1
|
Mahboub HH, Rahman ANA, Elazab ST, Abdelwarith AA, Younis EM, Shaalan M, Aziz EK, Sobh MS, Yousefi M, Ismail SH, Davies SJ, Gaballa MMS. Nano-chitosan hydrogel alleviates Candida albicans-induced health alterations in Nile tilapia (Oreochromis niloticus): antioxidant response, neuro-behaviors, hepato-renal functions, and histopathological investigation. BMC Vet Res 2025; 21:159. [PMID: 40057767 PMCID: PMC11889809 DOI: 10.1186/s12917-025-04568-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 02/05/2025] [Indexed: 05/13/2025] Open
Abstract
BACKGROUND Candida albicans infection induces economic losses in aquaculture practices. Currently, the success of the nanotechnology field has gained more consideration in the aquaculture sector as it bestows favorable impacts in remedies in comparison to traditional practices. OBJECTIVE The present study was conducted to assess the role of nano chitosan gel (NCG) exposure via water in managing the deteriorating impacts triggered by C. albicans in Nile tilapia, Oreochromis niloticus. Hepato-renal function, behavioral and stress response, neurological function, hepatic antioxidant/oxidant status, and histopathological architectures were investigated. METHODS A total of 160 fish (average weight: 50.00 ± 6.30 g) were randomly assigned to four groups, each with four replicates: control, NCG, C. albicans, and NCG + C. albicans. The NCG was applied as bath treatment at a concentration of 75 µg/L for ten days. RESULTS The outcomes demonstrated that the C. albicans challenged fish exhibited obvious behavioral alterations including loss of equilibrium, surfacing, abnormal swimming and movement, and aggression. Infection with C. albicans caused an elevation in hepato-renal biomarkers (alanine and aspartate aminotransferases, alkaline phosphatase, urea, and creatinine), stress-related indices (glucose, cortisol, nor-epinephrine, and 8-hydroxy-2-deoxyguanosine), and lipid peroxides (malondialdehyde). Moreover, it caused a noticeable decline in the hepatic antioxidant indices (total antioxidant capacity and reduced glutathione content) and acetylcholinesterase activity. The hepatic, renal, and brain architectures were severely damaged by the C. albicans challenge, exhibiting significant fatty changes, necrosis, vacuolation, and congestion. Remarkably, the aqueous application of NCG in the C. albicans-challenged fish ameliorated all the aforementioned biomarkers and facilitated the regeneration of histopathological changes. CONCLUSION Overall, the application of NCG in the aquatic environment is an effective tool for managing C. albicans infection in Nile tilapia. Moreover, it can be utilized in combating stress conditions in the aquaculture sector.
Collapse
Affiliation(s)
- Heba H Mahboub
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt.
| | - Afaf N Abdel Rahman
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdelwahab A Abdelwarith
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed M Younis
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed Shaalan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, PO Box 12211, Giza, Egypt.
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava, 84541, Slovakia.
| | - Enas K Aziz
- Department of Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, University of Sadat City, PO Box 32958, Sadat City, Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, PO Box 44511, Zagazig, Sharkia, Egypt
| | - Morteza Yousefi
- Department of Veterinary Medicine, RUDN University, Miklukho-Maklaya St, Moscow, 117198, Russia
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, PO Box 12588, Sheikh Zayed City, Giza, Egypt
| | - Simon J Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, H91V8Y1, Ireland
| | - Mohamed M S Gaballa
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, PO Box 13736, Benha, Toukh, Egypt
| |
Collapse
|
2
|
Sun J, Wang Z, Dai Y, Zhang M, Pang X, Li X, Lu Y. Acid modified attapulgite loaded with bacillomycin D for mold inhibition and mycotoxin removal. Food Chem 2024; 446:138762. [PMID: 38402761 DOI: 10.1016/j.foodchem.2024.138762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
Molds and mycotoxins pose severe threats to health. Bacillomycin D (BD) can effectively inhibit mold growth. Attapulgite (ATP) can provide a good carrier for antimicrobial agents. Natural ATP was acid-modified to obtain H-ATP. It was used to load BD to obtain a novel composite material (H-ATP-BD). The results showed H-ATP had better adsorption performance than ATP. BD was adsorbed up to 93.13 % by adding 30 mg H-ATP and stirring at 40 ℃ for 120 min. Fourier transform infrared spectra (FTIR), size and zeta potential, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results confirmed successful loading of BD onto H-ATP. The composite showed good inhibition of Aspergillus and adding 0.6 % H-ATP-BD composite was effective in removing 89.06 % of aflatoxin B1 (AFB1) at 50 °C. Model fitting indicated that AFB1 removal was a spontaneous exothermic reaction. This research will lay the foundation for the development of efficient and green antimicrobial and toxin-reducing materials.
Collapse
Affiliation(s)
- Jing Sun
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Zaixu Wang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yongjin Dai
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Moran Zhang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyi Pang
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiangfei Li
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yingjian Lu
- College of Food Science and Engineering/Collaborative, Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
3
|
Dini S, Bekhit AEDA, Roohinejad S, Vale JM, Agyei D. The Physicochemical and Functional Properties of Biosurfactants: A Review. Molecules 2024; 29:2544. [PMID: 38893420 PMCID: PMC11173842 DOI: 10.3390/molecules29112544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Surfactants, also known as surface-active agents, have emerged as an important class of compounds with a wide range of applications. However, the use of chemical-derived surfactants must be restricted due to their potential adverse impact on the ecosystem and the health of human and other living organisms. In the past few years, there has been a growing inclination towards natural-derived alternatives, particularly microbial surfactants, as substitutes for synthetic or chemical-based counterparts. Microbial biosurfactants are abundantly found in bacterial species, predominantly Bacillus spp. and Pseudomonas spp. The chemical structures of biosurfactants involve the complexation of lipids with carbohydrates (glycolipoproteins and glycolipids), peptides (lipopeptides), and phosphates (phospholipids). Lipopeptides, in particular, have been the subject of extensive research due to their versatile properties, including emulsifying, antimicrobial, anticancer, and anti-inflammatory properties. This review provides an update on research progress in the classification of surfactants. Furthermore, it explores various bacterial biosurfactants and their functionalities, along with their advantages over synthetic surfactants. Finally, the potential applications of these biosurfactants in many industries and insights into future research directions are discussed.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Alaa El-Din A. Bekhit
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| | - Shahin Roohinejad
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Jim M. Vale
- Research and Development Division, Zoom Essence Inc., 1131 Victory Place, Hebron, KY 41048, USA (J.M.V.)
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (S.D.); (A.E.-D.A.B.)
| |
Collapse
|
4
|
Robledo SM, Pérez-Silanes S, Fernández-Rubio C, Poveda A, Monzote L, González VM, Alonso-Collado P, Carrión J. Neglected Zoonotic Diseases: Advances in the Development of Cell-Penetrating and Antimicrobial Peptides against Leishmaniosis and Chagas Disease. Pathogens 2023; 12:939. [PMID: 37513786 PMCID: PMC10383258 DOI: 10.3390/pathogens12070939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In 2020, the WHO established the road map for neglected tropical diseases 2021-2030, which aims to control and eradicate 20 diseases, including leishmaniosis and Chagas disease. In addition, since 2015, the WHO has been developing a Global Action Plan on Antimicrobial Resistance. In this context, the achievement of innovative strategies as an alternative to replace conventional therapies is a first-order socio-sanitary priority, especially regarding endemic zoonoses in poor regions, such as those caused by Trypanosoma cruzi and Leishmania spp. infections. In this scenario, it is worth highlighting a group of natural peptide molecules (AMPs and CPPs) that are promising strategies for improving therapeutic efficacy against these neglected zoonoses, as they avoid the development of toxicity and resistance of conventional treatments. This review presents the novelties of these peptide molecules and their ability to cross a whole system of cell membranes as well as stimulate host immune defenses or even serve as vectors of molecules. The efforts of the biotechnological sector will make it possible to overcome the limitations of antimicrobial peptides through encapsulation and functionalization methods to obtain approval for these treatments to be used in clinical programs for the eradication of leishmaniosis and Chagas disease.
Collapse
Affiliation(s)
- Sara M. Robledo
- Programa de Estudio y Control de Enfermedades Tropicales PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Silvia Pérez-Silanes
- Department of Pharmaceutical Technology and Chemistry, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Celia Fernández-Rubio
- Department of Microbiology and Parasitology, ISTUN Instituto de Salud Tropical, IdiSNA, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Ana Poveda
- DNA Replication and Genome Instability Unit, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis-CIZ, Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador;
| | - Lianet Monzote
- Department of Parasitology, Institute of Tropical Medicine “Pedro Kourí”, Apartado Postal No. 601, Marianao 13, La Habana 10400, Cuba;
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain;
| | - Paloma Alonso-Collado
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Javier Carrión
- Department of Animal Health, Faculty of Veterinary Science, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
5
|
Kang BR, Park JS, Ryu GR, Jung WJ, Choi JS, Shin HM. Effect of Chitosan Coating for Efficient Encapsulation and Improved Stability under Loading Preparation and Storage Conditions of Bacillus Lipopeptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4189. [PMID: 36500812 PMCID: PMC9737214 DOI: 10.3390/nano12234189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
This study aims to evaluate the effect of chitosan coating on the formation and properties of Bacillus cyclic lipopeptide (CLP)-loaded liposomes. A nanoencapsulation strategy for a chitosan-coated liposomal system using lecithin phospholipids for the entrapment of antibiotic CLP prepared from Bacillus subtilis KB21 was developed. The produced chitosan-coated CLP liposome had mean size in the range of 118.47-121.67 nm. Transmission electron microscopy showed the spherical-shaped vesicles. Fourier transform infrared spectroscopy findings indicated the successful coating of the produced CLP-loaded liposomes by the used chitosan. Liposomes coated with 0.2% and 0.5% chitosan concentration decreased the surface tension by 7.3-12.1%, respectively, and increased the CLP content by 15.1-27.0%, respectively, compared to the uncoating liposomes. The coated concentration of chitosan influenced their CLP loading encapsulation efficiency and release kinetics. The physicochemical results of the dynamic light scattering, CLP capture efficiency and long-term storage capacity of nanocapsules increased with chitosan coating concentration. Furthermore, the chitosan-coated liposomes exhibited a significant enhancement in the stability of CLP loading liposomes. These results may suggest the potential application of chitosan-coated liposomes as a carrier of antibiotics in the development of the functional platform.
Collapse
Affiliation(s)
- Beom Ryong Kang
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joon Seong Park
- Gwangju Metropolitan City Agricultural Extension Center, Gwangju Metropolitan City 61945, Republic of Korea
| | - Gwang Rok Ryu
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Woo-Jin Jung
- Institute of Environmentally-Friendly Agriculture, Chonnam National University, Gwangju 61186, Republic of Korea
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun-Seok Choi
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye-Min Shin
- Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
6
|
Chauhan V, Dhiman VK, Kanwar SS. Purification and characterization of a novel bacterial Lipopeptide(s) biosurfactant and determining its antimicrobial and cytotoxic properties. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|