1
|
Jiao M, Kong W, Liu W, Dong Z, Yang J, Wei Z, Lu X, Wei Y, Zhuang J. Boosting the antibacterial potency of natural products through nanotechnologies. Int J Pharm 2025; 674:125437. [PMID: 40057213 DOI: 10.1016/j.ijpharm.2025.125437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
The advent of bacterial resistance has led to a notable challenge in effectively treating bacterial infections. This highlights the urgent need for the development of novel and effective drugs to combat bacterial infections. Medicinal plants, with their rich and diverse natural compounds, represent a valuable source for the discovery of novel antibacterial agents. Many of these natural compounds exhibit strong antibacterial functions, offering a promising direction for the development of antibacterial drugs. Furthermore, the application of nanotechnology in the development of antibacterial natural products has become a topic of considerable interest due to the advantages it offers, including the potential to enhance drug solubility. The efficacy of natural antibacterial agents is significantly enhanced through nanotechnology. This review offers a comprehensive overview of recent advances in the delivery of natural antibacterial compounds using a range of nanoformulation strategies.
Collapse
Affiliation(s)
- Min Jiao
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Weiwen Kong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Wenjuan Liu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Zirong Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jinlong Yang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200443, China
| | - Zibo Wei
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xinrui Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yuning Wei
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jie Zhuang
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
2
|
Luo J, Luo J, Sheng Z, Fang Z, Fu Y, Wang N, Yang B, Xu B. Latest research progress on anti-microbial effects, mechanisms of action, and product developments of dietary flavonoids: A systematic literature review. Trends Food Sci Technol 2025; 156:104839. [DOI: 10.1016/j.tifs.2024.104839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Zahra M, Abrahamse H, George BP. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel) 2024; 13:922. [PMID: 39199168 PMCID: PMC11351814 DOI: 10.3390/antiox13080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
This study emphasizes the critical role of antioxidants in protecting human health by counteracting the detrimental effects of oxidative stress induced by free radicals. Antioxidants-found in various forms such as vitamins, minerals, and the phytochemicals abundant in fruits and vegetables-neutralize free radicals by stabilizing them through electron donation. Specifically, flavonoid compounds are highlighted as robust defenders, addressing oxidative stress and inflammation to avert chronic illnesses like cancer, cardiovascular diseases, and neurodegenerative diseases. This research explores the bioactive potential of flavonoids, shedding light on their role not only in safeguarding health, but also in managing conditions such as diabetes, cancer, cardiovascular diseases, and neurodegenerative diseases. This review highlights the novel integration of South African-origin flavonoids with nanotechnology, presenting a cutting-edge strategy to improve drug delivery and therapeutic outcomes. This interdisciplinary approach, blending traditional wisdom with contemporary techniques, propels the exploration of flavonoid-mediated nanoparticles toward groundbreaking pharmaceutical applications, promising revolutionary advancements in healthcare. This collaborative synergy between traditional knowledge and modern science not only contributes to human health, but also underscores a significant step toward sustainable and impactful biomedical innovations, aligning with principles of environmental conservation.
Collapse
Affiliation(s)
| | | | - Blassan P. George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa; (M.Z.); (H.A.)
| |
Collapse
|
4
|
Li X, Xu R, Shi L, Ni T. Design of flavonol-loaded cationic gold nanoparticles with enhanced antioxidant and antibacterial activities and their interaction with proteins. Int J Biol Macromol 2023; 253:127074. [PMID: 37769767 DOI: 10.1016/j.ijbiomac.2023.127074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
In this work, four structurally similar flavonols (galangin, kaempferol, quercetin and myricetin) were coated on the surface of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MUTAB)‑gold nanoparticles (AuNPs) by two-step phase transfer and self-assembly, and the cationic MUTAB- AuNPs coated with flavonols (flavonol-MUTAB-AuNPs) were designed. Free radical scavenging and antibacterial experiments show that flavonol-MUTAB-AuNPs greatly improve the scavenging effect on DPPH, hydroxyl and superoxide anion radicals, and significantly enhance the inhibition effect on Staphylococcus aureus and Escherichia coli compared with flavonols and AuNPs. Then γ-globulin, fibrinogen, trypsin and pepsin were selected as representative proteins and their interaction with flavonol-MUTAB-AuNPs were investigated by various spectroscopic techniques. The fluorescence quenching mechanism of these four proteins by flavonol-MUTAB-AuNPs is static quenching. The binding constants Ka between them are in the range of 103 to 106. The interaction between them is endothermic, entropy-driven spontaneous process, and the main non-covalent force is the hydrophobic interaction. The effect of flavonol-MUTAB-AuNPs on the structure of the four proteins were investigated using UV-vis absorption spectra, synchronous fluorescence spectra and circular dichroism spectra. These results offer important insights into the essence of the interaction between flavonol-MUTAB-AuNPs and γ-globulin/fibrinogen/trypsin/pepsin. They will contribute to the development of safe and effective flavonol-MUTAB-AuNPs in biomedical fields.
Collapse
Affiliation(s)
- Xiangrong Li
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China.
| | - Ruonan Xu
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Li Shi
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| | - Tianjun Ni
- Department of Medical Chemistry, Key Laboratory of Medical Molecular Probes, School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan 453003, PR China
| |
Collapse
|
5
|
Sysak S, Czarczynska-Goslinska B, Szyk P, Koczorowski T, Mlynarczyk DT, Szczolko W, Lesyk R, Goslinski T. Metal Nanoparticle-Flavonoid Connections: Synthesis, Physicochemical and Biological Properties, as Well as Potential Applications in Medicine. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091531. [PMID: 37177076 PMCID: PMC10180592 DOI: 10.3390/nano13091531] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Flavonoids are polyphenolic compounds widely occurring throughout the plant kingdom. They are biologically active and have many medical applications. Flavonoids reveal chemopreventive, anticarcinogenic, and antioxidant properties, as well as being able to modulate the immune system response and inhibit inflammation, angiogenesis, and metastasis. Polyphenols are also believed to reverse multidrug resistance via various mechanisms, induce apoptosis, and activate cell death signals in tumor cells by modulating cell signaling pathways. The main limitation to the broader usage of flavonoids is their low solubility, poor absorption, and rapid metabolism. To tackle this, the combining of flavonoids with nanocarriers could improve their bioavailability and create systems of wider functionalities. Recently, interest in hybrid materials based on combinations of metal nanoparticles with flavonoids has increased due to their unique physicochemical and biological properties, including improved selectivity toward target sites. In addition, flavonoids have further utilities, even in the initial step of preparation of metal nanomaterials. The review offers knowledge on multiple possibilities of the synthesis of flavonoid-metal nanoparticle conjugates, as well as presents some of their features such as size, shape, surface charge, and stability. The flavonoid-metal nanoparticles are also discussed regarding their biological properties and potential medical applications.
Collapse
Affiliation(s)
- Stepan Sysak
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland
| | - Beata Czarczynska-Goslinska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Piotr Szyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Tomasz Koczorowski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Dariusz T Mlynarczyk
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Wojciech Szczolko
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Roman Lesyk
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszów, Sucharskiego 2, 35-225 Rzeszow, Poland
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Tomasz Goslinski
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| |
Collapse
|
6
|
Rodríguez-Barajas N, de Jesús Martín-Camacho U, Pérez-Larios A. Mechanisms of Metallic Nanomaterials to Induce an Antibacterial Effect. Curr Top Med Chem 2022; 22:2506-2526. [PMID: 36121083 DOI: 10.2174/1568026622666220919124104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/20/2023]
Abstract
Pathogenic microorganisms, including bacteria, are becoming resistant to most existing drugs, which increases the failure of pharmacologic treatment. Therefore, new nanomaterials were studied to spearhead improvement against the same resistant pathogenic bacteria. This has increased the mortality in the world population, principally in under-developed countries. Moreover, recently there has been research to find new drug formulations to kill the most dangerous microorganisms, such as bacteria cells which should avoid the spread of disease. Therefore, lately, investigations have been focusing on nanomaterials because they can exhibit the capacity to show an antibacterial effect. These studies have been trying oriented in their ability to produce an improvement to get antibacterial damage against the same pathogenic bacteria resistance. However, there are many problems with the use of nanoparticles. One of them is understanding how they act against bacteria, "their mechanism(s) action" to induce reduction or even kill the bacterial strains. Therefore, it is essential to understand the specific mechanism(s) of each nanomaterial used to observe the interaction between bacteria cells and nanoparticles. In addition, since nanoparticles can be functionalized with different antibacterial drugs, it is necessary to consider and distinguish the antibacterial activity of the nanoparticles from the antibacterial activity of the drugs to avoid confusion about how the nanoparticles work. Knowledge of these differences can help better understand the applications of the primary nanoparticles (i.e., Ag, Au, CuO, ZnO, and TiO2, among others) described in detail in this review which are toxic against various bacterial strains.
Collapse
Affiliation(s)
- Noé Rodríguez-Barajas
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| | - Ubaldo de Jesús Martín-Camacho
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| | - Alejandro Pérez-Larios
- Laboratorio de Investigación en Materiales, Agua y Energía, Departamento de Ingeniería, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, 47600, México
| |
Collapse
|
7
|
Soliman WE, Elsewedy HS, Younis NS, Shinu P, Elsawy LE, Ramadan HA. Evaluating Antimicrobial Activity and Wound Healing Effect of Rod-Shaped Nanoparticles. Polymers (Basel) 2022; 14:2637. [PMID: 35808682 PMCID: PMC9269196 DOI: 10.3390/polym14132637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022] Open
Abstract
Presently, the nanotechnology approach has gained a great concern in the media of drug delivery. Gold nanoparticles (Au-NPs) specially having a non-spherical structure, such as gold nanorods (GNR), are attracting much interest as antibacterial agent and many other medical fields. The aim of the current investigation was to characterize Au-NPs and investigate their antimicrobial and wound healing efficacy in diabetic animals. MATERIAL AND METHODS Au-NPs were characterized using a UV-Vis spectrophotometer, estimating their particle size, polydispersity (PDI), and assessing their morphological characters. Further, Au-NPs were estimated for their antibacterial and antifungal behavior. Ultimately, in vivo activity of Au-NPs was evaluated against excision wound healing in STZ-induced diabetic animals. RESULTS Au-NPs were found to show maximum absorption at 520 nm. They exhibited a particle size of 82.57 nm with a PDI value of 0.323. Additionally, they exhibited good antimicrobial activity against different bacterial strains. Topical application of Au-NPs caused a significantly increased percentage of wound area reduction, lesser time needed for epithelialization, and augmented hydroxyproline, collagen, and hexosamine levels demonstrating enhanced healing processes. Furthermore, Au-NPs displayed a significant intensification in angiogenesis-related factors (HIF-1α, TGF-β1, and VEGF), and antioxidant enzymes activities (CAT, SOD, GPx) as well as mitigated inflammatory mediators IL-6, IL-1β, TNF-α, and NF-κB) and lipid peroxidation (MDA). CONCLUSION Au-NPs exhibited proper particle size, and rod-shaped particles, with efficient antimicrobial behavior against different bacterial strains. Furthermore, Au-NPs demonstrated a promising wound healing activity in STZ-induced diabetic animals.
Collapse
Affiliation(s)
- Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| | - Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Nancy S. Younis
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia; (H.S.E.); (N.S.Y.)
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Lamis E. Elsawy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| | - Heba A. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Mansoura 11152, Egypt; (L.E.E.); (H.A.R.)
| |
Collapse
|
8
|
Phytochemical-conjugated bio-safe gold nanoparticles in breast cancer: a comprehensive update. Breast Cancer 2022; 29:761-777. [PMID: 35578088 DOI: 10.1007/s12282-022-01368-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/26/2022] [Indexed: 01/02/2023]
Abstract
Breast cancer is the most common malignancy in women and is rated among one of the three common malignancies worldwide in combination with colon and lung cancer. The escalating mortality rate of breast cancer patients has captivated the attention of the present-day researchers to come up with new management options. According to WHO, early detection, timely diagnosis and comprehensive breast cancer management are the three cornerstones for controlling breast cancer incidences per year. Multidisciplinary theragnostic approaches for simultaneous diagnosis and treatment of breast cancer have further enriched the therapeutic arsenal. Imaging and biopsy play a significant role in the diagnosis of breast cancer. The treatment plan mostly initiates with general surgery or radiation therapy followed up with adjuvant and/or neoadjuvant therapy. Conventional chemotherapeutics in breast cancer suffer from toxicity and lack of site specificity. Bio-safe gold nanoparticles hold sufficient promise for bridging this gap. Diverse phytochemicals-based synthesis routes to arrive at nano-dimensional gold with spotlight on reaction mechanisms, reaction variables, specific advantages, toxicity and their influence in breast cancer conditions are the focus of this work. This review marks the first attempt to explore the potential of phytochemical-derived nano-gold in breast cancer treatment.
Collapse
|
9
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|