1
|
Mehrabi Z, Taheri-Kafrani A, Razmjou A, Cai D, Amiri H. Enhancing biobutanol production by optimizing acetone-butanol-ethanol fermentation from sorghum grains through strategic immobilization of amylolytic enzymes. BIORESOURCE TECHNOLOGY 2025; 419:132094. [PMID: 39832619 DOI: 10.1016/j.biortech.2025.132094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Tannin-containing sorghum grains, suitable for acetone-butanol-ethanol (ABE) production by Clostridium acetobutylicum, have required pretreatment to eliminate tannins inhibiting the strain's amylolytic activity. This study investigates biobutanol production enhancement by immobilizing enzymes on polydopamine-functionalized polyethersulfone (PES) membranes with magnetic nanoparticles for Separated Hydrolysis and Fermentation (SHF) and Simultaneous Saccharification and Fermentation (SSF) processes. After multi-stage hot water treatment, TG3 sorghum (from the third stage) was used, where the enzyme-immobilized PES membrane produced 4.75 g/L of ABE (3.24 g/L butanol) under SSF, 0.85 g/L under SHF, and 1.1 g/L under simple fermentation. For TG6 (from the sixth stage), 3.23, 1.29, and 1.25 g/L of ABE was produced under SSF, SHF, and simple fermentation, respectively. This enhanced performance is due to the reduced enzyme inhibition. Reusability experiments showed that the membrane retained 30 % of initial activity after three cycles. These findings suggest that enzyme-immobilized membranes can intensify ABE production and enable integrated cell recovery.
Collapse
Affiliation(s)
- Zahra Mehrabi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|
2
|
Alqarzaee F, Al Bari MA, Razzak SA, Uddin S. Biomass-based hydrogen production towards renewable energy sources: an advance study. EMERGENT MATERIALS 2024. [DOI: 10.1007/s42247-024-00931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/06/2024] [Indexed: 01/03/2025]
|
3
|
Ge S, Yang H, Li Y, Chen X, Yang R, Dong X. Mitigation of biofouling in membrane bioreactors by quorum-quenching bacteria during the treatment of metal-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32126-32135. [PMID: 38649608 DOI: 10.1007/s11356-024-33336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
Quorum quenching (QQ) is an efficient way to mitigate membrane biofouling in a membrane bioreactor (MBR) during wastewater treatment. A QQ bacterium, Lysinibacillus sp. A4, was isolated and used to mitigate biofouling in an MBR during the treatment of wastewater containing metals. A QQ enzyme (named AilY) was cloned from A4 and identified as a metallo-β-lactamase-like lactonase. The QQ activity of A4 and that of Escherichia coli BL21 (DE3) overexpressing AilY could be promoted by Fe2+, Mn2+, and Zn2+ while remaining unaffected by other metals tested. The two bacteria effectively mitigated biofouling by reducing the transmembrane pressure from around 30 to 20 kPa without negative influence on the COD, NH4+-N, or total phosphorus of the effluent. The relative abundance of Lysinibacillus sp. A4 increased greatly from 0.04 to 8.29% in the MBR with metal-containing wastewater, suggesting that Lysinibacillus sp. A4 could multiply quickly and adapt to this environment. Taken together, the findings suggested that A4 could tolerate metal to a certain degree, and this property could allow A4 to adapt well to metal-containing wastewater, making it a valuable strain for mitigating biofouling in MBR during the treatment of metal-containing wastewater.
Collapse
Affiliation(s)
- Shimei Ge
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Huiting Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Yaru Li
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China
| | - Xiaohui Chen
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Ruixue Yang
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China
| | - Xinjiao Dong
- College of Life and Environmental Science, Wenzhou University, Ou-Hai District, Cha-Shan Town, Wenzhou, Zhejiang Province, 325035, People's Republic of China.
- National & Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou, 325035, China.
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Ameen M, Zafar M, Ahmad M, Munir M, Abid I, Mustafa AEZMA, Athar M, Makhkamov T, Mamarakhimov O, Yuldashev A, Khaydarov K, Mammadova AO, Botirova L, Makkamov Z. Cleaner Biofuel Production via Process Parametric Optimization of Nonedible Feedstock in a Membrane Reactor Using a Titania-Based Heterogeneous Nanocatalyst: An Aid to Sustainable Energy Development. MEMBRANES 2023; 13:889. [PMID: 38132893 PMCID: PMC10744951 DOI: 10.3390/membranes13120889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023]
Abstract
Membrane technology has been embraced as a feasible and suitable substitute for conventional time- and energy-intensive biodiesel synthesis processes. It is ecofriendly, easier to run and regulate, and requires less energy than conventional approaches, with excellent stability. Therefore, the present study involved the synthesis and application of a highly reactive and recyclable Titania-based heterogeneous nanocatalyst (TiO2) for biodiesel production from nonedible Azadhiracta indica seed oil via a membrane reactor, since Azadhiracta indica is easily and widely accessible and has a rich oil content (39% w/w). The high free fatty acids content (6.52 mg/g KOH) of the nonedible oil was decreased to less than 1% via two-step esterification. Following the esterification, transesterification was performed using a heterogeneous TiO2 nanocatalyst under optimum conditions, such as a 9:1 methanol-oil molar ratio, 90 °C reaction temperature, 2 wt.% catalyst loading, and an agitation rate of 600 rpm, and the biodiesel yield was optimized through response surface methodology (RSM). Azadhiracta indica seed oil contains 68.98% unsaturated (61.01% oleic acid, 8.97% linoleic acid) and 31.02% saturated fatty acids (15.91% palmitic acid, 15.11% stearic acid). These fatty acids transformed into respective methyl esters, with a total yield up to 95% achieved. The biodiesel was analyzed via advanced characterization techniques like gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR), whereas the catalyst was characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and Fourier transform infrared spectroscopy (FT-IR). Due to its physicochemical properties, Azadirachta indica seed oil is a highly recommended feedstock for biodiesel production. Moreover, it is concluded that the Titania-based heterogeneous nanocatalyst (TiO2) is effective for high-quality liquid fuel synthesis from nonedible Azadirachta indica seed oil in a membrane reactor, which could be an optional green route to cleaner production of bioenergy, eventually leading to sustenance, robustness, and resilience that will aid in developing a holistic framework for integrated waste management.
Collapse
Affiliation(s)
- Maria Ameen
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Capital Territory, Islamabad 15320, Pakistan (M.A.)
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Capital Territory, Islamabad 15320, Pakistan (M.A.)
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University Islamabad, Capital Territory, Islamabad 15320, Pakistan (M.A.)
- Pakistan Academy of Sciences, Constitution Avenue, G-5/2 G-5, Islamabad 44000, Pakistan
| | - Mamoona Munir
- Department of Botany, Rawalpindi Women University, 6th Rd., Satellite Town, Rawalpindi Punjab 46300, Pakistan
| | - Islem Abid
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.A.); (A.E.-Z.M.A.M.)
| | - Abd El-Zaher M. A. Mustafa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (I.A.); (A.E.-Z.M.A.M.)
| | - Mohammad Athar
- California Department of Food and Agriculture, Pest Detection & Emergency Projects, 1220 ‘N’ Street, 2nd Floor, Sacramento, CA 95814, USA;
| | - Trobjon Makhkamov
- Department of Forestry and Landscape Design, Tashkent State Agrarian University, 2 A., Universitet Str., Kibray District, Tashkent 100700, Uzbekistan
| | - Oybek Mamarakhimov
- Department of Ecological Monitoring, National University of Uzbekistan, 4 University Street, Tashkent 100174, Uzbekistan
| | - Akramjon Yuldashev
- Department of Ecology and Botany, Andijan State University, 129, Universitet Str., Andijan 170100, Uzbekistan
| | - Khislat Khaydarov
- Institute of Biochemistry, Samarkand State University, University blv. 15, Samarkand 140104, Uzbekistan
| | - Afat O. Mammadova
- Department of Botany and Plant Physiology, Baku State University, Baku 1148, Azerbaijan
| | - Laziza Botirova
- Department of Medicinal Plants and Botany, Gulistan State University, 4, Micro-District, Gulistan, Sirdarya 120100, Uzbekistan
| | - Zokirjon Makkamov
- Department of Customs Regulation and Customs Payments, Customs Institute of the Customs Committee of the Republic of Uzbekistan, Qazirabad 2-Street, 118, Tashkent 100071, Uzbekistan
| |
Collapse
|
5
|
Khatik AG, Jain AK, Muley AB. Preparation, characterization and stability of cross linked nitrilase aggregates (nitrilase-CLEAs) for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Bioprocess Biosyst Eng 2022; 45:1559-1579. [PMID: 35962826 DOI: 10.1007/s00449-022-02766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Nitrilases capable of performing hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid were screened, and ES-NIT-102 was the best nitrilase for said biotransformation. Nitrilase was immobilized as cross linked enzyme aggregates (nitrilase-CLEAs) by fractional precipitation with iso-propanol, and cross linked with glutaraldehyde. The nitrilase-CLEAs prepared with optimized 35 mM glutaraldehyde for 120 min cross linking time had 82.36 ± 4.45% residual activity, and displayed type-II structural CLEAs formation as confirmed by particle size, SEM, FTIR, and SDS-PAGE analysis. Nitrilase-CLEAs had superior pH and temperature stability, showed a shift in optimal temperature by 5 °C, and retained nearly 1.5 to 1.7 folds activity over free nitrilase at 50 °C and 55 °C after more than 9 h incubation. Nitrilase-CLEAs showed reduced affinity and decreased conversion of substrate as indicated by slightly higher Km values by 5.19% and reduced Vmax by 17%. Furthermore, these nitrilase-CLEAs showed 98% conversion, 94.72 g/L product formation, and 83.30% recovery after 24 h when used for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Nitrilase-CLEAs were catalytically active for 3 cycles showcasing 81% conversion, 75.53 g/L product formation and 66.42% yield. The recovered product was confirmed by HPLC, FTIR, LC-MS, and 1H NMR, and displayed > 99% purity.
Collapse
Affiliation(s)
- Amol Gulab Khatik
- School of Basic & Applied Sciences, Galgotias University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India.
| | - Arvind Kumar Jain
- School of Basic & Applied Sciences, Galgotias University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India
| | | |
Collapse
|