1
|
Arsalan A, Ravikumar Y, Tang X, Cao Z, Zhao M, Sun W, Qi X. Chimeric enzymes in the pulp and paper making industry: Current developments. Biotechnol Adv 2025; 79:108530. [PMID: 39933605 DOI: 10.1016/j.biotechadv.2025.108530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 01/10/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
The pulp and paper (P&P) industry plays a vital role in supporting the social and economic progress of a country by supplying essential commodities. Conventional P&P processing often consumes significant energy and use chemical agents to produce hazardous intermediates. The use of enzymes in the P&P industry has significantly reduced both the chemical and energy demands during processing. A variety of enzyme combination cocktails are used to perform multiple functions in a single step, but often fail to operate synergistically because of significant differences in operational conditions. This lack of synergy under various operating conditions highlights the need for engineered chimeric enzymes. Moreover, enzyme engineering approaches enable enzymes to perform catalysis in sub-optimal environment. Enzymes have been engineered to improve their catalytic properties and enhance operational stability. Designing multifunctional or chimeric enzymes can function simultaneously across diverse operational conditions. Chimeric enzymes enable effective synergistic action of multiple enzymes in the P&P industry. This review aims to provide clear insights into the selective development of chimeric enzymes using enzyme engineering approaches for their effective use in the P&P industry.
Collapse
Affiliation(s)
- Abdullah Arsalan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Acharya Institute of Technology, Acharya Dr. Sarvepalli Radhakrishnan Road, Soladevanahalli, Bengaluru, Karnataka, India
| | - Xinrui Tang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zijing Cao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Wenjing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China..
| |
Collapse
|
2
|
Sharma D, Agrawal S, Nagpal R, Kaur A, Bhardwaj N, Mahajan R. Valorization of wheat straw into paper by ultrafiltered enzymatic bleaching approach. Bioprocess Biosyst Eng 2024; 47:289-297. [PMID: 38086976 DOI: 10.1007/s00449-023-02951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
In this study, the potential of ultrafiltered xylano-pectinolytic enzymatic bleaching approach was investigated, for manufacturing wheat straw-based paper. The enzymatic step was found to be most effective, with xylanase-pectinase dose of 4-1.7 IU/g pulp and time period of 180 min. The absorption spectra of the pulp free filtrate samples obtained after treatment of the pulp with ultrafiltered enzymes showed the removal of more impurities, in comparison to the treatment with crude enzymes. Microscopic analysis also showed the removal of lignin impurities in enzymatically bleached pulp samples. This bleaching approach using enzymes resulted in 27% reduction in ClO2 dose. Ultrafiltered enzymes treated pulp samples also showed improved quality-related parameters, and Gurley porosity, burst index, breaking length, double fold, tear index, and viscosity increased by 19.05, 13.70, 8.18, 29.27, 4.41, and 13.27%, respectively. The lignin content, TDS, TSS, BOD and COD values also decreased in the effluent samples obtained after enzymatic bleaching plus 73% chemical bleaching dose. The BOD and COD values of the effluent samples improved by 23.01 and 23.66%, respectively. Thus, indicating the potential of ultrafiltered xylano-pectinolytic enzymes in reducing pollution during bleaching of wheat straw. This is the first study, mentioning the efficacy of ultrafiltered enzymes in the bleaching of wheat straw-based paper with better optical-strength-related properties and effluent characteristics.
Collapse
Affiliation(s)
- Divya Sharma
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
- Department of Life Sciences, IAMR College, Ghaziabad, India
| | - Sharad Agrawal
- Department of Life Sciences, SBSR, Sharda University, Noida, India
| | - Raksha Nagpal
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - Amanjot Kaur
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India
| | - Nishikant Bhardwaj
- Avantha Centre for Industrial Research and Development, Paper Mill Campus, Yamuna Nagar, India
| | - Ritu Mahajan
- Department of Biotechnology, Kurukshetra University, Kurukshetra, India.
| |
Collapse
|
3
|
Sosa-Martínez JD, Montañez J, Contreras-Esquivel JC, Balagurusamy N, Gadi SK, Morales-Oyervides L. Agroindustrial and food processing residues valorization for solid-state fermentation processes: A case for optimizing the co-production of hydrolytic enzymes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119067. [PMID: 37778074 DOI: 10.1016/j.jenvman.2023.119067] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023]
Abstract
In the pursuit of sustainability, managing agro-industrial and food processing residues (AFR) efficiently is crucial. This study proposes a systematic approach to convert AFR into valuable products via solid-state fermentation (SSF). Using fungal enzyme production as a case study, this adaptable methodology suits any SSF bioprocess. Initially, AFR's physicochemical properties were evaluated to assess their feasible use as carbon sources and solid matrices for SSF. Then, five strains were screened for their capability to produce enzymes (Xylanase, X; pectinase, P; cellulase, C). Apple pomace (AP) and brewery spent grain (BSG) with Aspergillus sp. (strain G5) were selected. Subsequent steps involved a two-phase statistical approach, identifying critical factors and optimizing them. Process conditions were screened using a Plackett-Burman design, narrowing critical variables to three (BSG/AP, pH, humidity). Response Surface Methodology (Central Composite Design) further optimized these factors for co-synthesis of X, P, and C. The humidity had the most significant effect on the three responses. The optimum conditions depended on each enzyme and were further validated to maximize either X, P or C. The obtained extracts were used for pectin extraction from orange peels. The extract containing primarily xylanase (X = 582.39, P = 22.86, C = 26.10 U mL-1) showed major pectin yield recovery (12.33 ± 0.53%) and it was obtained using the optimal settings of BSG/AP (81/19), humidity (50.40%), and pH (4.58). The findings will enable adjusting process conditions to obtain enzymatic cocktails with a tailored composition for specific applications.
Collapse
Affiliation(s)
- Jazel Doménica Sosa-Martínez
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico
| | | | - Nagamani Balagurusamy
- Facultad de Ciencias Biológicas. Universidad Autonoma de Coahuila, Unidad Torreón, Torreón, Coahuila, 27000, Mexico
| | - Suresh Kumar Gadi
- Facultad de Ingeniería Mecánica y Eléctrica. Universidad Autonoma de Coahuila, Unidad Torreón, Torreón, Coahuila, 27276, Mexico
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas. Universidad Autonoma de Coahuila, Unidad Saltillo, Saltillo, Coahuila, 25280, Mexico.
| |
Collapse
|
4
|
Shrestha S, Khatiwada JR, Kognou ALM, Chio C, Qin W. Biomass-Degrading Enzyme(s) Production and Biomass Degradation by a Novel Streptomyces thermocarboxydus. Curr Microbiol 2023; 80:71. [PMID: 36622468 DOI: 10.1007/s00284-022-03174-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023]
Abstract
Modern society has a great challenge to decrease waste and minimize the adverse effects of wastes on the economy, environment, and individual health. Thus, this study focuses on the use of eight agro-wastes (banana peel, barley straw, canola straw, pomegranate peel, orange peel, pumpkin pulp+seeds, maple leaf, and brewer's spent grains) by a novel bacterium (Streptomyces thermocarboxydus) for enzymes production. Further, the study explored the subsequent degradation of those wastes by the bacterium. This bacterium was isolated from forest soil and identified as Streptomyces thermocarboxydus by 16S rRNA sequence analysis. The biodegrading capability of S. thermocarboxydus was determined by observing the clear zone around the colony cultured on the agar plate containing the different biomasses as sole carbon sources and calculating the substrate degradation ratios. Furthermore, scanning electron microscopy images of eight agro-wastes before and after bacterial treatment and weight loss of agro-wastes revealed the bacterium degraded the biomasses. The different trends of enzyme activities were observed for various wastes, and the maximum activity depended on the type of agro-wastes. Overall, S. thermocarboxydus was found to be a potential candidate for pectinase and xylanase production. The enzyme production varies with the concentration of the biomasses.
Collapse
Affiliation(s)
- Sarita Shrestha
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Janak R Khatiwada
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Aristide L M Kognou
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|