1
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
2
|
Huang H, Zhang J, Lin J, Shi S. Efficacy and safety of mesenchymal stem cells in patients with acute ischemic stroke: a meta-analysis. BMC Neurol 2024; 24:48. [PMID: 38287288 PMCID: PMC10823675 DOI: 10.1186/s12883-024-03542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE This meta-analysis and systematic review were conducted to comprehensively evaluate the efficacy and safety of mesenchymal stem cells in patients with acute ischemic stroke. METHOD We conducted a manual search of electronic databases, including PubMed, Embase, the Cochrane Library, and Web of Science, with a search deadline set for February 1, 2023. Data analysis was performed using Stata version 15.0. RESULT A total of 9 randomized controlled studies were included, involving a total of 316 people, including 159 mesenchymal stem cells and 147 control groups. Results of meta-analysis: Compared to a placebo group, the administration of mesenchymal stem cells resulted in a significant reduction in the National Institutes of Health Stroke Scale (NIHSS) scores among patients diagnosed with acute ischemic stroke [SMD=-0.99,95% CI (-1.93, -0.05)]. Compared to placebo, barthel index [SMD = 0.48,95% CI (-0.55,1.51)], modified rankin score [SMD = 0.45, 95% CI (1.11, 0.21)], adverse events (RR = 0.68, 95% CI (0.40, 1.17)] the difference was not statistically significant. CONCLUSION Based on current studies, mesenchymal stem cell transplantation can ameliorate neurological deficits in patients with ischemic stroke to a certain extent without increasing adverse reactions. However, there was no significant effect on Barthel index and Modified Rankin score.
Collapse
Affiliation(s)
- Huanjia Huang
- Department of Neurology, The second Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region Province, China
| | - Jian Zhang
- Department of Neurology, The second Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region Province, China
| | - Jinmei Lin
- Department of Neurology, The second Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region Province, China
| | - Shengliang Shi
- Department of Neurology, The second Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region Province, China.
| |
Collapse
|
3
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D, Li C. Bone Marrow Mesenchymal Stem Cell Exosome Attenuates Inflammasome-Related Pyroptosis via Delivering circ_003564 to Improve the Recovery of Spinal Cord Injury. Mol Neurobiol 2022; 59:6771-6789. [PMID: 36038697 DOI: 10.1007/s12035-022-03006-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
Bone marrow mesenchymal stem cell (BMSC) is previously reported to present a certain effect on treating spinal cord injury (SCI), while the underlying mechanism is largely uncovered. Therefore, the current study aimed to investigate the involvement of exosome-delivered circRNA profile in the BMSC's effect on pyroptosis for SCI treatment. H2O2 treated rat primary neurons were cultured with normal medium, BMSC, BMSC plus GW4869, and BMSC-derived exosome, respectively, then inflammasome-related pyroptosis markers, and circRNA profiles were detected. Subsequently, circ_003564-knockdown BMSC exosome was transfected into H2O2 treated rat primary neurons and NGF-stimulated PC-12 cells. Furthermore, in vivo validation was conducted. BMSC and BMSC-derived exosome both decreased inflammasome-related pyroptosis markers including cleaved caspase-1, GSDMD, NLRP3, IL-1β, and IL-18 in H2O2-treated neurons, while exosome-free BMSC (BMSC plus GW4869) did not obviously reduce these factors. Microarray assay revealed that BMSC (vs. exosome-free BMSC) and BMSC-derived exosome (vs. normal medium) greatly regulated circRNA profiles, which were enriched in neuroinflammation pathways (such as neurotrophin, apoptosis, and TNF). Among three functional candidate circRNAs (circ_015525, circ_008876, and circ_003564), circ_003564 was most effective to regulate inflammasome-related pyroptosis. Interestingly, circ_003564-knockdown BMSC exosome showed higher expression of inflammasome-related pyroptosis markers compared to negative-control-knockdown BMSC exosome in H2O2 treated primary neurons/NGF-stimulated PC-12 cells. In vivo, BMSC exosome improved the function recovery and decreased tissue injury and inflammasome-related pyroptosis in SCI rats, whose effect was attenuated by circ_003564 knockdown transfection. BMSC exosome attenuates inflammasome-related pyroptosis via delivering circ_003564, contributing to its treatment efficacy for SCI.
Collapse
Affiliation(s)
- Yanyin Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiwei Wang
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Changli Xu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Suchi Qiao
- Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Tianze Liu
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Ke Qi
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China
| | - Dake Tong
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Cheng Li
- Department of Orthopedics, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai, 200433, China.
| |
Collapse
|