1
|
Zhang D, Jiang W, Lou J, Han X, Xia J. Biofuser: a multi-source data fusion platform for fusing the data of fermentation process devices. Front Digit Health 2024; 6:1390622. [PMID: 39498098 PMCID: PMC11532143 DOI: 10.3389/fdgth.2024.1390622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
In the past decade, the progress of traditional bioprocess optimization technique has lagged far behind the rapid development of synthetic biology, which has hindered the industrialization process of synthetic biology achievements. Recently, more and more advanced equipment and sensors have been applied for bioprocess online inspection to improve the understanding and optimization efficiency of the process. This has resulted in large amounts of process data from various sources with different communication protocols and data formats, requiring the development of techniques for integration and fusion of these heterogeneous data. Here we describe a multi-source fusion platform (Biofuser) that is designed to collect and process multi-source heterogeneous data. Biofuser integrates various data to a unique format that facilitates data visualization, further analysis, model construction, and automatic process control. Moreover, Biofuser also provides additional APIs that support machine learning or deep learning using the integrated data. We illustrate the application of Biofuser with a case study on riboflavin fermentation process development, demonstrating its ability in device faulty identification, critical process factor identification, and bioprocess prediction. Biofuser has the potential to significantly enhance the development of fermentation optimization techniques and is expected to become an important infrastructure for artificial intelligent integration into bioprocess optimization, thereby promoting the development of intelligent biomanufacturing.
Collapse
Affiliation(s)
- Dequan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Jiang
- Engineering Biology for Biomanufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jincheng Lou
- Engineering Biology for Biomanufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuanzhou Han
- Engineering Biology for Biomanufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jianye Xia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Engineering Biology for Biomanufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
2
|
Qian J, Wang Y, Hu Z, Shi T, Wang Y, Ye C, Huang H. Bacillus sp. as a microbial cell factory: Advancements and future prospects. Biotechnol Adv 2023; 69:108278. [PMID: 37898328 DOI: 10.1016/j.biotechadv.2023.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Bacillus sp. is one of the most distinctive gram-positive bacteria, able to grow efficiently using cheap carbon sources and secrete a variety of useful substances, which are widely used in food, pharmaceutical, agricultural and environmental industries. At the same time, Bacillus sp. is also recognized as a safe genus with a relatively clear genetic background, which is conducive to the industrial production of target metabolites. In this review, we discuss the reasons why Bacillus sp. has been so extensively studied and summarize its advances in systems and synthetic biology, engineering strategies to improve microbial cell properties, and industrial applications in several metabolic engineering applications. Finally, we present the current challenges and possible solutions to provide a reliable basis for Bacillus sp. as a microbial cell factory.
Collapse
Affiliation(s)
- Jinyi Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Yuzhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Zijian Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
3
|
Peng Y, Xu P, Tao F. Production of N-acetylglucosamine with Vibrio alginolyticus FA2, an emerging platform for economical unsterile open fermentation. Synth Syst Biotechnol 2023; 8:546-554. [PMID: 37637200 PMCID: PMC10457514 DOI: 10.1016/j.synbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023] Open
Abstract
Members of the Vibrionaceae family are predominantly fast-growing and halophilic microorganisms that have captured the attention of researchers owing to their potential applications in rapid biotechnology. Among them, Vibrio alginolyticus FA2 is a particularly noteworthy halophilic bacterium that exhibits superior growth capability. It has the potential to serve as a biotechnological platform for sustainable and eco-friendly open fermentation with seawater. To evaluate this hypothesis, we integrated the N-acetylglucosamine (GlcNAc) pathway into V. alginolyticus FA2. Seven nag genes were knocked out to obstruct the utilization of GlcNAc, and then 16 exogenous gna1s co-expressing with EcglmS were introduced to strengthen the flux of GlcNAc pathway, respectively. To further enhance GlcNAc production, we fine-tuned promoter strength of the two genes and inactivated two genes alsS and alsD to prevent the production of acetoin. Furthermore, unsterile open fermentation was carried out using simulated seawater and a chemically defined medium, resulting in the production of 9.2 g/L GlcNAc in 14 h. This is the first report for de-novo synthesizing GlcNAc with a Vibrio strain, facilitated by an unsterile open fermentation process employing seawater as a substitute for fresh water. This development establishes a basis for production of diverse valuable chemicals using Vibrio strains and provides insights into biomanufacture.
Collapse
Affiliation(s)
- Yuan Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
4
|
Hejazi S, Restaino OF, Sabbah M, Zannini D, Di Girolamo R, Marotta A, D’Ambrosio S, Krauss IR, Giosafatto CVL, Santagata G, Schiraldi C, Porta R. Physicochemical Characterization of Chitosan/Poly-γ-Glutamic Acid Glass-like Materials. Int J Mol Sci 2023; 24:12495. [PMID: 37569870 PMCID: PMC10419765 DOI: 10.3390/ijms241512495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
This paper sets up a new route for producing non-covalently crosslinked bio-composites by blending poly-γ-glutamic acid (γ-PGA) of microbial origin and chitosan (CH) through poly-electrolyte complexation under specific experimental conditions. CH and two different molecular weight γ-PGA fractions have been blended at different mass ratios (1/9, 2/8 and 3/7) under acidic pH. The developed materials seemed to behave like moldable hydrogels with a soft rubbery consistency. However, after dehydration, they became exceedingly hard, glass-like materials completely insoluble in water and organic solvents. The native biopolymers and their blends underwent comprehensive structural, physicochemical, and thermal analyses. The study confirmed strong physical interactions between polysaccharide and polyamide chains, facilitated by electrostatic attraction and hydrogen bonding. The materials exhibited both crystalline and amorphous structures and demonstrated good thermal stability and degradability. Described as thermoplastic and saloplastic, these bio-composites offer vast opportunities in the realm of polyelectrolyte complexes (PECs). This unique combination of properties allowed the bio-composites to function as glass-like materials, making them highly versatile for potential applications in various fields. They hold potential for use in regenerative medicine, biomedical devices, food packaging, and 3D printing. Their environmentally friendly properties make them attractive candidates for sustainable material development in various industries.
Collapse
Affiliation(s)
- Sondos Hejazi
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Odile Francesca Restaino
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Mohammed Sabbah
- Department of Nutrition and Food Technology, An-Najah National University, Nablus P400, Palestine;
| | - Domenico Zannini
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Rocco Di Girolamo
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Angela Marotta
- Department of Chemical, Materials and Production Engineering (DICMaPI), University of Naples “Federico II”, 80126 Naples, Italy;
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, 50019 Florence, Italy
| | - C. Valeria L. Giosafatto
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| | - Gabriella Santagata
- Institute for Polymers, Composites, and Biomaterials, National Council of Research, 80078 Pozzuoli, Italy;
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy (C.S.)
| | - Raffaele Porta
- Department of Chemical Sciences, University of Naples “Federico II”, 80126 Naples, Italy; (S.H.); (O.F.R.); or (D.Z.); (R.D.G.); (I.R.K.); (C.V.L.G.)
| |
Collapse
|
5
|
Li YW, Yang CL, Peng H, Nie ZK, Shi TQ, Huang H. RETRACTED ARTICLE: Mutagenesis combined with fermentation optimization to enhance gibberellic acid GA3 yield in Fusarium fujikuroi. BIORESOUR BIOPROCESS 2022; 9:106. [PMID: 38647889 PMCID: PMC10991607 DOI: 10.1186/s40643-022-00595-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/20/2022] [Indexed: 11/10/2022] Open
Abstract
Gibberellic acid (GA3) is a plant growth hormone that plays an important role in the production of crops, fruits, and vegetables with a wide market share. Due to intrinsic advantages, liquid fermentation of Fusarium fujikuroi has become the sole method for industrial GA3 production, but the broader application of GA3 is hindered by low titer. In this study, we combined atmospheric and room-temperature plasma (ARTP) with ketoconazole-based screening to obtain the mutant strain 3-6-1 with high yield of GA3. Subsequently, the medium composition and fermentation parameters were systematically optimized to increase the titer of GA3, resulting in a 2.5-fold increase compared with the titer obtained under the initial conditions. Finally, considering that the strain is prone to substrate inhibition and glucose repression, a new strategy of fed-batch fermentation was adopted to increase the titer of GA3 to 575.13 mg/L, which was 13.86% higher than the control. The strategy of random mutagenesis combined with selection and fermentation optimization developed in this study provides a basis for subsequent research on the industrial production of GA3.
Collapse
Affiliation(s)
- Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Cai-Ling Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
| | - Hui Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Zhi-Kui Nie
- Jiangxi New Reyphon Biochemical Co., Ltd., Salt and Chemical Industry, Xingan, China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, 210023, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|