1
|
Yeheyo HA, Ealias AM, George G, Jagannathan U. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121409. [PMID: 38861884 DOI: 10.1016/j.jenvman.2024.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
The escalating environmental concerns arising from soils contamination with heavy metals (HMs) and pesticides (PSTs) necessitate the development of sustainable and effective remediation strategies. These contaminants, known for their carcinogenic properties and toxicity even at small amounts, pose significant threats to both environmental ecology and human health. While various chemical and physical treatments are employed globally, their acceptance is often hindered by prolonged remediation times, high costs, and inefficacy in areas with exceptionally high pollutant concentrations. A promising emerging trend in addressing this issue is the utilization of microalgae for bioremediation. Bioremediation, particularly through microalgae, presents numerous benefits such as high efficiency, low cost, easy accessibility and an eco-friendly nature. This approach has gained widespread use in remediating HM and PST pollution, especially in large areas. This comprehensive review systematically explores the bioremediation potential of microalgae, shedding light on their application in mitigating soil pollutants. The paper summarizes the mechanisms by which microalgae remediate HMs and PSTs and considers various factors influencing the process, such as pH, temperature, pollutant concentration, co-existing pollutants, time of exposure, nutrient availability, and light intensity. Additionally, the review delves into the response and tolerance of various microalgae strains to these contaminants, along with their bioaccumulation capabilities. Challenges and future prospects in the microalgal bioremediation of pollutants are also discussed. Overall, the aim is to offer valuable insights to facilitate the future development of commercially viable and efficient microalgae-based solutions for pollutant bioremediation.
Collapse
Affiliation(s)
- Hillary Agaba Yeheyo
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Anu Mary Ealias
- Department of Civil Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Giphin George
- Department of Mechanical Engineering, Koneru Lakshmaiah Education Foundation, Green Fields, Vaddeswaram, A.P, 522302, India.
| | - Umamaheswari Jagannathan
- Department of Civil Engineering, Priyadarshini Engineering College, Vaniyambadi, Tirupattur, TN, 635751, India.
| |
Collapse
|
2
|
Shahzad K, Danish S, Mubeen S, Dawar K, Fahad S, Hasnain Z, Ansari MJ, Almoallim HS. Minimization of heavy metal toxicity in radish (Raphanus sativus) by strigolactone and biochar. Sci Rep 2024; 14:13616. [PMID: 38871988 DOI: 10.1038/s41598-024-64596-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/11/2024] [Indexed: 06/15/2024] Open
Abstract
Due to the high solubility of Cd in water, it is considered a potential toxin which can cause cancer in humans. In plants, it is associated with the development of oxidative stress due to the generation of reactive oxygen species. To overcome this issue, the roles of different plant hormones are vital. Strigolactones, one of such natural plant hormones, show promise in alleviating cadmium toxicity by mitigating its harmful effects. Acidified biochar (AB) can also effectively mitigate cadmium toxicity via ion adsorption and pH buffering. However, the combined effects of strigolactone and AB still need in-depth investigations in the context of existing literature. This study aimed to assess the individual and combined impacts of SLs (0 and 25 µM) and AB (0 and 0.75% w/w) on radish growth under Cd toxicity, i.e., 0 and 20 mg Cd/kg soil. Using a fully randomized design (CRD), each treatment was administered in four replicates. In comparison to the control under 20 mg Cd/kg soil contamination, the results showed that 25 µM strigolactone + 0.75% AB significantly improved the following: radish shoot length (~ 17%), root length (~ 47%), plant fresh weight (~ 28%), plant dry weight (~ 96%), chlorophyll a (~ 43%), chlorophyll b (~ 31%), and total chlorophyll (~ 37%). It was also noted that 0.75% AB was more pronounced in decreasing antioxidant activities than 25 µM strigolactone under 20 mg Cd/ kg soil toxicity. However, performing 25 µM strigolactone + 0.75% AB was far better than the sole application of 25 µM strigolactone and 0.75% AB in decreasing antioxidant activities in radish plants. In conclusion, by regulating antioxidant activities, 25 µM strigolactone + 0.75% AB can increase radish growth in cadmium-contaminated soils.
Collapse
Affiliation(s)
- Khurram Shahzad
- Department of Soil Science, University College of Dera Murad Jamali, LUAWMS, Dera Murad Jamali, Balochistan, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Sidra Mubeen
- Department of Chemistry, The Women University Multan, Multan, 66000, Pakistan
| | - Khadim Dawar
- Department of Soil and Environmental Science, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, 23200, Pakistan.
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| | - Zuhair Hasnain
- Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (MJP Rohilkhand University Bareilly), Moradabad, 244001, India
| | - Hesham S Almoallim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, King Saud University, PO Box-60169, 11545, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Sharma J, Kumar S, Singh P, Kumar V, Verma S, Khyalia P, Sharma A. Emerging role of osmoprotectant glycine betaine to mitigate heavy metals toxicity in plants: a systematic review. Biol Futur 2024; 75:159-176. [PMID: 38183566 DOI: 10.1007/s42977-023-00198-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/08/2023] [Indexed: 01/08/2024]
Abstract
Heavy metals (HMs) toxicity has become one of the major global issues and poses a serious threat to the environment in recent years. HM pollution in agricultural soil is caused by metal mining, smelting, volcanic activity, industrial discharges, and excessive use of phosphate fertilizers. HMs above a threshold level adversely affect the cellular metabolism of plants by producing reactive oxygen species (ROS), which attack cellular proteins. There are different mechanisms (physiological and morphological) adopted by plants to survive in the era of abiotic stress. Various osmoprotectants or compatible solutes, including amino acids, sugar, and betaines, enable the plants to counteract the HM stress. Glycine betaine (GB) is an effective osmolyte against HM stress among compatible solutes. GB has been shown to improve plant growth, photosynthesis, uptake of nutrients, and minimize oxidative stress in plants under HM stress. Additionally, GB increases the activity of antioxidant enzymes such as CAT (catalase), SOD (superoxide dismutase), and POD (peroxidase), which are effective in scavenging unwarranted ROS. Since not all species of plants can naturally produce or accumulate GB in response to stress, various approaches have been explored for introducing them. Plant hormones like salicylic acid, ABA (abscisic acid), and JA (jasmonic acid) co-ordinately stimulate the accumulation of GB inside the cell under HM stress. Apart from the exogenous application, the introduction of GB pathway genes in GB deficient species via genetic engineering also seems to be efficient in mediating HM stress. This review complied the beneficial effects of GB in mitigating HM stress and its role as a plant growth regulator. Additionally, the review explores the potential for engineering GB biosynthesis in plants as a strategy to bolster their resilience to HMs.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Sandeep Kumar
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Shivani Verma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
- Department of Botany, Baba Mast Nath University, Rohtak, Haryana, 124001, India.
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| |
Collapse
|
4
|
Younis U, Danish S, Datta R, Alahmadi TA, Ansari MJ. Sustainable remediation of chromium-contaminated soils: boosting radish growth with deashed biochar and strigolactone. BMC PLANT BIOLOGY 2024; 24:115. [PMID: 38365582 PMCID: PMC10870680 DOI: 10.1186/s12870-024-04791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Chromium (Cr) stress significantly hinders crop production by disrupting nutrient uptake, impairing plant growth, and contaminating soil, posing a substantial threat to agricultural sustainability. The use of deashed biochar (DAB) and strigolactone can be an effective solution to mitigate this issue. Deashed biochar enhances crop production by improving soil structure, water retention, and nutrient availability while mitigating the bioavailability of toxic substances. Strigolactone boosts plant growth by stimulating root growth, branching, shoot formation, and overall plant physiology. Nevertheless, the scientific rationale behind their collective use as an amendment to counter Cr stress remains to be substantiated. Therefore, in this study, a blend of DAB and strigolactone was employed as additives in radish cultivation, both in the absence of Cr stress and under the influence of 200Cr stress. Four treatments, i.e., 0, 20µM Strigolactone, DAB, and 20µM Strigolactone + DAB, were applied in four replications following a completely randomized design. Results demonstrate that 20µM Strigolactone + DAB produced significant improvement in radish shoot length (27.29%), root length (45.60%), plant fresh weight (33.25%), and plant dry weight (78.91%), compared to the control under Cr stress. Significant enrichment in radish chlorophyll a (20.41%), chlorophyll b (58.53%), and total chlorophyll (31.54%) over the control under Cr stress, prove the efficacy of 20µM Strigolactone + DAB treatment. In conclusion, 20µM Strigolactone + DAB is the recommended amendment for mitigating Cr stress in radish. Farmers should consider using Strigolactone + DAB amendments to combat Cr stress and enhance radish growth, contributing to a more resilient agricultural ecosystem.
Collapse
Affiliation(s)
- Uzma Younis
- Botany Department, The Islamia University of Bahawalpur, Sub Campus Rahim Yar Khan, Rahim Yar Khan, Punjab, Pakistan
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Rahul Datta
- Department of Geology and Pedology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Zemedelska 1, Brno, 61300, Czech Republic.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
5
|
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3816. [PMID: 38005713 PMCID: PMC10675783 DOI: 10.3390/plants12223816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
6
|
Goncharuk EA, Zagoskina NV. Heavy Metals, Their Phytotoxicity, and the Role of Phenolic Antioxidants in Plant Stress Responses with Focus on Cadmium: Review. Molecules 2023; 28:molecules28093921. [PMID: 37175331 PMCID: PMC10180413 DOI: 10.3390/molecules28093921] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The current state of heavy metal (HM) environmental pollution problems was considered in the review: the effects of HMs on the vital activity of plants and the functioning of their antioxidant system, including phenolic antioxidants. The latter performs an important function in the distribution and binding of metals, as well as HM detoxification in the plant organism. Much attention was focused on cadmium (Cd) ions as one of the most toxic elements for plants. The data on the accumulation of HMs, including Cd in the soil, the entry into plants, and the effect on their various physiological and biochemical processes (photosynthesis, respiration, transpiration, and water regime) were analyzed. Some aspects of HMs, including Cd, inactivation in plant tissues, and cell compartments, are considered, as well as the functioning of various metabolic pathways at the stage of the stress reaction of plant cells under the action of pollutants. The data on the effect of HMs on the antioxidant system of plants, the accumulation of low molecular weight phenolic bioantioxidants, and their role as ligand inactivators were summarized. The issues of polyphenol biosynthesis regulation under cadmium stress were considered. Understanding the physiological and biochemical role of low molecular antioxidants of phenolic nature under metal-induced stress is important in assessing the effect/aftereffect of Cd on various plant objects-the producers of these secondary metabolites are widely used for the health saving of the world's population. This review reflects the latest achievements in the field of studying the influence of HMs, including Cd, on various physiological and biochemical processes of the plant organism and enriches our knowledge about the multifunctional role of polyphenols, as one of the most common secondary metabolites, in the formation of plant resistance and adaptation.
Collapse
Affiliation(s)
- Evgenia A Goncharuk
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| | - Natalia V Zagoskina
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia
| |
Collapse
|
7
|
Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14148329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Is there any relationship between plant nutrition and human health? The overall response to this question is very positive, and a strong relationship between the nutrition of plants and humans has been reported in the literature. The nutritional status of edible plants consumed by humans can have a negative or positive impact on human health. This review was designed to assess the importance of plant bioactive compounds for human health under the umbrella of sustainable agriculture. With respect to the first research question, it was found that plant bioactives (e.g., alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due to their therapeutic benefits, and their potentiality depends on several factors, including botanical, environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered plants. Bioactive production of plants depends on many factors, especially climate change (heat stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in reviewing the literature, a positive or negative association was found depending on the kinds of stress or bioactives and their attributes. The observed correlation between plant bioactives and stress (or growth factors) might explain the importance of these bioactives for human health. Their accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The results of this study are in keeping with previous observational studies, which confirmed that the human nutrition might start from edible plants and their bioactive contents, which are consumed by humans. This review is the first report that analyzes this previously observed relationship using pictorial presentation.
Collapse
|