1
|
Wu Q, Li HP, Liu Y, Shou C, Chen Q, Xu JH, Li CX. Discovery and Engineering of a Bacterial (+)-Pulegone Reductase for Efficient (-)-Menthol Biosynthesis. CHEMSUSCHEM 2024; 17:e202400704. [PMID: 38860330 DOI: 10.1002/cssc.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The biosynthesis of valuable plant-derived monoterpene (-)-menthol from readily available feedstocks (e. g., (-)-limonene) is of great significance because of the high market demand for this product. However, biotransforming (+)-pulegone into (-)-menthone, the (-)-menthol precursor, through (+)-pulegone reductase (PGR) catalysis is inefficient because of the poor protein expression or catalytic efficiency (kcat/Km) of plant origin PGRs. In this study, a novel bacterial PGR from Pseudomonas resinovorans (PrPGR) was identified, and the most successful variant, PrPGRM2-1 (A50 V/G53 W), was obtained, showing respective 20-fold and 204-fold improvements in specific activity and catalytic efficiency. PrPGRM2-1 was employed to bioreduce (+)-pulegone, resulting in 4.4-fold and 35-fold enhancements in (-)-menthone titers compared with the bioreductions catalyzed by wild-type (WT) PrPGR and MpPGR, respectively. Furthermore, a whole-cell biocatalyst containing PrPGRM2-1, MpMMR, and BstFDH was constructed and achieved the highest (-)-menthol titer reported to date without externally supplemented NADPH/NADP+. Overall, this study details an efficient PGR with high catalytic efficiency that possesses great potential for (-)-menthol biosynthesis.
Collapse
Affiliation(s)
- Qiong Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Ya Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chao Shou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Chun-Xiu Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
2
|
Su B, Xu F, Zhong J, Xu X, Lin J. Rational design on loop regions for precisely regulating flexibility of catalytic center to mitigate overoxidation of prazole sulfides by Baeyer-Villiger monooxygenase. Bioorg Chem 2024; 151:107718. [PMID: 39142195 DOI: 10.1016/j.bioorg.2024.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
S-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most. In the present study, LnPAMO-Mu15 designed previously and TtPAMO from Thermothelomyces thermophilus showed high (S)- and (R)-configuration stereoselectivity respectively towards thioethers. TtPAMO was found to be capable of oxidating omeprazole sulfide (OPS) and rabeprazole sulfide (RPS) into R-omeprazole and R-rabeprazole respectively. However, the overoxidation issue existed and limited the application of TtPAMO in the biosynthesis of sulfoxides. The structural mechanisms for adverse stereoselectivity between LnPAMO-Mu15 and TtPAMO towards OPS and the overoxidation of OPS by TtPAMO were revealed, based on which, TtPAMO was rationally designed focused on the flexibility of loops near catalytic sites. The variant TtPAMO-S482Y was screened out with lowest overoxidation degree towards OPS and RPS due to the decreased flexibility of catalytic center than TtPAMO. The success in this study not only proved the rationality of the overoxidation mechanism proposed in this study but also provided hints for the development of BVMOs towards thioether substrate for corresponding sulfoxide preparation.
Collapse
Affiliation(s)
- Bingmei Su
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China
| | - Fahui Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jinchang Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Xinqi Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China.
| | - Juan Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China; Institute of Enzyme Catalysis and Synthetic Biotechnology, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
3
|
Ye Y, Jiang H, Xu R, Wang S, Zheng L, Guo J. The INSIGHT platform: Enhancing NAD(P)-dependent specificity prediction for co-factor specificity engineering. Int J Biol Macromol 2024; 278:135064. [PMID: 39182884 DOI: 10.1016/j.ijbiomac.2024.135064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Enzyme specificity towards cofactors like NAD(P)H is crucial for applications in bioremediation and eco-friendly chemical synthesis. Despite their role in converting pollutants and creating sustainable products, predicting enzyme specificity faces challenges due to sparse data and inadequate models. To bridge this gap, we developed the cutting-edge INSIGHT platform to enhance the prediction of coenzyme specificity in NAD(P)-dependent enzymes. INSIGHT integrates extensive data from principal bioinformatics resources, concentrating on both NADH and NADPH specificities, and utilizes advanced protein language models to refine the predictions. This integration not only strengthens computational predictions but also meets the practical demands of high-throughput screening and optimization. Experimental validation confirms INSIGHT's effectiveness, boosting our ability to engineer enzymes for efficient, sustainable industrial and environmental processes. This work advances the practical use of computational tools in enzyme research, addressing industrial needs and offering scalable solutions for environmental challenges.
Collapse
Affiliation(s)
- Yilin Ye
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | | | - Ran Xu
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao
| | - Sheng Wang
- Shanghai Zelixir Biotech Company Ltd., China
| | | | - Jingjing Guo
- Centre in Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao.
| |
Collapse
|
4
|
Zhang W, Shao ZQ, Wang ZX, Ye YF, Li SF, Wang YJ. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols. Int J Biol Macromol 2024; 274:133264. [PMID: 38901517 DOI: 10.1016/j.ijbiomac.2024.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zi-Qing Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Xiu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
5
|
Li JM, Shi K, Li AT, Zhang ZJ, Yu HL, Xu JH. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines. CHEMSUSCHEM 2024; 17:e202301477. [PMID: 38117609 DOI: 10.1002/cssc.202301477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/25/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Aliphatic ω-amino fatty acids (ω-AFAs) and α,ω-diamines (α,ω-DMs) are essential monomers for the production of nylons. Development of a sustainable biosynthesis route for ω-AFAs and α,ω-DMs is crucial in addressing the challenges posed by climate change. Herein, we constructed an unprecedented thermodynamically favorable multi-enzyme cascade (TherFavMEC) for the efficient sustainable biosynthesis of ω-AFAs and α,ω-DMs from cheap α,ω-dicarboxylic acids (α,ω-DAs). This TherFavMEC was developed by incorporating bioretrosynthesis analysis tools, reaction Gibbs free energy calculations, thermodynamic equilibrium shift strategies and cofactor (NADPH&ATP) regeneration systems. The molar yield of 6-aminohexanoic acid (6-ACA) from adipic acid (AA) was 92.3 %, while the molar yield from 6-ACA to 1,6-hexanediamine (1,6-HMD) was 96.1 %, which were significantly higher than those of previously reported routes. Furthermore, the biosynthesis of ω-AFAs and α,ω-DMs from 20.0 mM α,ω-DAs (C6-C9) was also performed, giving 11.2 mM 1,6-HMD (56.0 % yield), 14.8 mM 1,7-heptanediamine (74.0 % yield), 17.4 mM 1,8-octanediamine (87.0 % yield), and 19.7 mM 1,9-nonanediamine (98.5 % yield), respectively. The titers of 1,9-nonanediamine, 1,8-octanediamine, 1,7-heptanediamine and 1,6-HMD were improved by 328-fold, 1740-fold, 87-fold and 3.8-fold compared to previous work. Therefore, this work holds great potential for the bioproduction of ω-AFAs and α,ω-DMs.
Collapse
Affiliation(s)
- Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Kun Shi
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Key Laboratory of Industrial Biotechnology School of Life Sciences, Hubei University, #368 Youyi Road, Wuhan, 430062, P.R. China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| |
Collapse
|
6
|
Yang X, Zhang Y, Zhao G. Artificial carbon assimilation: From unnatural reactions and pathways to synthetic autotrophic systems. Biotechnol Adv 2024; 70:108294. [PMID: 38013126 DOI: 10.1016/j.biotechadv.2023.108294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/26/2023] [Accepted: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Synthetic biology is being increasingly used to establish novel carbon assimilation pathways and artificial autotrophic strains that can be used in low-carbon biomanufacturing. Currently, artificial pathway design has made significant progress from advocacy to practice within a relatively short span of just over ten years. However, there is still huge scope for exploration of pathway diversity, operational efficiency, and host suitability. The accelerated research process will bring greater opportunities and challenges. In this paper, we provide a comprehensive summary and interpretation of representative one-carbon assimilation pathway designs and artificial autotrophic strain construction work. In addition, we propose some feasible design solutions based on existing research results and patterns to promote the development and application of artificial autotrophy.
Collapse
Affiliation(s)
- Xue Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; Haihe Laboratory of Synthetic Biology, Tianjin 300308, China
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.
| | - Guoping Zhao
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China; CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
7
|
Boonkumkrong R, Chunthaboon P, Munkajohnpong P, Watthaisong P, Pimviriyakul P, Maenpuen S, Chaiyen P, Tinikul R. A high catalytic efficiency and chemotolerant formate dehydrogenase from Bacillus simplex. Biotechnol J 2024; 19:e2300330. [PMID: 38180313 DOI: 10.1002/biot.202300330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024]
Abstract
NAD+ -dependent formate dehydrogenase (FDH) catalyzes the conversion of formate and NAD+ to produce carbon dioxide and NADH. The reaction is biotechnologically important because FDH is widely used for NADH regeneration in various enzymatic syntheses. However, major drawbacks of this versatile enzyme in industrial applications are its low activity, requiring its utilization in large amounts to achieve optimal process conditions. Here, FDH from Bacillus simplex (BsFDH) was characterized for its biochemical and catalytic properties in comparison to FDH from Pseudomonas sp. 101 (PsFDH), a commonly used FDH in various biocatalytic reactions. The data revealed that BsFDH possesses high formate oxidizing activity with a kcat value of 15.3 ± 1.9 s-1 at 25°C compared to 7.7 ± 1.0 s-1 for PsFDH. At the optimum temperature (60°C), BsFDH exhibited 6-fold greater activity than PsFDH. The BsFDH displayed higher pH stability and a superior tolerance toward sodium azide and H2 O2 inactivation, showing a 200-fold higher Ki value for azide inhibition and remaining stable in the presence of 0.5% H2 O2 compared to PsFDH. The application of BsFDH as a cofactor regeneration system for the detoxification of 4-nitrophenol by the reaction of HadA, which produced a H2 O2 byproduct was demonstrated. The biocatalytic cascades using BsFDH demonstrated a distinct superior conversion activity because the system tolerated H2 O2 well. Altogether, the data showed that BsFDH is a robust enzyme suitable for future application in industrial biotechnology.
Collapse
Affiliation(s)
- Rattima Boonkumkrong
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Paweenapon Chunthaboon
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Pobthum Munkajohnpong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, Thailand
| | - Pimchai Chaiyen
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Iurchenko TS, Bolotova SB, Loginova AA, Kargov IS, Atroshenko DL, Savin SS, Pometun EV, Tishkov VI, Pometun AA. Study of the structure-function relationship of formate dehydrogenase- an important enzyme for Staphylococcus aureus biofilms by rational design. Biochimie 2024; 216:194-204. [PMID: 37925050 DOI: 10.1016/j.biochi.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
NAD+-dependent formate dehydrogenase (FDH, EC 1.2.1.2) from the bacterium Staphylococcus aureus (SauFDH) plays an important role in the vital activity of this bacterium, especially in the form of biofilms. Understanding its mechanism and structure-function relationship can help to find special inhibitors of this enzyme, which can be used as medicines against staphylococci. The gene encoding SauFDH was successfully cloned and expressed in our laboratory. This enzyme has the highest kcat value among the described FDHs and also has a high temperature stability compared to other enzymes of this group. That is why it can also be considered as a promising catalyst for NAD(P)H regeneration in the processes of chiral synthesis with oxidoreductases. In this work, the principle of rational design was used to improve SauFDH catalytic efficiency. After bioinformatics analysis of the amino acid sequence in combination with visualization of the enzyme structure (PDB 6TTB), 9 probable catalytically significant positions 119, 194, 196, 217-219, 246, 303 and 323 were identified, and 16 new mutant forms of SauFDH were obtained and characterized by kinetic experiments. The introduction of the mentioned substitutions in most cases leads to a decrease in stability at high temperatures and an increase at low temperatures. Substitutions in positions 119 and 194 lead to a decreasing of KMNAD+. A consistent decrease in the Michaelis constant in the Ile-Val-Ala-Gly series at position 119 of SauFDH is shown. KMNAD+ of mutant SauFDH V119G decreased by 27 times compared to the wild-type enzyme. After substitution Phe194Val KMNAD + decreased by 3.5 times. The catalytic constant for this mutant form practically did not change. For this mutant form, an increase in catalytic efficiency was demonstrated through the use of a multicomponent buffer system.
Collapse
Affiliation(s)
- Tatiana S Iurchenko
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation
| | - Seseg B Bolotova
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation
| | - Anastasia A Loginova
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
| | - Ivan S Kargov
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation
| | - Denis L Atroshenko
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation; People's Friendship University Named After Patrice Lumumba, 117198, Moscow, Russian Federation
| | - Svyatoslav S Savin
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation
| | - Evgenii V Pometun
- Sechenov First Moscow State Medical University, 119048, Moscow, Russian Federation
| | - Vladimir I Tishkov
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation.
| | - Anastasia A Pometun
- Lomonosov Moscow State University, Faculty of Chemistry, 119991, Moscow, Russian Federation; Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071, Moscow, Russian Federation; People's Friendship University Named After Patrice Lumumba, 117198, Moscow, Russian Federation
| |
Collapse
|
9
|
Huang SC, Zhang YK, Geng Q, Huang QK, Xu JH, Chen YF, Yu HL. Improving the Enantioselectivity of CHMO Brevi1 for Asymmetric Synthesis of Podophyllotoxin Precursor. Chembiochem 2023; 24:e202300582. [PMID: 37728423 DOI: 10.1002/cbic.202300582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
(R)-β-piperonyl-γ-butyrolactones are key building blocks for the synthesis of podophyllotoxin, which have demonstrated remarkable potential in cancer treatment. Baeyer-Villiger monooxygenases (BVMOs)-mediated asymmetric oxidation is a green approach to produce chiral lactones. While several BVMOs were able to oxidize the corresponding cyclobutanone, most BVMOs gave the (S) enantiomer while Cyclohexanone monooxygenase (CHMO) from Brevibacterium sp. HCU1 gave (R) enantiomer, but with a low enantioselectivity (75 % ee). In this study, we use a strategy called "focused rational iterative site-specific mutagenesis" (FRISM) at residues ranging from 6 Å from substrate. The mutations by using a restricted set of rationally chosen amino acids allow the formation of a small mutant library. By generating and screening less than 60 variants, we achieved a high ee of 96.8 %. Coupled with the cofactor regeneration system, 9.3 mM substrate was converted completely in a 100-mL scale reaction. Therefore, our work reveals a promising synthetic method for (R)-β-piperonyl-γ-butyrolactone with the highest enantioselectivity, and provides a new opportunity for the chem-enzymatic synthesis of podophyllotoxin.
Collapse
Affiliation(s)
- Shou-Cheng Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Ke Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi-Kang Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yi-Feng Chen
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
10
|
Ma W, Geng Q, Chen C, Zheng YC, Yu HL, Xu JH. Engineering a Formate Dehydrogenase for NADPH Regeneration. Chembiochem 2023; 24:e202300390. [PMID: 37455264 DOI: 10.1002/cbic.202300390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) constitute major hydrogen donors for oxidative/reductive bio-transformations. NAD(P)H regeneration systems coupled with formate dehydrogenases (FDHs) represent a dreamful method. However, most of the native FDHs are NAD+ -dependent and suffer from insufficient reactivity compared to other enzymatic tools, such as glucose dehydrogenase. An efficient and competitive NADP+ -utilizing FDH necessitates the availability and robustness of NADPH regeneration systems. Herein, we report the engineering of a new FDH from Candida dubliniensis (CdFDH), which showed no strict NAD+ preference by a structure-guided rational/semi-rational design. A combinatorial mutant CdFDH-M4 (D197Q/Y198R/Q199N/A372S/K371T/▵Q375/K167R/H16L/K159R) exhibited 75-fold intensification of catalytic efficiency (kcat /Km ). Moreover, CdFDH-M4 has been successfully employed in diverse asymmetric oxidative/reductive processes with cofactor total turnover numbers (TTNs) ranging from 135 to 986, making it potentially useful for NADPH-required biocatalytic transformations.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Cheng Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| |
Collapse
|
11
|
Partipilo M, Whittaker JJ, Pontillo N, Coenradij J, Herrmann A, Guskov A, Slotboom DJ. Biochemical and structural insight into the chemical resistance and cofactor specificity of the formate dehydrogenase from Starkeya novella. FEBS J 2023; 290:4238-4255. [PMID: 37213112 DOI: 10.1111/febs.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/23/2023]
Abstract
Formate dehydrogenases (Fdhs) mediate the oxidation of formate to carbon dioxide and concomitant reduction of nicotinamide adenine dinucleotide (NAD+ ). The low cost of the substrate formate and importance of the product NADH as a cellular source of reducing power make this reaction attractive for biotechnological applications. However, the majority of Fdhs are sensitive to inactivation by thiol-modifying reagents. In this study, we report a chemically resistant Fdh (FdhSNO ) from the soil bacterium Starkeya novella strictly specific for NAD+ . We present its recombinant overproduction, purification and biochemical characterization. The mechanistic basis of chemical resistance was found to be a valine in position 255 (rather than a cysteine as in other Fdhs) preventing the inactivation by thiol-modifying compounds. To further improve the usefulness of FdhSNO as for generating reducing power, we rationally engineered the protein to reduce the coenzyme nicotinamide adenine dinucleotide phosphate (NADP+ ) with better catalytic efficiency than NAD+ . The single mutation D221Q enabled the reduction of NADP+ with a catalytic efficiency kCAT /KM of 0.4 s-1 ·mm-1 at 200 mm formate, while a quadruple mutant (A198G/D221Q/H379K/S380V) resulted in a fivefold increase in catalytic efficiency for NADP+ compared with the single mutant. We determined the cofactor-bound structure of the quadruple mutant to gain mechanistic evidence behind the improved specificity for NADP+ . Our efforts to unravel the key residues for the chemical resistance and cofactor specificity of FdhSNO may lead to wider use of this enzymatic group in a more sustainable (bio)manufacture of value-added chemicals, as for instance the biosynthesis of chiral compounds.
Collapse
Affiliation(s)
- Michele Partipilo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Jacob J Whittaker
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Nicola Pontillo
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
| | - Jelmer Coenradij
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Andreas Herrmann
- Polymer Chemistry and Bioengineering, Zernike Institute for Advanced Materials, Groningen, The Netherlands
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Germany
| | - Albert Guskov
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Department of Biochemistry, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, The Netherlands
| |
Collapse
|
12
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
13
|
Mellor SB, Behrendorff JBYH, Ipsen JØ, Crocoll C, Laursen T, Gillam EMJ, Pribil M. Exploiting photosynthesis-driven P450 activity to produce indican in tobacco chloroplasts. FRONTIERS IN PLANT SCIENCE 2023; 13:1049177. [PMID: 36743583 PMCID: PMC9890960 DOI: 10.3389/fpls.2022.1049177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/14/2022] [Indexed: 05/28/2023]
Abstract
Photosynthetic organelles offer attractive features for engineering small molecule bioproduction by their ability to convert solar energy into chemical energy required for metabolism. The possibility to couple biochemical production directly to photosynthetic assimilation as a source of energy and substrates has intrigued metabolic engineers. Specifically, the chemical diversity found in plants often relies on cytochrome P450-mediated hydroxylations that depend on reductant supply for catalysis and which often lead to metabolic bottlenecks for heterologous production of complex molecules. By directing P450 enzymes to plant chloroplasts one can elegantly deal with such redox prerequisites. In this study, we explore the capacity of the plant photosynthetic machinery to drive P450-dependent formation of the indigo precursor indoxyl-β-D-glucoside (indican) by targeting an engineered indican biosynthetic pathway to tobacco (Nicotiana benthamiana) chloroplasts. We show that both native and engineered variants belonging to the human CYP2 family are catalytically active in chloroplasts when driven by photosynthetic reducing power and optimize construct designs to improve productivity. However, while increasing supply of tryptophan leads to an increase in indole accumulation, it does not improve indican productivity, suggesting that P450 activity limits overall productivity. Co-expression of different redox partners also does not improve productivity, indicating that supply of reducing power is not a bottleneck. Finally, in vitro kinetic measurements showed that the different redox partners were efficiently reduced by photosystem I but plant ferredoxin provided the highest light-dependent P450 activity. This study demonstrates the inherent ability of photosynthesis to support P450-dependent metabolic pathways. Plants and photosynthetic microbes are therefore uniquely suited for engineering P450-dependent metabolic pathways regardless of enzyme origin. Our findings have implications for metabolic engineering in photosynthetic hosts for production of high-value chemicals or drug metabolites for pharmacological studies.
Collapse
Affiliation(s)
- Silas B. Mellor
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - James B. Y. H. Behrendorff
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Research Council (ARC) Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Johan Ø. Ipsen
- Section for Forest, Nature and Biomass, Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Tomas Laursen
- Section for Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Mathias Pribil
- Section for Molecular Plant Biology, Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
14
|
Tülek A, Günay E, Servili B, Eşsiz Ş, Binay B, Yildirim D. Sustainable production of formic acid from CO2 by a novel immobilized mutant formate dehydrogenase. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Efficient Synthesis of Furfuryl Alcohol from Corncob in a Deep Eutectic Solvent System. Processes (Basel) 2022. [DOI: 10.3390/pr10091873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As a versatile and valuable intermediate, furfuryl alcohol (FOL) has been widely used in manufacturing resins, vitamin C, perfumes, lubricants, plasticizers, fuel additives, biofuels, and other furan-based chemicals. This work developed an efficient hybrid strategy for the valorization of lignocellulosic biomass to FOL. Corncob (75 g/L) was catalyzed with heterogenous catalyst Sn-SSXR (2 wt%) to generate FAL (65.4% yield) in a deep eutectic solvent ChCl:LA–water system (30:70, v/v; 180 °C) after 15 min. Subsequently, the obtained FAL liquor containing FAL and formate could be biologically reduced to FOL by recombinant E. coli CF containing aldehyde reductase and formate dehydrogenase at pH 6.5 and 35 °C, achieving the FOL productivity of 0.66 g FOL/(g xylan in corncob). The formed formate could be used as a cosubstrate for the bioreduction of FAL into FOL. In addition, other biomasses (e.g., sugarcane bagasse and rice straw) could be converted into FOL at a high yield. Overall, this hybrid strategy that combines chemocatalysis and biocatalysis can be utilized to efficiently valorize lignocellulosic materials into valuable biofurans.
Collapse
|
16
|
Huang Q, Alengebawy A, Zhu X, Raza AF, Chen L, Chen W, Guo J, Ai P, Li D. Performance of Paracoccus pantotrophus MA3 in heterotrophic nitrification-anaerobic denitrification using formic acid as a carbon source. Bioprocess Biosyst Eng 2022; 45:1661-1672. [PMID: 35984504 DOI: 10.1007/s00449-022-02771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/05/2022] [Indexed: 11/26/2022]
Abstract
Excess amount of nitrogen in wastewater has caused serious concerns, such as water eutrophication. Paracoccus pantotrophus MA3, a novel isolated strain of heterotrophic nitrification-anaerobic denitrification bacteria, was evaluated for nitrogen removal using formic acid as the sole carbon source. The results showed that the maximum ammonium removal efficiency was observed under the optimum conditions of 26.25 carbon to nitrogen ratio, 3.39% (v/v) inoculation amount, 34.64 °C temperature, and at 180 rpm shaking speed, respectively. In addition, quantitative real-time PCR technique analysis assured that the gene expression level of formate dehydrogenase, formate tetrahydrofolate ligase, 5,10-methylenetetrahydrofolate dehydrogenase, serine hydroxymethyltransferase, respiratory nitrate reductase beta subunit, L-glutamine synthetase, glutamate dehydrogenase, and glutamate synthase were up-regulated compared to the control group, and combined with nitrogen mass balance analysis to conclude that most of the ammonium was removed by assimilation. A small amount of nitrate and nearly no nitrite were accumulated during heterotrophic nitrification. MA3 exhibited significant denitrification potential under anaerobic conditions with a maximum nitrate removal rate of 4.39 mg/L/h, and the only gas produced was N2. Additionally, 11.50 ± 0.06 mg/L/h of NH4+-N removal rate from biogas slurry was achieved.
Collapse
Affiliation(s)
- Qun Huang
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangyu Zhu
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Amin Farrukh Raza
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Wuxi Chen
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China
- National Innovation Centre for Synthetic Biology, Tianjin, China
| | - Jiahao Guo
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ping Ai
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological, Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, No. 32, West Seven Road, Airport Economic District, Tianjin, China.
- National Innovation Centre for Synthetic Biology, Tianjin, China.
| |
Collapse
|
17
|
Liu F, Geng Q, Zhao C, Ren SM, Yu HL, Xu JH. Colorimetric high-throughput screening method for directed evolution of prazole sulfide monooxygenase. Chembiochem 2022; 23:e202200228. [PMID: 35639013 DOI: 10.1002/cbic.202200228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Indexed: 11/11/2022]
Abstract
Baeyer-Villiger monooxygenases (BVMOs) are important biocatalysts for the enzymatic synthesis of chiral sulfoxides, including chiral sulfoxide-type drugs proton pump inhibitors for the treatment of gastrointestinal diseases. However, native BVMOs are not yet suitable for practical application due to their unsatisfactory activity and thermostability. Although protein engineering approaches can help address these issues, few feasible high-throughput methods are available for the engineering of such enzymes. Herein, a colorimetric detection method to distinguish sulfoxides from sulfides and sulfones was developed for prazole sulfide monooxygenases . Directed evolution enabled by this method has identified a prazole sulfide monooxygenase CbBVMO variant with improved activity and thermostability in catalyzing the asymmetric oxidation of lansoprazole sulfide. A 71.3% increase in conversion and 6°C enhancement in the melting point were achieved compared with the wild-type enzyme. This new method is feasible for high-throughput screening of prazole sulfide monooxygenases variants with improved activity, thermostability, and/or substrate specificity.
Collapse
Affiliation(s)
- Feng Liu
- East China University of Science and Technology, School of Biotechnology, 130 Meilong Road, 200237, Shanghai, CHINA
| | - Qiang Geng
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Chen Zhao
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Shi-Miao Ren
- East China University of Science and Technology, School of Biotechnology, CHINA
| | - Hui-Lei Yu
- East China University of Science and Technology, Biotechnology, No 130, Meilong Road, 200237, Shanghai, CHINA
| | - Jian-He Xu
- East China University of Science and Technology, School of Biotechnology, CHINA
| |
Collapse
|
18
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Zhu J, Geng Q, Liu YY, Pan J, Yu HL, Xu JH. Co-Cross-Linked Aggregates of Baeyer–Villiger Monooxygenases and Formate Dehydrogenase for Repeated Use in Asymmetric Biooxidation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuan-Yang Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiang Pan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hui Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
20
|
Zhang N, Müller B, Ørtoft Kirkeby T, Kara S, Loderer C. Development of a thioredoxin based cofactor regeneration system for NADPH‐dependent oxidoreductases. ChemCatChem 2022. [DOI: 10.1002/cctc.202101625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ningning Zhang
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Enginnering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Beatrice Müller
- TU Dresden: Technische Universitat Dresden Chair of Molecular Biotechnology 01217 Dresden GERMANY
| | - Tanja Ørtoft Kirkeby
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Engineering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Selin Kara
- Aarhus University: Aarhus Universitet Department of Biological and Chemical Engineering Gustav Wieds Vej 10 8000 Aarhus DENMARK
| | - Christoph Loderer
- TU Dresden Chair for Molecular Biotechnology Zellescher Weg 20b 01217 Dresden GERMANY
| |
Collapse
|
21
|
Engineering the Reductive Glycine Pathway: A Promising Synthetic Metabolism Approach for C1-Assimilation. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022; 180:299-350. [DOI: 10.1007/10_2021_181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
23
|
Yan J, Wang X, Li F, Yang L, Shi G, Sun W, Shao L, Huang J, Wu K. Biocatalytic preparation of a key intermediate of antifungal drugs using an alcohol dehydrogenase with high organic tolerance. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Pinto ÉSM, Feltes BC, Pedebos C, Dorn M. Modifying the catalytic preference of alpha-amylase toward n-alkanes for bioremediation purposes using in silico strategies. J Comput Chem 2021; 42:1540-1551. [PMID: 34018199 DOI: 10.1002/jcc.26562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/08/2022]
Abstract
Since the beginning of oil exploration, whole ecosystems have been affected by accidents and bad practices involving petroleum compounds. In this sense, bioremediation stands out as the cheapest and most eco-friendly alternatives to reverse the damage done in oil-impacted areas. However, more efforts must be made to engineer enzymes that could be used in the bioremediation process. Interestingly, a recent work described that α-amylase, one of the most evolutionary conserved enzymes, was able to promiscuously degrade n-alkanes, a class of molecules abundant in the petroleum admixture. Considering that α-amylase is expressed in almost all known organisms, and employed in numerous biotechnological processes, using it can be a great leap toward more efficient applications of enzyme or microorganism-consortia bioremediation approaches. In this work, we employed a strict computational approach to design new α-amylase mutants with potentially enhanced catalytic efficiency toward n-alkanes. Using in silico techniques, such as molecular docking, molecular dynamics, metadynamics, and residue-residue interaction networks, we generated mutants potentially more efficient for degrading n-alkanes, L183Y, and N314A. Our results indicate that the new mutants have an increased binding rate for tetradecane, the longest n-alkane previously tested, which can reside in the catalytic center for more extended periods. Additionally, molecular dynamics and network analysis showed that the new mutations have no negative impact on protein structure than the WT. Our results aid in solidifying this enzyme as one more tool in the petroleum bioremediation toolbox.
Collapse
Affiliation(s)
| | - Bruno César Feltes
- Department of Genetics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton, UK
| | - Márcio Dorn
- Center of Biotechnology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Forensic Science and Technology, Porto Alegre, Brazil
| |
Collapse
|
25
|
Cao JR, Fan FF, Lv CJ, Wang HP, Li Y, Hu S, Zhao WR, Chen HB, Huang J, Mei LH. Improving the Thermostability and Activity of Transaminase From Aspergillus terreus by Charge-Charge Interaction. Front Chem 2021; 9:664156. [PMID: 33937200 PMCID: PMC8081293 DOI: 10.3389/fchem.2021.664156] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/23/2021] [Indexed: 11/13/2022] Open
Abstract
Transaminases that promote the amination of ketones into amines are an emerging class of biocatalysts for preparing a series of drugs and their intermediates. One of the main limitations of (R)-selective amine transaminase from Aspergillus terreus (At-ATA) is its weak thermostability, with a half-life (t 1/2) of only 6.9 min at 40°C. To improve its thermostability, four important residue sites (E133, D224, E253, and E262) located on the surface of At-ATA were identified using the enzyme thermal stability system (ETSS). Subsequently, 13 mutants (E133A, E133H, E133K, E133R, E133Q, D224A, D224H, D224K, D224R, E253A, E253H, E253K, and E262A) were constructed by site-directed mutagenesis according to the principle of turning the residues into opposite charged ones. Among them, three substitutions, E133Q, D224K, and E253A, displayed higher thermal stability than the wild-type enzyme. Molecular dynamics simulations indicated that these three mutations limited the random vibration amplitude in the two α-helix regions of 130-135 and 148-158, thereby increasing the rigidity of the protein. Compared to the wild-type, the best mutant, D224K, showed improved thermostability with a 4.23-fold increase in t 1/2 at 40°C, and 6.08°C increase in T 50 10 . Exploring the three-dimensional structure of D224K at the atomic level, three strong hydrogen bonds were added to form a special "claw structure" of the α-helix 8, and the residues located at 151-156 also stabilized the α-helix 9 by interacting with each other alternately.
Collapse
Affiliation(s)
- Jia-Ren Cao
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Fang-Fang Fan
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Chang-Jiang Lv
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Hong-Peng Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Ye Li
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Sheng Hu
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China
| | - Wei-Rui Zhao
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China
| | - Hai-Bin Chen
- Enzymaster (Ningbo) Bio-Engineering Co., Ltd., Ningbo, China
| | - Jun Huang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Le-He Mei
- School of Biotechnology and Chemical Engineering, NingboTech University, Ningbo, China.,Jinhua Advanced Research Institute, Jinhua, China.,Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
Abdel-Hady GN, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Engineering Cofactor Specificity of a Thermostable Phosphite Dehydrogenase for a Highly Efficient and Robust NADPH Regeneration System. Front Bioeng Biotechnol 2021; 9:647176. [PMID: 33869158 PMCID: PMC8047080 DOI: 10.3389/fbioe.2021.647176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP)-dependent dehydrogenases catalyze a range of chemical reactions useful for practical applications. However, their dependence on the costly cofactor, NAD(P)H remains a challenge which must be addressed. Here, we engineered a thermotolerant phosphite dehydrogenase from Ralstonia sp. 4506 (RsPtxD) by relaxing the cofactor specificity for a highly efficient and robust NADPH regeneration system. The five amino acid residues, Cys174-Pro178, located at the C-terminus of β7-strand region in the Rossmann-fold domain of RsPtxD, were changed by site-directed mutagenesis, resulting in four mutants with a significantly increased preference for NADP. The catalytic efficiency of mutant RsPtxDHARRA for NADP (K cat/K M)NADP was 44.1 μM-1 min-1, which was the highest among the previously reported phosphite dehydrogenases. Moreover, the RsPtxDHARRA mutant exhibited high thermostability at 45°C for up to 6 h and high tolerance to organic solvents, when bound with NADP. We also demonstrated the applicability of RsPtxDHARRA as an NADPH regeneration system in the coupled reaction of chiral conversion of 3-dehydroshikimate to shikimic acid by the thermophilic shikimate dehydrogenase of Thermus thermophilus HB8 at 45°C, which could not be supported by the parent RsPtxD enzyme. Therefore, the RsPtxDHARRA mutant might be a promising alternative NADPH regeneration system for practical applications.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takeshi Ikeda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
27
|
Alqarni MH, Foudah AI, Muharram MM, Budurian H, Labrou NE. Probing the Role of the Conserved Arg174 in Formate Dehydrogenase by Chemical Modification and Site-Directed Mutagenesis. Molecules 2021; 26:molecules26051222. [PMID: 33668802 PMCID: PMC7956174 DOI: 10.3390/molecules26051222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/22/2022] Open
Abstract
The reactive adenosine derivative, adenosine 5′-O-[S-(4-hydroxy-2,3-dioxobutyl)]-thiophosphate (AMPS-HDB), contains a dicarbonyl group linked to the purine nucleotide at a position equivalent to the pyrophosphate region of NAD+. AMPS-HDB was used as a chemical label towards Candida boidinii formate dehydrogenase (CbFDH). AMPS-HDB reacts covalently with CbFDH, leading to complete inactivation of the enzyme activity. The inactivation kinetics of CbFDH fit the Kitz and Wilson model for time-dependent, irreversible inhibition (KD = 0.66 ± 0.15 mM, first order maximum rate constant k3 = 0.198 ± 0.06 min−1). NAD+ and NADH protects CbFDH from inactivation by AMPS-HDB, showing the specificity of the reaction. Molecular modelling studies revealed Arg174 as a candidate residue able to be modified by the dicarbonyl group of AMPS-HDB. Arg174 is a strictly conserved residue among FDHs and is located at the Rossmann fold, the common mononucleotide-binding motif of dehydrogenases. Arg174 was replaced by Asn, using site-directed mutagenesis. The mutant enzyme CbFDHArg174Asn was showed to be resistant to inactivation by AMPS-HDB, confirming that the guanidinium group of Arg174 is the target for AMPS-HDB. The CbFDHArg174Asn mutant enzyme exhibited substantial reduced affinity for NAD+ and lower thermostability. The results of the study underline the pivotal and multifunctional role of Arg174 in catalysis, coenzyme binding and structural stability of CbFDH.
Collapse
Affiliation(s)
- Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
- Correspondence: (M.H.A.); (N.E.L.)
| | - Ahmed Ibrahim Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| | - Magdy Mohamed Muharram
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
- Department of Microbiology, College of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Haritium Budurian
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece;
- Correspondence: (M.H.A.); (N.E.L.)
| |
Collapse
|
28
|
Alpdagtas S, Binay B. Nadp+-dependent formate dehydrogenase: a review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1865933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Saadet Alpdagtas
- Department of Biology, Faculty of Science, Van Yuzuncu Yil University, Tusba, Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Turkey
| |
Collapse
|
29
|
Bulut H, Yuksel B, Gul M, Eren M, Karatas E, Kara N, Yilmazer B, Kocyigit A, Labrou NE, Binay B. Conserved Amino Acid Residues that Affect Structural Stability of Candida boidinii Formate Dehydrogenase. Appl Biochem Biotechnol 2020; 193:363-376. [PMID: 32974869 DOI: 10.1007/s12010-020-03429-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022]
Abstract
The NAD+-dependent formate dehydrogenase (FDH; EC 1.2.1.2) from Candida boidinii (CboFDH) has been extensively used in NAD(H)-dependent industrial biocatalysis as well as in the production of renewable fuels and chemicals from carbon dioxide. In the present work, the effect of amino acid residues Phe285, Gln287, and His311 on structural stability was investigated by site-directed mutagenesis. The wild-type and mutant enzymes (Gln287Glu, His311Gln, and Phe285Thr/His311Gln) were cloned and expressed in Escherichia coli. Circular dichroism (CD) spectroscopy was used to determine the effect of each mutation on thermostability. The results showed the decisive roles of Phe285, Gln287, and His311 on enhancing the enzyme's thermostability. The melting temperatures for the wild-type and the mutant enzymes Gln287Glu, His311Gln, and Phe285Thr/His311Gln were 64, 70, 77, and 73 °C, respectively. The effects of pH and temperature on catalytic activity of the wild-type and mutant enzymes were also investigated. Interestingly, the mutant enzyme His311Gln exhibits a large shift of pH optimum at the basic pH range (1 pH unit) and substantial increase of the optimum temperature (25 °C). The present work supports the multifunctional role of the conserved residues Phe285, Gln287, and His311 and further underlines their pivotal roles as targets in protein engineering studies.
Collapse
Affiliation(s)
- Huri Bulut
- Medical Biochemistry Department, Faculty of Medicine, Istinye University, 34010, Istanbul, Turkey.,Medical Biochemistry Department, School of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Busra Yuksel
- Molecular Biology and Genetics Department, Istanbul Technical University, 34467, Istanbul, Turkey
| | - Mehmet Gul
- Molecular Biology and Genetics Department, Istanbul Technical University, 34467, Istanbul, Turkey
| | - Meryem Eren
- Molecular Biology and Genetics Department, Istanbul Technical University, 34467, Istanbul, Turkey
| | - Ersin Karatas
- Molecular Biology and Genetics Department, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Nazli Kara
- Medical Biochemistry Department, Faculty of Medicine, Istinye University, 34010, Istanbul, Turkey
| | - Berin Yilmazer
- Molecular Biology and Genetics Department, Gebze Technical University, 41400, Kocaeli, Turkey
| | - Abdurrahim Kocyigit
- Medical Biochemistry Department, School of Medicine, Bezmialem Vakif University, 34093, Istanbul, Turkey
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Gr-11855, Athens, Greece
| | - Baris Binay
- Department of Bioengineering, Gebze Technical University, 41400, Kocaeli, Turkey.
| |
Collapse
|
30
|
Calzadiaz-Ramirez L, Calvó-Tusell C, Stoffel GMM, Lindner SN, Osuna S, Erb TJ, Garcia-Borràs M, Bar-Even A, Acevedo-Rocha CG. In Vivo Selection for Formate Dehydrogenases with High Efficiency and Specificity toward NADP . ACS Catal 2020; 10:7512-7525. [PMID: 32733773 PMCID: PMC7384739 DOI: 10.1021/acscatal.0c01487] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/06/2020] [Indexed: 02/06/2023]
Abstract
The efficient regeneration of cofactors is vital for the establishment of biocatalytic processes. Formate is an ideal electron donor for cofactor regeneration due to its general availability, low reduction potential, and benign byproduct (CO2). However, formate dehydrogenases (FDHs) are usually specific to NAD+, such that NADPH regeneration with formate is challenging. Previous studies reported naturally occurring FDHs or engineered FDHs that accept NADP+, but these enzymes show low kinetic efficiencies and specificities. Here, we harness the power of natural selection to engineer FDH variants to simultaneously optimize three properties: kinetic efficiency with NADP+, specificity toward NADP+, and affinity toward formate. By simultaneously mutating multiple residues of FDH from Pseudomonas sp. 101, which exhibits practically no activity toward NADP+, we generate a library of >106 variants. We introduce this library into an E. coli strain that cannot produce NADPH. By selecting for growth with formate as the sole NADPH source, we isolate several enzyme variants that support efficient NADPH regeneration. We find that the kinetically superior enzyme variant, harboring five mutations, has 5-fold higher efficiency and 14-fold higher specificity in comparison to the best enzyme previously engineered, while retaining high affinity toward formate. By using molecular dynamics simulations, we reveal the contribution of each mutation to the superior kinetics of this variant. We further determine how nonadditive epistatic effects improve multiple parameters simultaneously. Our work demonstrates the capacity of in vivo selection to identify highly proficient enzyme variants carrying multiple mutations which would be almost impossible to find using conventional screening methods.
Collapse
Affiliation(s)
| | - Carla Calvó-Tusell
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Gabriele M. M. Stoffel
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sílvia Osuna
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Tobias J. Erb
- Max Planck Institute of Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043 Marburg, Germany
- LOEWE Research Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Straße 16, D-35043 Marburg, Germany
| | - Marc Garcia-Borràs
- Institut de Quı́mica Computacional i Catàlisi and Departament de Quı́mica, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|