S. Challenges and opportunities of using immobilized lipase as biosensor. Biotechnol Genet Eng Rev 2022; 38:87-110. [PMID: 35285414 DOI: 10.1080/02648725.2022.2050499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Over the years, the science of biosensors has evolved significantly. The first or earliest generation of biosensors only detected either the decrease or increase of product or reactant-based natural mediators as the pathway for electron transfer. The subsequent second-generation biosensors were biomolecule based and used artificial redox mediators, such as organic dyes to detect and to increase the reproducibility and sensitivity of the result. However, the recent generation of biosensors work mostly on the principle of electron mobility, with different criteria, such as selectivity, precision, sensitivity, etc., can be used to quantify, efficiently. This review deals with exploring the scope and applications of Immobilized lipase biosensors. Generally, Triglycerides or TG molecules are either detected using Gas Chromatography or, using a chemical or an enzymatic assay. Immobilization of lipase on solid supports has led to increased stability and reusability of the enzyme in non-aqueous solvents. With better enzyme performance, efficient product recovery, and separation from the reaction, immobilized lipase biosensors are garnering increasing interest worldwide. Along with so many advantages including but not limiting to ones mentioned earlier, immobilized lipase-based biosensors come with their own set of challenges, such as the partitioning of the analyte with aqueous medium, slower reaction rate, etc., they have been discussed in the following review. Alongside, we also review the development of a new generation of biosensors and bioelectronic devices based on nanotechnology.
Collapse
Affiliation(s)
- Mahadevan Iyer
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Ishita Shreshtha
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Hrithik Baradia
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| | - Soham Chattopadhyay
- Department of Bioengineering, Birla Institute of Technology Mesra, Ranchi, India
| |
Collapse
|
28
|
Abstract
Biocatalysis has an enormous impact on chemical synthesis. The waves in which biocatalysis has developed, and in doing so changed our perception of what organic chemistry is, were reviewed 20 and 10 years ago. Here we review the consequences of these waves of development. Nowadays, hydrolases are widely used on an industrial scale for the benign synthesis of commodity and bulk chemicals and are fully developed. In addition, further enzyme classes are gaining ever increasing interest. Particularly, enzymes catalysing selective C-C-bond formation reactions and enzymes catalysing selective oxidation and reduction reactions are solving long-standing synthetic challenges in organic chemistry. Combined efforts from molecular biology, systems biology, organic chemistry and chemical engineering will establish a whole new toolbox for chemistry. Recent developments are critically reviewed.
Collapse
Affiliation(s)
- Ulf Hanefeld
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Frank Hollmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, The Netherlands.
| |
Collapse
|
29
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
30
|
Zhang P, Chen J, Sun B, Sun C, Xu W, Tang K. Enhancement of the catalytic efficiency of Candida antarctica lipase A in enantioselective hydrolysis through immobilization onto a hydrophobic MOF support. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
32
|
Winkler C, Schrittwieser JH, Kroutil W. Power of Biocatalysis for Organic Synthesis. ACS CENTRAL SCIENCE 2021; 7:55-71. [PMID: 33532569 PMCID: PMC7844857 DOI: 10.1021/acscentsci.0c01496] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 05/05/2023]
Abstract
Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.
Collapse
Affiliation(s)
- Christoph
K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Joerg H. Schrittwieser
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße
28, 8010 Graz, Austria
- Field
of Excellence BioHealth − University of Graz, 8010 Graz, Austria
- BioTechMed
Graz, 8010 Graz, Austria
| |
Collapse
|
33
|
Liao L, Zhang Y, Wang Y, Fu Y, Zhang A, Qiu R, Yang S, Fang B. Construction and characterization of a novel glucose dehydrogenase-leucine dehydrogenase fusion enzyme for the biosynthesis of L-tert-leucine. Microb Cell Fact 2021; 20:3. [PMID: 33407464 PMCID: PMC7788806 DOI: 10.1186/s12934-020-01501-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 11/24/2022] Open
Abstract
Background Biosynthesis of l-tert-leucine (l-tle), a significant pharmaceutical intermediate, by a cofactor regeneration system friendly and efficiently is a worthful goal all the time. The cofactor regeneration system of leucine dehydrogenase (LeuDH) and glucose dehydrogenase (GDH) has showed great coupling catalytic efficiency in the synthesis of l-tle, however the multi-enzyme complex of GDH and LeuDH has never been constructed successfully. Results In this work, a novel fusion enzyme (GDH–R3–LeuDH) for the efficient biosynthesis of l-tle was constructed by the fusion of LeuDH and GDH mediated with a rigid peptide linker. Compared with the free enzymes, both the environmental tolerance and thermal stability of GDH–R3–LeuDH had a great improved since the fusion structure. The fusion structure also accelerated the cofactor regeneration rate and maintained the enzyme activity, so the productivity and yield of l-tle by GDH–R3–LeuDH was all enhanced by twofold. Finally, the space–time yield of l-tle catalyzing by GDH–R3–LeuDH whole cells could achieve 2136 g/L/day in a 200 mL scale system under the optimal catalysis conditions (pH 9.0, 30 °C, 0.4 mM of NAD+ and 500 mM of a substrate including trimethylpyruvic acid and glucose). Conclusions It is the first report about the fusion of GDH and LeuDH as the multi-enzyme complex to synthesize l-tle and reach the highest space–time yield up to now. These results demonstrated the great potential of the GDH–R3–LeuDH fusion enzyme for the efficient biosynthesis of l-tle.
Collapse
Affiliation(s)
- Langxing Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yonghui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.,College of Food and Biological Engineering, Jimei University, Xiamen, People's Republic of China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yousi Fu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Aihui Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ruodian Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Shuhao Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China. .,The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Merino MED, Lancioni C, Padró JM, Castells CB. Study of enantioseparation of β-blockers using amylose tris(3-chloro-5-methylphenylcarbamate) as chiral stationary phase under polar-organic, reversed-phase and hydrophilic interaction liquid chromatography conditions. J Chromatogr A 2020; 1634:461685. [DOI: 10.1016/j.chroma.2020.461685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 11/02/2020] [Indexed: 01/02/2023]
|