1
|
Lingadharini P, Maji D. Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors. Talanta 2025; 285:127397. [PMID: 39700723 DOI: 10.1016/j.talanta.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak. Herein we focus mainly on development of biosensors for testing body fluids in the last 5 years using microfluidic technique through electrochemical and colorimetric principle which forms the two most competing sensing techniques providing quantitative and qualitative assessment modalities respectively and forms almost 80 % of the diagnostic platform worldwide. Present review highlights use of these popular substrates as well as various fabrication strategies for realization of GPOCDs ranging from costly and highly sophisticated photolithography to low cost, non conventional techniques like use of correction ink or marker based devices to even novel pop-up/origami induced patterning techniques. Insights into the advancements in colorimetric technique like distance, count or even text based semi-quantitative read-out modality as a on-hand diagnostic information has also been provided. Finally, future outlooks with other interdisciplinary modalities like use of novel materials, incorporation of digital tools like artificial intelligence (AI), machine learning (ML) and strategies for sensitivity and reliability improvement of future GPOCDs have also been discussed.
Collapse
Affiliation(s)
- P Lingadharini
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India
| | - Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Jarnda KV, Dai H, Ali A, Bestman PL, Trafialek J, Roberts-Jarnda GP, Anaman R, Kamara MG, Wu P, Ding P. A Review on Optical Biosensors for Monitoring of Uric Acid and Blood Glucose Using Portable POCT Devices: Status, Challenges, and Future Horizons. BIOSENSORS 2025; 15:222. [PMID: 40277536 PMCID: PMC12025047 DOI: 10.3390/bios15040222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
The growing demand for real-time, non-invasive, and cost-effective health monitoring has driven significant advancements in portable point-of-care testing (POCT) devices. Among these, optical biosensors have emerged as promising tools for the detection of critical biomarkers such as uric acid (UA) and blood glucose. Different optical transduction methods, like fluorescence, surface plasmon resonance (SPR), and colorimetric approaches, are talked about, with a focus on how sensitive, specific, and portable they are. Despite considerable advancements, several challenges persist, including sensor stability, miniaturization, interference effects, and the need for calibration-free operation. This review also explores issues related to cost-effectiveness, data integration, and wireless connectivity for remote monitoring. The review further examines regulatory considerations and commercialization aspects of optical biosensors, addressing the gap between research developments and clinical implementation. Future perspectives emphasize the integration of artificial intelligence (AI) and healthcare for improved diagnostics, alongside the development of wearable and implantable biosensors for continuous monitoring. Innovative optical biosensors have the potential to change the way people manage their health by quickly and accurately measuring uric acid and glucose levels. This is especially true as the need for decentralized healthcare solutions grows. By critically evaluating existing work and exploring the limitations and opportunities in the field, this review will help guide the development of more efficient, accessible, and reliable POCT devices that can improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Kermue Vasco Jarnda
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Heng Dai
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 St., 02776 Warsaw, Poland; (A.A.); (J.T.)
| | - Prince L. Bestman
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
| | - Joanna Trafialek
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159 St., 02776 Warsaw, Poland; (A.A.); (J.T.)
| | | | - Richmond Anaman
- School of Metallurgy and Environment, Central South University, Changsha 410083, China;
| | - Mohamed Gbanda Kamara
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
| | - Pian Wu
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| | - Ping Ding
- Xiangya School of Public Health, Central South University, Changsha 410078, China; (K.V.J.); (H.D.); (P.L.B.); (M.G.K.)
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha 410078, China
| |
Collapse
|
3
|
Manmana Y, Kinugasa S, Hiruta Y, Citterio D. Development of a Semiquantitative Barcode Readout Approach for Paper-Based Analytical Devices (PADs) for Enzymatic H 2O 2 and Glucose Detection. Anal Chem 2025; 97:1500-1506. [PMID: 39791888 PMCID: PMC11780576 DOI: 10.1021/acs.analchem.4c04113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
The integration of barcode technology with smartphones on paper-based analytical devices (PADs) presents a promising approach to bridging manual detection with digital interpretation and data storage. However, previous studies of 1D barcode approaches have been limited to providing only a "yes/no" response for analyte detection. Herein, a method of using barcode readout for semiquantitative signal detection on PADs has been achieved through the integration of barcode technology with a distance-based measurement concept on PADs. To demonstrate the feasibility of this concept, a PAD fabrication strategy incorporating barcodes was explored, using the enzymatic reaction between horseradish peroxidase (HRP), 3,3'-diaminobenzidine (DAB), and H2O2 as a model system. The enzyme-catalyzed polymerization of DAB to polyDAB in the presence of hydrogen peroxide results in the appearance of color observable by the naked eye inside a paperfluidic channel, with the color-changed length depending on the H2O2 concentration. At the same time, the barcode pattern displayed as a result of this distance-based color evolution overlaid with a paper-based barcode layer can be read using a smartphone application. Parameters affecting the signal readout performance were studied. The developed device can be used to detect H2O2 concentrations in the range of 0.25 to 10 mM within 90 min with 79.6% of barcode signals correctly readable. Additionally, results from different smartphone models showed a consistent reading performance (78.4-79.6%). Finally, the quantification of glucose levels in artificial urine samples was demonstrated. This developed PAD signaling strategy offers end-users more simplicity and can be used as a standalone device or in conjunction with other digital devices.
Collapse
Affiliation(s)
- Yanawut Manmana
- Department of Applied Chemistry, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Shuma Kinugasa
- Department of Applied Chemistry, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Zhang S, Staples AE. Microfluidic-based systems for the management of diabetes. Drug Deliv Transl Res 2024; 14:2989-3008. [PMID: 38509342 PMCID: PMC11445324 DOI: 10.1007/s13346-024-01569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2024] [Indexed: 03/22/2024]
Abstract
Diabetes currently affects approximately 500 million people worldwide and is one of the most common causes of mortality in the United States. To diagnose and monitor diabetes, finger-prick blood glucose testing has long been used as the clinical gold standard. For diabetes treatment, insulin is typically delivered subcutaneously through cannula-based syringes, pens, or pumps in almost all type 1 diabetic (T1D) patients and some type 2 diabetic (T2D) patients. These painful, invasive approaches can cause non-adherence to glucose testing and insulin therapy. To address these problems, researchers have developed miniaturized blood glucose testing devices as well as microfluidic platforms for non-invasive glucose testing through other body fluids. In addition, glycated hemoglobin (HbA1c), insulin levels, and cellular biomechanics-related metrics have also been considered for microfluidic-based diabetes diagnosis. For the treatment of diabetes, insulin has been delivered transdermally through microdevices, mostly through microneedle array-based, minimally invasive injections. Researchers have also developed microfluidic platforms for oral, intraperitoneal, and inhalation-based delivery of insulin. For T2D patients, metformin, glucagon-like peptide 1 (GLP-1), and GLP-1 receptor agonists have also been delivered using microfluidic technologies. Thus far, clinical studies have been widely performed on microfluidic-based diabetes monitoring, especially glucose sensing, yet technologies for the delivery of insulin and other drugs to diabetic patients with microfluidics are still mostly in the preclinical stage. This article provides a concise review of the role of microfluidic devices in the diagnosis and monitoring of diabetes, as well as the delivery of pharmaceuticals to treat diabetes using microfluidic technologies in the recent literature.
Collapse
Affiliation(s)
- Shuyu Zhang
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA.
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Anne E Staples
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Blacksburg, VA, 24061, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
5
|
Li R, Cheng R, Liu J, Bi Y, Song P, Hu Q, Yu L. Detection of H 2O 2 and catalase on a paper-based flow sensor constructed with borate cross-linked PVA hydrogel. Talanta 2024; 276:126244. [PMID: 38754185 DOI: 10.1016/j.talanta.2024.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
The detections of H2O2 and catalase play an important role in daily life. This study introduces a paper-based flow sensor that is specifically designed to detect H2O2 and catalase. The sensor utilizes a hydrogel composed of cross-linked 4-carboxyphenylboronic acid and polyvinyl alcohol. When H2O2 is in contact with the hydrogel, the B-C bonds of the hydrogel undergo a reactive process, causing decomposition of the hydrogel. The pH indicator strip enables the visual monitoring of the viscosity change that occurs during the gel-sol transition. The quantification of H2O2 is accomplished by assessing the proportion of water coverage on the pH indicator strip. The sensor shows a detection limit of 0.077 wt% and is applicable for the quantitative measurement of H2O2 in routinely used disinfectants. Furthermore, the presence of catalase is effectively identified and the detection of catalase in milk is successfully fulfilled. In summary, this work proposes a simple, user-friendly, label-free, and cost-effective method for constructing a paper-based flow sensor using borate cross-linked polyvinyl alcohol hydrogel, showing great potential for detecting H2O2 and catalase in various practical scenarios.
Collapse
Affiliation(s)
- Ruotong Li
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Ranran Cheng
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Jinpeng Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China
| | - Yanhui Bi
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China
| | - Ping Song
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiongzheng Hu
- Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan 250100, China.
| |
Collapse
|
6
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
7
|
Wang W, Chen D, Cai Y, Liu Z, Yang H, Xie H, Liu J, Yang S. Sodium alginate hydrogelation mediated paper-based POCT sensor for visual distance reading and smartphone-assisted colorimetric dual-signal determination of L-lactate. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2077-2084. [PMID: 38511294 DOI: 10.1039/d4ay00041b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Herein, we present a paper-based POCT sensor based on lactate dehydrogenase-mediated alginate gelation combined with visual distance reading and smartphone-assisted colorimetric dual-signal analysis to determine the concentration of L-lactate in yogurt samples. In this research, L-lactate was transformed into pyruvate by lactate dehydrogenase. Pyruvate then triggered the gelation of a sol mixture, increasing the viscosity (ηs) of the mixture, which was shown as a decrease in the diffusion diameter on the paper-based sensor. In addition, protons from pyruvate accelerated the degradation of Rhodamine B, causing color fading of the mixture, which was analyzed using RGB analysis application software. Under optimal experimental conditions, the linear ranges of visual distance reading and smartphone-assisted colorimetric analysis were 0.1-15 μM and 0.3-15 μM and the detection limits were 0.03 μM and 0.07 μM, respectively. As a proof-of-concept application, we exploited the paper-based sensor to determine the concentration of L-lactate in yogurt samples. The results from the dual-signal paper-based sensor were consistent with the ones from HPLC analysis. In short, this study developed a simple, convenient, cost-effective, and feasible method for the quantitative detection of L-lactate in real samples.
Collapse
Affiliation(s)
- Wenjuan Wang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Danrong Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Cai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Zijing Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Hongfen Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Hongbin Xie
- Hengyang Center for Disease Control and Prevention, Hengyang, Hunan, 421001, China
| | - Jinquan Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| | - Shengyuan Yang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
8
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
9
|
Yang D, Hu C, Zhang H, Geng S. Recent Developments in Paper-Based Sensors with Instrument-Free Signal Readout Technologies (2020-2023). BIOSENSORS 2024; 14:36. [PMID: 38248413 PMCID: PMC10812998 DOI: 10.3390/bios14010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/31/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Signal readout technologies that do not require any instrument are essential for improving the convenience and availability of paper-based sensors. Thanks to the remarkable progress in material science and nanotechnology, paper-based sensors with instrument-free signal readout have been developed for multiple purposes, such as biomedical detection, environmental pollutant tracking, and food analysis. In this review, the developments in instrument-free signal readout technologies for paper-based sensors from 2020 to 2023 are summarized. The instrument-free signal readout technologies, such as distance-based signal readout technology, counting-based signal readout technology, text-based signal readout technology, as well as other transduction technologies, are briefly introduced, respectively. On the other hand, the applications of paper-based sensors with instrument-free signal readout technologies are summarized, including biomedical analysis, environmental analysis, food analysis, and other applications. Finally, the potential and difficulties associated with the advancement of paper-based sensors without instruments are discussed.
Collapse
Affiliation(s)
- Danni Yang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Chengju Hu
- Health Management Center, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China;
| | - Hao Zhang
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China;
| | - Shan Geng
- Department of Endocrinology, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing 402360, China
| |
Collapse
|
10
|
Khan M, Zhao B, Wu W, Zhao M, Bi Y, Hu Q. Distance-based microfluidic assays for instrument-free visual point-of-care testing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
11
|
Pradela-Filho LA, Veloso WB, Arantes IVS, Gongoni JLM, de Farias DM, Araujo DAG, Paixão TRLC. Paper-based analytical devices for point-of-need applications. Mikrochim Acta 2023; 190:179. [PMID: 37041400 PMCID: PMC10089827 DOI: 10.1007/s00604-023-05764-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection systems can be accomplished with portable devices, allying with the features of both systems. These devices have been introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the devices' sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating their challenges. Therefore, this work can be a highly useful reference for new research and innovation.
Collapse
Affiliation(s)
- Lauro A Pradela-Filho
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - William B Veloso
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Iana V S Arantes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Juliana L M Gongoni
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Davi M de Farias
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Diele A G Araujo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Thiago R L C Paixão
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
12
|
Silva-Neto HA, Arantes IV, Ferreira AL, do Nascimento GH, Meloni GN, de Araujo WR, Paixão TR, Coltro WK. Recent advances on paper-based microfluidic devices for bioanalysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Gharib G, Bütün İ, Muganlı Z, Kozalak G, Namlı İ, Sarraf SS, Ahmadi VE, Toyran E, van Wijnen AJ, Koşar A. Biomedical Applications of Microfluidic Devices: A Review. BIOSENSORS 2022; 12:1023. [PMID: 36421141 PMCID: PMC9688231 DOI: 10.3390/bios12111023] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/30/2022] [Accepted: 11/08/2022] [Indexed: 05/26/2023]
Abstract
Both passive and active microfluidic chips are used in many biomedical and chemical applications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic devices are geometry-dependent, and their uses are rather limited. Active microfluidic devices include sensors or detectors that transduce chemical, biological, and physical changes into electrical or optical signals. Also, they are transduction devices that detect biological and chemical changes in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and organ modeling. This review provides a comprehensive overview of the significant advances that have been made in the development of microfluidics devices. We will discuss the function of microfluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, including molding, etching, three-dimensional printing, and nanofabrication. Their broad utility lies in the detection of diagnostic biomarkers and organ-on-chip approaches that permit disease modeling in cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor applications allow for point-of-care testing, using assays based on enzymes, nanozymes, antibodies, or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization of techniques for the fabrication of microfluidic devices using biocompatible materials. These developments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time of microfluidics technology.
Collapse
Affiliation(s)
- Ghazaleh Gharib
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İsmail Bütün
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Zülâl Muganlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Gül Kozalak
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - İlayda Namlı
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | | | | | - Erçil Toyran
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
| | - Andre J. van Wijnen
- Department of Biochemistry, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Ali Koşar
- Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
- Turkish Academy of Sciences (TÜBA), Çankaya, Ankara 06700, Turkey
| |
Collapse
|
14
|
Bauer JA, Zámocká M, Majtán J, Bauerová-Hlinková V. Glucose Oxidase, an Enzyme "Ferrari": Its Structure, Function, Production and Properties in the Light of Various Industrial and Biotechnological Applications. Biomolecules 2022; 12:472. [PMID: 35327664 PMCID: PMC8946809 DOI: 10.3390/biom12030472] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/25/2023] Open
Abstract
Glucose oxidase (GOx) is an important oxidoreductase enzyme with many important roles in biological processes. It is considered an "ideal enzyme" and is often called an oxidase "Ferrari" because of its fast mechanism of action, high stability and specificity. Glucose oxidase catalyzes the oxidation of β-d-glucose to d-glucono-δ-lactone and hydrogen peroxide in the presence of molecular oxygen. d-glucono-δ-lactone is sequentially hydrolyzed by lactonase to d-gluconic acid, and the resulting hydrogen peroxide is hydrolyzed by catalase to oxygen and water. GOx is presently known to be produced only by fungi and insects. The current main industrial producers of glucose oxidase are Aspergillus and Penicillium. An important property of GOx is its antimicrobial effect against various pathogens and its use in many industrial and medical areas. The aim of this review is to summarize the structure, function, production strains and biophysical and biochemical properties of GOx in light of its various industrial, biotechnological and medical applications.
Collapse
Affiliation(s)
- Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Monika Zámocká
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| | - Juraj Majtán
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
- Department of Microbiology, Faculty of Medicine, Slovak Medical University, Limbová 12, 833 03 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, 845 51 Bratislava, Slovakia; (J.A.B.); (M.Z.); (J.M.)
| |
Collapse
|