1
|
Lopes-Fatturi A, Fonseca-Souza G, Wambier LM, Brancher JA, Küchler EC, Feltrin-Souza J. Genetic polymorphisms associated with developmental defects of enamel: A systematic review. Int J Paediatr Dent 2025; 35:298-310. [PMID: 38949474 DOI: 10.1111/ipd.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/20/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Polymorphisms in genes related to enamel formation and mineralization may increase the risk of developmental defects of enamel (DDE). AIM To evaluate the existing literature on genetic polymorphisms associated with DDE. DESIGN This systematic review was registered in the PROSPERO (CRD42018115270). The literature search was performed in PubMed, Scopus, Web of Science, LILACS, BBO, Cochrane Library, and in the gray literature. Observational studies assessing the association between DDE and genetic polymorphism were included. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS One thousand one hundred and forty-six articles were identified, and 28 met the inclusion criteria. Five studies presented a low risk of bias. Ninety-two genes related to enamel development, craniofacial patterning morphogenesis, immune response, and hormone transcription/reception were included. Molar-incisor hypomineralization (MIH) and/or hypomineralization of primary second molars (HPSM) were associated with 80 polymorphisms of genes responsible for enamel development, immune response, morphogenesis, and xenobiotic detoxication. A significant association was found between the different clinical manifestations of dental fluorosis (DF) with nine polymorphisms of genes responsible for enamel development, craniofacial development, hormonal transcription/reception, and oxidative stress. Hypoplasia was associated with polymorphisms located in intronic regions. CONCLUSION MIH, HPSM, DF, and hypoplasia reported as having a complex etiology are significantly associated with genetic polymorphisms of several genes.
Collapse
|
2
|
Zhang C, Lv W, Liu Y, Liu Y, Wang Q, Yang Y, Gao Y, Jiang Y. Association between ESR1 and COL1A1 gene polymorphisms and skeletal fluorosis in Tibetan, Kazakh, Mongolian and Russian populations, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125697. [PMID: 39824337 DOI: 10.1016/j.envpol.2025.125697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/17/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
BACKGROUND Skeletal fluorosis is a chronic metabolic bone disease caused by excessive accumulation of fluoride in the bones. Previous studies have found that when the intake of tea fluoride is similar, the prevalence of skeletal fluorosis varies greatly among different ethnic groups, which may be related to different genetic backgrounds. Single nucleotide polymorphisms (SNPs) of estrogen receptor 1 (ESR1) and collagen type 1 α1 (COL1A1) were strongly associated with bone metabolism as well as bone growth and development, but their association with the risk of skeletal fluorosis has not been reported. PURPOSE To explore the incidence of skeletal fluorosis in different nationalities in the endemic fluorosis area of brick-tea type. To study the relationship between 4 SNPS of ESR1 and COL1A1 gene and skeletal fluorosis. METHODS A cross-sectional study was conducted in Inner Mongolia, Qinghai and Xinjiang. By including exclusion criteria, a total of 989 people were included in the study, demographic data were collected, and physical examinations and laboratory biochemical tests were performed. The X-ray of the participants were diagnosed according to the diagnostic criteria of Chinese endemic skeletal fluorosis (WS192-2008). Fluoride levels in tea or urine were measured using fluoride ion electrodes. SNP was evaluated using Sequenom-MassARRAY system. RESULT The prevalence of skeletal fluorosis varies among different nationalities. Binary logistic regression found that carried the ESR1 Rs9340799 G allele played a protective role in brick-tea-type fluorosis (OR = 0.673[95% CI, 0.495,0.914]). Russians carried the COL1A1 Rs1800012 T allele had a significantly higher risk of developing skeletal fluorosis (OR = 6.370 [95% CI, 1.413,28.715]). When stratified by sex, carriage of the T allele in COL1A1 Rs1800012 significantly increased the risk of developing skeletal fluorosis in Russian men. At the same time, changes in tea fluoride intake and older age can affect the effect of genetic background differences on the risk of skeletal fluorosis. CONCLUSION Our data suggested that there may be a genetic component to the risk of skeletal fluorosis in participants of different ethnicities and that this difference could modified by tea fluoride intake, sex or age.
Collapse
Affiliation(s)
- Chao Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Wenbo Lv
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Ying Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yunzhu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Qingbo Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China.
| | - Yuting Jiang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China; NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, China; Joint Key Laboratory of Endemic Diseases, Harbin Medical University, Guizhou Medical University, Xi'an Jiaotong University, China; Center for Chronic Disease Prevention and Control, Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Kallala R, Slimani A, Gassara Y, Garrach B, Chouchen S, Foddha H, Rouis A, Kenani A. The association between Dental Fluorosis and COL1A2 gene polymorphism among a Tunisian Population. BMC Oral Health 2024; 24:376. [PMID: 38519884 PMCID: PMC10958825 DOI: 10.1186/s12903-024-04086-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/28/2024] [Indexed: 03/25/2024] Open
Abstract
Dental fluorosis (DF) is a prevalent developmental defect of tooth enamel caused by exposure to excessive fluoride, with the severity dependent on various factors. This study aimed to investigate the association between DF and a specific genetic polymorphism (rs412777) in the COL1A2 gene among a Tunisian population. A case-control study was conducted from July to November 2022, involving a total of 95 participants including 51 cases and 44 controls. Dental examinations and genetic analysis were performed to assess the relationship between the COL1A2 gene polymorphism and DF.The results of allelic distribution revealed that A allele carriers were significantly protected against (DF) when compared to those with the C allele (C vs. A, p = 0.001; OR = 0.375 (0.207-0.672)). This suggests a strong correlation between the presence of the C allele and the risk of developing DF. Additionally, significant association between the CC genotype of rs412777 and an increased risk of DF was found under both codominant and dominant genetic models (P = 0.002 and P < 0.001 respectively).The findings suggest that genetic predisposition plays a relevant role in the development of DF. Further research is needed to explore the potential use of genetic markers for DF and their implications for public health. This study provides the first insights into the genetic factors associated with DF in the Tunisian population, contributing to our understanding of this prevalent dental condition.
Collapse
Affiliation(s)
- Rim Kallala
- Faculty of dental Medicine Monastir, University of Monastir, Monastir, 5000, Tunisia.
- Laboratory of Occlusodontics and Ceramic Prostheses, Monastir, LR16ES15, 5000, Tunisia.
| | - Afef Slimani
- Faculty of Medicine Monastir Tunisia, University of Monastir, Monastir, 5000, Tunisia
- laboratory of Environment, Inflammation, Signaling and Pathologies, Monastir, LR 18ES40, 5000, Tunisia
| | - Yosra Gassara
- Faculty of dental Medicine Monastir, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of Occlusodontics and Ceramic Prostheses, Monastir, LR16ES15, 5000, Tunisia
| | - Behaeddin Garrach
- Faculty of Medicine Monastir Tunisia, University of Monastir, Monastir, 5000, Tunisia
| | - Sawssen Chouchen
- Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
- Hematology department, Fattouma Bourguiba University Hospital, Monastir, 5000, Tunisia
- Laboratory of human genome and multifactorial diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - Hajer Foddha
- Faculty of Pharmacy, University of Monastir, Monastir, 5000, Tunisia
- Laboratory of human genome and multifactorial diseases (LR12ES07), Faculty of Pharmacy, University of Monastir, University of Monastir, Monastir, 5000, Tunisia
| | - Asma Rouis
- Stomatology department, Hospital of Jammel, Monastir, 5000, Tunisia
| | - Aberraouf Kenani
- Faculty of Medicine Monastir Tunisia, University of Monastir, Monastir, 5000, Tunisia
- laboratory of Environment, Inflammation, Signaling and Pathologies, Monastir, LR 18ES40, 5000, Tunisia
| |
Collapse
|
4
|
Aryan Y, Pon T, Panneerselvam B, Dikshit AK. A comprehensive review of human health risks of arsenic and fluoride contamination of groundwater in the South Asia region. JOURNAL OF WATER AND HEALTH 2024; 22:235-267. [PMID: 38421620 PMCID: wh_2023_082 DOI: 10.2166/wh.2023.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The present study found that ∼80 million people in India, ∼60 million people in Pakistan, ∼70 million people in Bangladesh, and ∼3 million people in Nepal are exposed to arsenic groundwater contamination above 10 μg/L, while Sri Lanka remains moderately affected. In the case of fluoride contamination, ∼120 million in India, >2 million in Pakistan, and ∼0.5 million in Sri Lanka are exposed to the risk of fluoride above 1.5 mg/L, while Bangladesh and Nepal are mildly affected. The hazard quotient (HQ) for arsenic varied from 0 to 822 in India, 0 to 33 in Pakistan, 0 to 1,051 in Bangladesh, 0 to 582 in Nepal, and 0 to 89 in Sri Lanka. The cancer risk of arsenic varied from 0 to 1.64 × 1-1 in India, 0 to 1.07 × 10-1 in Pakistan, 0 to 2.10 × 10-1 in Bangladesh, 0 to 1.16 × 10-1 in Nepal, and 0 to 1.78 × 10-2 in Sri Lanka. In the case of fluoride, the HQ ranged from 0 to 21 in India, 0 to 33 in Pakistan, 0 to 18 in Bangladesh, 0 to 10 in Nepal, and 0 to 10 in Sri Lanka. Arsenic and fluoride have adverse effects on animals, resulting in chemical poisoning and skeletal fluorosis. Adsorption and membrane filtration have demonstrated outstanding treatment outcomes.
Collapse
Affiliation(s)
- Yash Aryan
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India E-mail:
| | - Thambidurai Pon
- Department of Coastal Disaster Management, School of Physical, Chemical and Applied Sciences, Pondicherry University, Port Blair Campus - 744112, Andaman and Nicobar Islands, India
| | - Balamurugan Panneerselvam
- Center of Excellence in Interdisciplinary Research for Sustainable Development, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anil Kumar Dikshit
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T. Fluoride Exposure and Skeletal Fluorosis: a Systematic Review and Dose-response Meta-analysis. Curr Environ Health Rep 2023; 10:417-441. [PMID: 37861949 DOI: 10.1007/s40572-023-00412-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/21/2023]
Abstract
PURPOSE OF REVIEW We performed a systematic review and meta-analysis on the relation between fluoride exposure and skeletal fluorosis (SF) using a novel statistical methodology for dose-response modeling. RECENT FINDINGS Skeletal fluorosis, a major health issue that is endemic in some regions, affects millions of people worldwide. However, data regarding the dose-response relation between fluoride exposure and SF are limited and outdated. We included twenty-three studies in the meta-analysis. When comparing the highest versus the lowest fluoride category, the summary risk ratio (RR) for SF prevalence was 2.05 (95% CI 1.60; 2.64), with a value of 2.73 (95% CI 1.92; 3.90) for drinking water and 1.40 (95% CI 0.90; 2.17) for urinary fluoride. The RR by the risk of bias (RoB) was 2.37 (95% CI 1.56; 3.58) and 1.78 (95% CI 1.34; 2.36) for moderate and high RoB studies, respectively. The dose-response curve based on a one-stage cubic spline regression model showed an almost linear positive relation between exposure and SF occurrence starting from relatively low concentrations up to 5 mg/L and 2.5 mg/L, respectively, for water and urinary fluoride, with no substantial increase above this threshold. The RR for developing moderate-severe forms increases at 5.00 mg/L and 2.5 mg/L of water and urinary fluoride, respectively. Better-quality studies are needed to confirm these results, but greater attention should be given to water fluoride levels to prevent SF, in addition to the other potential adverse effects of fluoride exposure.
Collapse
Affiliation(s)
- Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Inga Iamandii
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02215, USA.
| | - Linda S Birnbaum
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Luigi Generali
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance (CHIMOMO), Unit of Dentistry & Oral-Maxillo-Facial Surgery - University of Modena and Reggio Emilia, 41124, Modena, Italy
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Medical School - University of Modena and Reggio Emilia, 41124, Modena, Italy
- School of Public Health, University of California Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
6
|
Wen C, Zhang Q, Xie F, Jiang J. Brick tea consumption and its relationship with fluorosis in Tibetan areas. Front Nutr 2022; 9:1030344. [PMID: 36583212 PMCID: PMC9792988 DOI: 10.3389/fnut.2022.1030344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Brick tea-type fluorosis (BTF) due to a high intake of brick tea is possible in Tibetan populations, and dental fluorosis (DF) and skeletal fluorosis (SF) are its primary manifestations. To determine the prevalence of DF and SF and their relationships with brick tea intake in Tibetan populations, a literature review was conducted for studies published between 1994 and 2021. The available evidence revealed that brick tea may be produced from older stems and leaves of the tea plant and that the fluoride content of brick tea exceeds the national standard. The harsh environment of the plateau has led to limited food sources for the local Tibetan people who form the habit of drinking tea leaves as a satiation solution to digest greasy food and replenish vitamins, and regular consumption of brick tea leads to excessive exposure of Tibetan residents to fluoride. Studies in Tibet showed that the prevalence of DF in children was 14.06-75.93% in different districts, and the overall pooled prevalence of DF was 26.08%. The prevalence of SF in adults was 19.90-74.77% in different Tibetan districts, and the overall pooled prevalence of SF was 33.84%. The analysis of risk factors showed that the prevalence of BTF may be related to high-altitude and different working and living conditions, and BTF in children may be associated with fluoride intake during mothers' pregnancy and lactation. With the development of bioinformatics research, gene polymorphisms were suspected to be related to susceptibility to fluorosis in Tibetan populations. The study of BTF in Tibetan people needs to be further investigated and standardized, and additional studies evaluating the pathogenesis and preventive measures of BTF are warranted.
Collapse
Affiliation(s)
- Cai Wen
- Department of Oral Implantology, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,Department of VIP Dental Service, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,*Correspondence: Cai Wen, ; orcid.org/0000-0002-3400-5382
| | - Qing Zhang
- Department of Nosocomial Infection Control, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Xie
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| | - Jixin Jiang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, China,School of Stomatology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
González-Casamada C, Nevarez-Rascón M, Nevarez-Rascón A, González-Galván M, Isiordia-Espinoza MA, Bologna-Molina R, Sánchez-Pérez L, Molina-Frechero N. Single Nucleotide Polymorphisms and Dental Fluorosis: A Systematic Review. Dent J (Basel) 2022; 10:211. [PMID: 36354656 PMCID: PMC9689045 DOI: 10.3390/dj10110211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 12/01/2023] Open
Abstract
Genetic factors contribute to susceptibility and resistance to fluoride exposure. The aim of this systematic review was to identify alleles/genotypes of single nucleotide polymorphisms (SNPs) associated with dental fluorosis (DF) and to identify them as protective or risk factors. PubMed, ScienceDirect, Cochrane Library, Scopus and Web of Science were searched for articles; the last search was performed in August 2022. Human studies that analyzed the relationship between SNPs and DF published in English were included; systematic reviews and meta-analyses were excluded. Methodological quality was graded using the Joanna Briggs Institute checklist and risk of bias was assessed using the Cochrane Collaboration's tool. Eighteen articles were included, 44% of which showed high methodological quality and data from 5,625 participants aged 6 to 75 years were analyzed. The SNPs COL1A2, ESR2, DLX1, DLX2, AMBN, TUFT1, TFIP11, miRNA17, and SOD2 were considered risk factors, and ESR1, MMP20, and ENAM were considered protective factors. In conclusion, there are alleles and genotypes of different single nucleotide polymorphisms involved in increasing or decreasing the risk of developing dental fluorosis.
Collapse
Affiliation(s)
- Carlos González-Casamada
- Health Care Department, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | | | | | | | - Mario Alberto Isiordia-Espinoza
- Institute of Research in Medical Sciences, Department of Clinics, Los Altos University Center, University of Guadalajara, Tepatitlan de Morelos 47650, Jalisco, Mexico
| | - Ronell Bologna-Molina
- Research Department, School of Dentistry, Juarez University of the Durango State, Durango 34000, Mexico
- Molecular Pathology Area, School of Dentistry, University of the Republic, Montevideo 11200, Uruguay
| | - Leonor Sánchez-Pérez
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| | - Nelly Molina-Frechero
- Division of Biological and Health Sciences, Autonomous Metropolitan University Xochimilco, Mexico City 04960, Mexico
| |
Collapse
|
8
|
Chakraborty A, Pramanik S, Datta K, Goswami R, Saha D, Majumdar KK, Sikdar N. Possible Association Between Polymorphisms in ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2 Genes and Dental Fluorosis in a Population from an Endemic Region of West Bengal. Biol Trace Elem Res 2022; 200:4641-4653. [PMID: 35066749 DOI: 10.1007/s12011-021-03072-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022]
Abstract
Dental fluorosis (DF) is the most prevalent form of fluorosis in India affecting millions of people all over the country. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone γ-carboxyglutamic acid protein (BGLAP), secreted protein acidic and cysteine-rich (SPARC), vitamin D receptor (VDR), and matrix metallopeptidase 2 (MMP2) genes play critical roles in bone metabolism, bone formation, mineral metabolism, and mineralization, variants in these genes could influence susceptibility to DF. The present study was aimed at evaluating the association between 15 single-nucleotide polymorphisms (SNPs) in the six candidate genes (namely, ESR1, COL1A2, BGLAP, SPARC, VDR, and MMP2) and DF among 132 individuals (case = 71 and control = 61) living in a fluoride endemic region of West Bengal, India. No statistically significant association with disease risk was found when the genotypes and allele frequencies of each of the 15 SNPs was analyzed individually using odd's ratio with 95% confidence interval. "CC" and "AG" haplotypes of the COL1A2 gene showed a borderline association with DF. The present study is the first in India to use multifactor dimensionality reduction (MDR) analysis for identifying gene-gene and gene-environment interactions in fluorosis. The biomarker of serum fluoride showed a significant association with the disease state among the 17 attributes (15 SNPs and 2 biomarkers of urine fluoride and serum fluoride) (P value = 0.011). The best model of MDR analysis with maximized testing accuracy involved two SNPs from the ESR1 gene (rs9340799 and rs2077647) and one SNP from BGLAP gene (rs1543294) (P value < 0.0001).
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India.
| | - Kallol Datta
- National Institute of Biomedical Genomics, P.O. N.S.S., Kalyani, 741251, West Bengal, India
| | - Rakesh Goswami
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Depanwita Saha
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, 1F Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
| |
Collapse
|
9
|
García-Escobar TM, Valdivia-Gandur I, Astudillo-Rozas W, Aceituno-Antezana O, Yamadala B, Lozano de Luaces V, Chimenos-Küstner E, Manzanares-Céspedes MC. Moderate and Severe Dental Fluorosis in the Rural Population of Anantapur, India: Change in Their Biological Susceptibility? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11293. [PMID: 36141562 PMCID: PMC9517481 DOI: 10.3390/ijerph191811293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Dental fluorosis affects the quality of life. A cross-sectional, observational study was conducted in a community affected by endemic fluorosis for several generations with a conserved biological and social environment. The study included patients from the rural population of Anantapur, India. The Dean index (DI) and the Thylstrup and Fejerskov Index (TFI) were used for fluorosis classification. Additionally, water samples were collected for fluoride analysis, taken from the patients' living areas. The statistical association between the variables was analyzed. In total, 785 patients between 10 and 60 years old were included in the study (58.7% women and 41.3% men). Fluorosis signs were found in 94.6% of patients examined using the DI and 94.4% using the TFI. Moderate-severe dental fluorosis was observed in 62.8% by DI and 73.1% by TFI consuming untreated water with up to 2.9 ppm of fluoride. Furthermore, moderate-severe dental fluorosis was observed in 33.2% by DI and 39.9% by TFI consuming water with ≤1.5 ppm of fluoride. The high prevalence of moderate-severe dental fluorosis in patients consuming water with a low fluoride concentration suggests that other factors are involved. Biological susceptibility change could play an essential role in the severity of dental fluorosis in populations exposed for several generations, affecting its actual and future quality of life.
Collapse
Affiliation(s)
- Trina Mylena García-Escobar
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | | | - Wilson Astudillo-Rozas
- Biomedical Department, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Dentistry Department, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Biomedical Master of Science, Health Science Faculty, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Oscar Aceituno-Antezana
- Biomedical Department, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Dentistry Department, Universidad de Antofagasta, Antofagasta 1270300, Chile
- Biomedical Master of Science, Health Science Faculty, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | | | - Vicente Lozano de Luaces
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- Rural Development Trust, Vicente Ferrer Foundation, 08029 Barcelona, Spain
| | - Eduardo Chimenos-Küstner
- Department of Odonto-Stomatology, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - María Cristina Manzanares-Céspedes
- Human Anatomy and Embryology Unit, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08007 Barcelona, Spain
- UNIPRO—Unidade de Investigação em Patologia e Reabilitação Oral, Instituto Universitário de Ciências da Saúde (IUCS), CESPU, 4585-116 Gandra, Portugal
| |
Collapse
|
10
|
Effects of SNPs in SOD2 and SOD3 interacted with fluoride exposure on the susceptibility of dental fluorosis. Int J Hyg Environ Health 2021; 239:113879. [PMID: 34758947 DOI: 10.1016/j.ijheh.2021.113879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 11/21/2022]
Abstract
A total of 649 children aged 7-13 years of age were recruited in a cross-sectional study in Tongxu County, China (2017) to assess the effects of interaction between single nucleotide polymorphisms (SNPs) in SOD2 and SOD3 gene and fluoride exposure on dental fluorosis (DF) status. Associations between biomarkers and DF status were evaluated. Logistic regression suggested that the risk of DF in children with rs10370 GG genotype and rs5746136 TT genotype was 1.89-fold and 1.72-fold than that in children with TT/CC genotype, respectively. Increased T-SOD activity was associated with a lower risk of DF (OR = 0.99). The rs2855262*rs10370*UF model was regarded as the optimal interaction model in generalized multifactor dimensionality reduction analyses. Our findings suggested that rs4880 and rs10370 might be useful genetic markers for DF, and there might be interactions among rs10370 in SOD2, rs2855262 in SOD3, and fluoride exposure on DF status.
Collapse
|
11
|
Chu Y, Liu Y, Guo N, Lou Q, Wang L, Huang W, Wu L, Wang J, Zhang M, Yin F, Gao Y, Yang Y. Association between ALOX15 gene polymorphism and brick-tea type skeletal fluorosis in Tibetans, Kazaks and Han, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2021; 31:421-432. [PMID: 31565963 DOI: 10.1080/09603123.2019.1666972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
To evaluate the association between ALOX15 gene polymorphism and skeletal fluorosis (SF), a case-control study was conducted. A total of 1023 individuals, including 308 Tibetans, 290 Kazaks and 425 Han, were enrolled in this study, in which cases and controls were 278 and 745, respectively. SF was diagnosed by X-ray absorptiometry. SNPs were genotyped using the Sequenom Mass ARRAY system. The genotypes of ALOX15 rs7220870, rs2664593 and rs1107852 were not associated with the risk of SF. After reconstructing the haplotype of rs7220870 and rs11078528, the risk effect of haplotype CA was found in Han participants aged ≤45 years or with moderate fluoride intake. Diplotype of CC/CC had a protective effect on SF risk in Han participants; whereas, CA/CC diplotype showed a risk effect on SF risk in participants aged ≥65; Our results provide the first evidence of an association between ALOX15 gene polymorphism and SF risk in Han participants.Abbreviation: SF: Skeletal fluorosis; SNP: Single Nucleotide polymorphism.
Collapse
Affiliation(s)
- Yanru Chu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Limei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, Heilongjiang Province, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Saha D, Goswami R, Majumdar KK, Sikdar N, Pramanik S. Evaluating the Association Between Dental Fluorosis and Polymorphisms in Bone Development and Mineralization Genes Among Population from a Fluoride Endemic Region of Eastern India. Biol Trace Elem Res 2021; 199:1-8. [PMID: 32185656 DOI: 10.1007/s12011-020-02116-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/04/2020] [Indexed: 11/25/2022]
Abstract
Close to 12 million people in India are affected by more than the desirable level of fluoride in drinking water that could lead to dental, skeletal, and non-skeletal fluorosis. Dental fluorosis is a developmental defect that results in hypo-mineralization and pronounced porosity of enamel in the affected individuals. As estrogen receptor 1 (ESR1), collagen type 1 alpha 2 (COL1A2), bone γ-carboxyglutamic acid protein (BGLAP), and secreted protein acidic and cysteine rich (SPARC) genes are involved in bone development and mineralization, polymorphisms in these genes could be determining factors in influencing the risk to fluorosis among the exposed individuals in fluoride endemic areas. A case-control study was carried out among a total of 87 individuals (case = 36, control = 51) to examine the association between selected polymorphisms in the ESR1, COL1A2, BGLAP, and SPARC genes and risk of dental fluorosis from a fluoride endemic region of Eastern India. Altogether, 10 single nucleotide polymorphisms (SNPs) in ESR1 (rs2234693, rs2228480, rs3798577, rs2077647, and rs9340799), COL1A2 (rs42524, rs412777), BGLAP (rs1800247), and SPARC (rs6579885, rs4958278) genes were genotyped through PCR-RFLP in these subjects. The association of the SNPs for disease risk estimation was measured by odds ratio with 95% confidence interval. The risk genotypes of none of the 10 SNPs showed statistically significant association with risk of dental fluorosis. Frequencies of the haplotypes in the intragenic SNPs of the ESR1, COL1A2, and SPARC genes did not reveal any statistically significant difference between the case and control groups. The present study is the first of its kind from India that has attempted to investigate possible involvement of genetic factors in influencing the risk to fluorosis among the population from a fluoride endemic region.
Collapse
Affiliation(s)
- Depanwita Saha
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8, Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Rakesh Goswami
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8, Sector-C, East Kolkata Township, Kolkata, 700107, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College and Hospital, 1F Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, 203 B. T. Road, Baranagar, Kolkata, 700108, India
| | - Sreemanta Pramanik
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8, Sector-C, East Kolkata Township, Kolkata, 700107, India.
| |
Collapse
|
13
|
Abbasoglu Z, Dalledone M, Wambier LM, Pecharki G, Baratto-Filho F, Andrades KMR, Scariot R, Trevilatto PC, Brancher JA, Küchler EC. Single nucleotide polymorphism rs4284505 in microRNA17 and risk of dental fluorosis. Acta Odontol Scand 2020; 78:463-466. [PMID: 32619376 DOI: 10.1080/00016357.2020.1786600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the association between the single nucleotide polymorphism (SNP) rs4284505 within the gene that codifies microRNA17 (miRNA17) and dental fluorosis (DF) in a group of children. METHODS Children living in a city with fluoridation of public water supplies were included. DF was assessed in erupted permanent teeth by Dean's modified index. The miR-SNP rs4284505 was selected in miRNA17 and genotyping was carried out by real-time PCR. Genotype and allelic distributions between DF and control, and between DF phenotypes (mild, moderate and severe) and control were analysed. RESULTS Among a total of 527 children enrolled for the study, 383 were DF free and 144 presented DF. In the dominant model analysis (AA + AG vs. GG) the miR-SNP rs4284505 was associated with moderate DF, with carriers of the GG genotype having an increased risk of more than two times for DF (p = 0.031; Odds Ratio = 2.26, Confidence Interval 95%= 1.04-4.73). Allelic distribution showed borderline statistical significance for moderate DF with the carriers of G allele having an increased risk for DF (p = .050; Odds Ratio = 1.75, Confidence Interval 95%= 1.00-3.12). CONCLUSION The miR-SNP rs4284505 in miRNA17 was associated with an increased risk of DF.
Collapse
Affiliation(s)
- Zerrin Abbasoglu
- Department of Pediatric Dentistry, Yeditepe University, Istanbul, Turkey
| | - Mariana Dalledone
- School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
| | - Letícia M. Wambier
- Department of Dentistry, School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
| | - Giovana Pecharki
- Department of Community Health, Federal University of Parana, Curitiba, Brazil
| | - Flares Baratto-Filho
- School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
- School of Dentistry, Univille University, Joinville, Brazil
| | | | - Rafaela Scariot
- School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
| | - Paula C. Trevilatto
- Dental School, Pontifícia Universidade Católica do Paraná (PUC-PR), Curitiba, Brazil
| | - João A. Brancher
- School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
| | - Erika C. Küchler
- School of Health and Biological Sciences, Universidade Positivo, Curitiba, Brazil
- School of Dentistry, Univille University, Joinville, Brazil
| |
Collapse
|
14
|
Abstract
Since the classical epidemiological studies by Dean, it has been known that there should be an optimum level of exposure to fluoride that would be able to provide the maximum protection against caries, with minimum dental fluorosis. The "optimal" daily intake of fluoride for children (0.05-0.07 mg per kilogram bodyweight) that is still accepted worldwide was empirically determined. In the present review, we discuss the appropriateness of the current guidance for fluoride intake, in light of the windows of susceptibility to caries and fluorosis, the modern trends of fluoride intake from multiple sources, individual variations in fluoride metabolism, and recent epidemiological data. The main conclusion is that it is very difficult to think about a strict recommendation for an "optimal" range of fluoride intake at the individual level in light of existing knowledge of 1) the mechanisms of action of fluoride to control caries, 2) the mechanisms involved in dental fluorosis development, 3) the distinct factors that interfere in the metabolism of fluoride, and 4) the windows of susceptibility to both dental caries and fluorosis development. An "optimal" range of fluoride intake is, however, desirable at the population level to guide programs of community fluoridation, but further research is necessary to provide additional support for future decisions on guidance in this area. This list includes the effect of factors affecting fluoride metabolism, clinical trials on the effectiveness of low-fluoride dentifrices to prevent caries in the primary dentition, and validation of biomarkers of exposure to fluoride.
Collapse
Affiliation(s)
- M A R Buzalaf
- 1 Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Brazil
| |
Collapse
|
15
|
Association of COL1A2 (PvuII) gene polymorphism with risk and severity of dental fluorosis - A case control study. Saudi Dent J 2019; 31:463-468. [PMID: 31695295 PMCID: PMC6823789 DOI: 10.1016/j.sdentj.2019.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 05/13/2019] [Indexed: 11/21/2022] Open
Abstract
Introduction Dental fluorosis is a foremost public health problem in many countries, including India. Very few studies investigated gene polymorphism and risk of dental fluorosis. Genetic polymorphisms in Collagen Type I, alpha 2 (COL1A2) gene, found to be linked with bone pathogenesis, may affect the tooth formation resulting in the vulnerability to dental fluorosis. Aim To assess the association between COL1A2 (PvuII) gene polymorphism and risk as well as severity of dental fluorosis. Methods The present case control study was conducted among participants with (n = 60) and without (n = 60) dental fluorosis. Dental fluorosis was assessed using Modified Dean's fluorosis index (1942). The PvuII polymorphisms (in exon 25) inside the COL1A2 gene were genotyped by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) procedure. Statistical analysis were carried out with Chi-square test and Odds Ratio (OR) was determined with multivariate logistic regression analysis. Results The genetic polymorphism in COL1A2 PvuII was found to be associated with the risk of dental fluorosis which was highly significant (p < 0.001). The odds ratio was 31.4 times [OR = 31.9, 95% CI: 3.9-48.7] higher for the homozygous PP genotype group and 4.0 times [OR = 4.0, 95% CI: 1.0-10.7] higher for the heterozygous Pp genotype. Conclusion Genetic polymorphism of COL1A2 was found to be associated with dental fluorosis. The present study provides an insight for identification of the population who may subsist at risk of developing dental fluorosis in their later life.
Collapse
|
16
|
An N, Zhu J, Ren L, Liu X, Zhou T, Huang H, Sun L, Ding Z, Li Z, Cheng X, Ba Y. Trends of SHBG and ABP levels in male farmers: Influences of environmental fluoride exposure and ESR alpha gene polymorphisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 172:40-44. [PMID: 30677743 DOI: 10.1016/j.ecoenv.2019.01.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
A number of epidemiological studies have reported that chronic exposure to high concentrations of fluoride not only causes dental and skeletal fluorosis but additionally affects serum levels of reproductive hormones. However, possible interaction between fluoride exposure and estrogen receptor alpha (ESRα) gene polymorphisms on sex hormone-binding globulin (SHBG) and androgen binding protein (ABP) of male farmers has not been detailed. Here, we conducted a cross-sectional study including 348 male farmers with different fluoride exposure levels from drinking water in Henan province of China to explore effects of fluoride exposure and ESRα genetic variation on serum SHBG and ABP levels. We found serum SHBG levels in male farmers from the high exposure group to be lower than those of the low exposure group. We also found that concentrations of SHBG affected ABP levels. Furthermore, fluoride exposure and single nucleotide polymorphisms at the XbaI and rs3798577 loci of the ESRα gene affected serum ABP levels. Our findings suggest that chronic fluoride exposure from drinking water is associated with alterations of serum SHBG and ABP concentrations in local male farmers and that the effect of fluoride exposure on ABP levels vary depending on ESRα gene polymorphisms.
Collapse
Affiliation(s)
- Ning An
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jingyuan Zhu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lijun Ren
- Department of Endemic Disease, Kaifeng Disease Control and Prevention Center, Kaifeng, Henan, China
| | - Xiaoxue Liu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Tong Zhou
- Office of Nosocomial Infection Control, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Huang
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Long Sun
- Department of Endemic Disease, Kaifeng Disease Control and Prevention Center, Kaifeng, Henan, China
| | - Zhong Ding
- Department of Endemic Disease, Kaifeng Disease Control and Prevention Center, Kaifeng, Henan, China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuemin Cheng
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yue Ba
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
17
|
Estrogen receptor gene is associated with dental fluorosis in Brazilian children. Clin Oral Investig 2018; 23:3565-3570. [DOI: 10.1007/s00784-018-2778-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/05/2018] [Indexed: 01/12/2023]
|
18
|
Yang Y, Zhao Q, Liu Y, Liu X, Chu Y, Yan H, Fan Y, Huo S, Wang L, Lou Q, Guo N, Sun D, Gao Y. FRZB1 rs2242070 polymorphisms is associated with brick tea type skeletal fluorosis in Kazakhs, but not in Tibetans, China. Arch Toxicol 2018; 92:2217-2225. [PMID: 29785637 DOI: 10.1007/s00204-018-2217-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/03/2018] [Indexed: 11/26/2022]
Abstract
Skeletal fluorosis is a metabolic bone and joint disease caused by excessive accumulation of fluoride in the bones. Compared with Kazakhs, Tibetans are more likely to develop moderate and severe brick tea type skeletal fluorosis, although they have similar fluoride exposure. Single nucleotide polymorphisms (SNPs) in frizzled-related protein (FRZB) have been associated with osteoarthritis, but their association with the risk of skeletal fluorosis has not been reported. In this paper, we investigated the association of three SNPs (rs7775, rs2242070 and rs9288087) in FRZB1with brick tea type skeletal fluorosis risk in a cross-sectional case-control study conducted in Sinkiang and Qinghai, China. A total of 598 individuals, including 308 Tibetans and 290 Kazakhs, were enrolled in this study, in which cases and controls were 221 and 377, respectively. The skeletal fluorosis was diagnosed according to the Chinese diagnostic criteria of endemic skeletal fluorosis (WS192-2008). The fluoride content in tea water or urine was detected using the fluoride ion electrode. SNPs were assessed using the Sequenom MassARRAY system. Binary logistic regressions found evidence of association with rs2242070 AA genotype in only Kazakh participants [odds ratio (OR) 0.417, 95% CI 0.216-0.807, p = 0.009], but not in Tibetans. When stratified by age, this protective effect of AA genotype in rs2242070 was pronounced in Kazakh participants aged 46-65 (OR 0.321, 95% CI 0.135-0.764, p = 0.010). This protective association with AA genotype in rs2242070 in Kazakhs also appeared to be stronger with tea fluoride intake > 3.5 mg/day (OR 0.396, 95% CI 0.182-0.864, p = 0.020). Our data suggest there might be differential genetic influence on skeletal fluorosis risk in Kazakh and Tibetan participants and that this difference might be modified by tea fluoride intake.
Collapse
Affiliation(s)
- Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Qiaoshi Zhao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yanru Chu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Huazhu Yan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yumei Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Simeng Huo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Limei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health (23618504), Harbin, 150081, Heilongjiang, China.
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
19
|
Suppressive effects of sodium fluoride on cultured splenic lymphocyte proliferation in mice. Oncotarget 2018; 7:61905-61915. [PMID: 27542206 PMCID: PMC5308699 DOI: 10.18632/oncotarget.11308] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023] Open
Abstract
Fluoride-induced immunotoxicity has been documented in vivo, but limited reports have focused on the effects of fluoride on lymphocytes in vitro. Therefore, we have examined the suppressive effects of sodium fluoride on cultured splenic lymphocytes in mice. CD3+ T lymphocytes, CD19+ B lymphocytes, cytokines, and cell-cycle markers were analyzed through the use of a cell-counting kit, western blot, and flow cytometery. Splenic lymphocytes were isolated from 3-week-old male ICR mice and exposed to sodium fluoride (0, 100, 500, and 1000 μmol/L) for 24 h. The percentages of CD3+, CD3+CD4+, CD3+CD8+ T lymphocytes and CD19+ B lymphocytes were decreased (P<0.05 or P<0.01) in the sodium fluoride-exposed cells. This finding was correlated with the alterations in expression levels of cytokine proteins and with evidence of cell-cycle arrest. Thus, protein expression levels of IL-2, TNF-α, IFN-γ, TGF-β were decreased (P<0.05 or P<0.01), and IL-10 protein expression levels were increased (P<0.05 or P<0.01). The percentage of lymphocyte in G1 phase was significantly increased (P<0.05 or P<0.01), while expression levels of cyclin E/D and CDK2/4 were markedly decreased (P<0.05 or P<0.01). These findings demonstrate that sodium fluoride exposure suppresses splenic lymphocyte proliferation, which is represented by reducing populations and activation of splenic T and B lymphocytes. Alterations of cytokine protein expression and cell cycle arrest are the molecular basis of the sodium fluoride-suppressed splenic lymphocyte proliferation, while reduction of T lymphocytes and B lymphocytes is the explanation of sodium fluoride-decreased splenic immune function in vitro.
Collapse
|
20
|
Küchler EC, Dea Bruzamolin C, Ayumi Omori M, Costa MC, Antunes LS, Pecharki GD, Trevilatto PC, Vieira AR, Brancher JA. Polymorphisms in Nonamelogenin Enamel Matrix Genes Are Associated with Dental Fluorosis. Caries Res 2017; 52:1-6. [DOI: 10.1159/000479826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/26/2017] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to evaluate whether genetic polymorphisms in AMELX, AMBN, ENAM, TFIP11, and TUFT1 genes are associated with dental fluorosis (DF). A total of 1,017 children from 2 Brazilian cohorts were evaluated. These populations lived in cities with fluoridation of public water supplies. DF was assessed in erupted permanent teeth using the modified Dean index. The polymorphisms rs946252, rs12640848, rs4694075, rs5997096, and rs4970957 were analyzed by real-time PCR from genomic DNA. Associations between DF, genotype, and allele distribution were evaluated using the χ2 test, with an alpha of 5%. The polymorphisms rs4694075, rs5997096, and rs4970957 in AMBN, TFIP11, and TUFT1 were associated with DF (p < 0.05). In conclusion, enamel matrix genes are associated with DF.
Collapse
|
21
|
Pramanik S, Saha D. The genetic influence in fluorosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:157-162. [PMID: 28938149 DOI: 10.1016/j.etap.2017.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/07/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Fluorosis, caused by ingestion of excess fluoride, is endemic in at least 25 countries across the globe, China and India being the worst affected among them. Dental, skeletal and non-skeletal are the major types of fluorosis affecting millions of people in these countries. A number of genetic epidemiological studies carried out by investigators have shown the evidence for association between genetic polymorphisms in candidate genes and differences in the susceptibility pattern of different types of fluorosis among individuals living in the same community and having the same environmental exposure. These studies have pointed out that genetic variants in some candidate genes like COL1A2 (Collagen type 1 alpha 2), CTR (Calcitonin receptor gene), ESR (Estrogen receptor), COMT (Catechol-o-methyltransferase), GSTP1 (Glutathione S-transferase pi 1), MMP-2 (Matrix metallopeptidase 2), PRL (Prolactin), VDR (Vitamin D receptor) and MPO (Myeloperoxidase) could increase or decrease the risk of fluorosis among the exposed individuals in endemic areas. So, it is increasingly becoming evident that an individual's genetic background could play a major role in influencing the risk to fluorosis when other factors like specific environmental exposures including dietary patterns of fluoride intake and other nutrients remain the same. The current manuscript presents an up-to-date critical review on fluorosis, focusing mainly on the genetic association studies that have looked at the possible involvement of genetic factors in fluorosis.
Collapse
Affiliation(s)
- Sreemanta Pramanik
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Area Development Project, Kolkata 700107, India.
| | - Depanwita Saha
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute, i-8 Sector-C, East Kolkata Area Development Project, Kolkata 700107, India
| |
Collapse
|
22
|
Ma Q, Huang H, Sun L, Zhou T, Zhu J, Cheng X, Duan L, Li Z, Cui L, Ba Y. Gene-environment interaction: Does fluoride influence the reproductive hormones in male farmers modified by ERα gene polymorphisms? CHEMOSPHERE 2017; 188:525-531. [PMID: 28910727 DOI: 10.1016/j.chemosphere.2017.08.166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The occurrence of endemic fluorosis is derived from high fluoride levels in drinking water and industrial fumes or dust. Reproductive disruption is also a major harm caused by fluoride exposure besides dental and skeletal lesions. However, few studies focus on the mechanism of fluoride exposure on male reproductive function, especially the possible interaction of fluoride exposure and gene polymorphism on male reproductive hormones. Therefore, we conducted a cross-sectional study in rural areas of Henan province in China to explore the interaction between the estrogen receptor alpha (ERα) gene and fluoride exposure on reproductive hormone levels in male farmers living in the endemic fluorosis villages. The results showed that fluoride exposure significantly increased the serum level of estradiol in the hypothalamic-pituitary-testicular (HPT) axis in male farmers. Moreover, the observations indicated that fluoride exposure and genetic markers had an interaction on serum concentration of follicle-stimulating hormone and estradiol, and the interaction among different loci of the ERα gene could impact the serum testosterone level. Findings in the present work suggest that chronic fluoride exposure in drinking water could modulate the levels of reproductive hormones in males living in endemic fluorosis areas, and the interaction between fluoride exposure and ERα polymorphisms might affect the serum levels of hormones in the HPT axis in male farmers.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hui Huang
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Long Sun
- Kaifeng Disease Control and Prevention Center, Kaifeng, Henan, 475004, China
| | - Tong Zhou
- Shandong Disease Control and Prevention Center, Jinan, Shandong, 250014, China
| | - Jingyuan Zhu
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xuemin Cheng
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Lijv Duan
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyuan Li
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Liuxin Cui
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yue Ba
- Department of Environmental Health, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
23
|
Lacruz RS, Habelitz S, Wright JT, Paine ML. DENTAL ENAMEL FORMATION AND IMPLICATIONS FOR ORAL HEALTH AND DISEASE. Physiol Rev 2017; 97:939-993. [PMID: 28468833 DOI: 10.1152/physrev.00030.2016] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/16/2022] Open
Abstract
Dental enamel is the hardest and most mineralized tissue in extinct and extant vertebrate species and provides maximum durability that allows teeth to function as weapons and/or tools as well as for food processing. Enamel development and mineralization is an intricate process tightly regulated by cells of the enamel organ called ameloblasts. These heavily polarized cells form a monolayer around the developing enamel tissue and move as a single forming front in specified directions as they lay down a proteinaceous matrix that serves as a template for crystal growth. Ameloblasts maintain intercellular connections creating a semi-permeable barrier that at one end (basal/proximal) receives nutrients and ions from blood vessels, and at the opposite end (secretory/apical/distal) forms extracellular crystals within specified pH conditions. In this unique environment, ameloblasts orchestrate crystal growth via multiple cellular activities including modulating the transport of minerals and ions, pH regulation, proteolysis, and endocytosis. In many vertebrates, the bulk of the enamel tissue volume is first formed and subsequently mineralized by these same cells as they retransform their morphology and function. Cell death by apoptosis and regression are the fates of many ameloblasts following enamel maturation, and what cells remain of the enamel organ are shed during tooth eruption, or are incorporated into the tooth's epithelial attachment to the oral gingiva. In this review, we examine key aspects of dental enamel formation, from its developmental genesis to the ever-increasing wealth of data on the mechanisms mediating ionic transport, as well as the clinical outcomes resulting from abnormal ameloblast function.
Collapse
Affiliation(s)
- Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Stefan Habelitz
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - J Timothy Wright
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| | - Michael L Paine
- Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York; Department of Preventive and Restorative Dental Sciences, University of California, San Francisco, San Francisco, California; Department of Pediatric Dentistry, School of Dentistry, University of North Carolina, Chapel Hill, North Carolina; Herman Ostrow School of Dentistry, Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
24
|
Polymorphisms in genes involved in enamel development are associated with dental fluorosis. Arch Oral Biol 2017; 76:66-69. [DOI: 10.1016/j.archoralbio.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 01/15/2017] [Indexed: 01/13/2023]
|
25
|
Prolactin rs1341239 T allele may have protective role against the brick tea type skeletal fluorosis. PLoS One 2017; 12:e0171011. [PMID: 28152004 PMCID: PMC5289533 DOI: 10.1371/journal.pone.0171011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/14/2017] [Indexed: 01/25/2023] Open
Abstract
Objective Prolactin (PRL) has been reported to be associated with increased bone turnover, and increased bone turnover is also a feature of skeletal fluorosis (SF). Autocrine/paracrine production of PRL is regulated by the extrapituitary promoter and a polymorphism in the extrapituitary PRL promoter at -1149 (rs1341239) is associated with disturbances of bone metabolism in other diseases. Here, we have investigated the possibility that the rs1341239 polymorphism is associated with SF, which results from the consumption of brick tea. Design We conducted a cross-sectional study in Sinkiang, Qinghai, Inner Mongolia in China. Demography survey questionnaires were completed and physical examination and X-ray diagnoses were used to diagnose SF. Brick tea water fluoride intake (IF) and urinary fluoride (UF) were tested by an F-ion selective electrode method. A Sequenom MassARRAY system was used to determine PRL gene polymorphisms. Results Subjects who were younger than 45 years of age and carried the T allele had a significantly decreased risk of SF [OR = 0.279 (95%CI, 0.094–0.824)] compared to those carrying the homozygous G allele. This phenomenon was only observed in Kazakh subjects [OR = 0.127 (95%CI, 0.025–0.646)]. Kazakh females who carried T alleles has a decreased risk of SF [OR = 0.410 (95%CI, 0.199–0.847)]. For Kazakh subjects which IF is less than 3.5 mg/d, a decreased risk of SF was observed among the participants who carried T alleles [OR = 0.118 (95%CI, 0.029–0.472)]. Overall, subjects with 1.6–3.2 mg/L UF and carried T alleles had a significantly decreased risk of SF [OR = 0.476 (95%CI, 0.237–0.955)] compared to homozygous G allele carriers. This phenomenon was only observed in Kazakh subjects [OR = 0.324 (95%CI, 0.114–0.923)]. Conclusions Our results suggested that the PRL rs1341239 T allele decreases the risk of brick tea SF.
Collapse
|
26
|
Yang D, Liu Y, Chu Y, Yang Q, Jiang W, Chen F, Li D, Qin M, Sun D, Yang Y, Gao Y. Association between vitamin D receptor gene FokI polymorphism and skeletal fluorosis of the brick-tea type fluorosis: a cross sectional, case control study. BMJ Open 2016; 6:e011980. [PMID: 28170338 PMCID: PMC5129067 DOI: 10.1136/bmjopen-2016-011980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Brick-tea type fluorosis is a public health concern in the north west area of China. The vitamin D receptor (VDR)-FokI polymorphism is considered to be a regulator of bone metabolism and calcium resorption. However, the association of VDR-FokI polymorphism with the risk of brick-tea type fluorosis has not been reported. MATERIALS AND METHODS A cross sectional, case control study was conducted in three provinces (Inner Mongolia, Qinghai and Sinkiang) in China. The fluoride content of Brick-tea water and urine was tested using the standards GB 1996-2005 and WS/T89-2006 (China), respectively. Skeletal fluorosis was diagnosed using the standard WS/192-2008 (China). The VDR-FokI polymorphism was detected by the Sequenom MassARRAY system. RESULT Compared with carriers of the CC genotype, participants with the CT/TT genotype had a significantly decreased risk of skeletal fluorosis (OR=0.761 (95% CI 0.580 to 0.997)), after adjustment for risk factors. When investigated among ethnic groups, the protective effect of the CT/TT genotype was limited in the Mongolian participants (OR=0.525 (95% CI 0.278 to 0.991)). Moreover, the interaction of VDR-FokI with risk factors was only found in Mongolian participants: the protective effect of the CT/TT genotype was limited to participants with >7.0 mg/day daily intake of tea fluoride (OR=0.085 (95% CI 0.009 to 0.851), participants with >3.2 mg/L urine fluoride (OR=0.103 (95% CI 0.017 to 0.633)) or participants aged 46-65 years (OR=0.404 (95% CI 0.177 to 0.922). CONCLUSIONS Our data suggest that the CT/TT genotype of VDR-FokI may be a protective factor for brick-tea type skeletal fluorosis, and this effect is pronounced in Mongolian participants.
Collapse
Affiliation(s)
- Dan Yang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
- Chongqing Blood Centre, Chongqing, China
| | - Yang Liu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Yanru Chu
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Qing Yang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Wei Jiang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Fuxun Chen
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Dandan Li
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Ming Qin
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Dianjun Sun
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Yanmei Yang
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Centre for Endemic Disease Control, Chinese Centre for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- Key Laboratory of Aetiology and Epidemiology, Education Bureau of Heilongjiang Province and Ministry of Health, Harbin, Heilongjiang, China
| |
Collapse
|
27
|
Wu J, Wang W, Liu Y, Sun J, Ye Y, Li B, Liu X, Liu H, Sun Z, Li M, Cui J, Sun D, Yang Y, Gao Y. Modifying Role of GSTP1 Polymorphism on the Association between Tea Fluoride Exposure and the Brick-Tea Type Fluorosis. PLoS One 2015; 10:e0128280. [PMID: 26046522 PMCID: PMC4457801 DOI: 10.1371/journal.pone.0128280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 04/23/2015] [Indexed: 11/26/2022] Open
Abstract
Background Brick tea type fluorosis is a public health concern in the north-west area of China. The association between SNPs of genes influencing bone mass and fluorosis has attracted attention, but the association of SNPs with the risk of brick-tea type of fluorosis has not been reported. Objective To investigate the modifying roles of GSTP1 rs1695 polymorphisms on this association. Methods A cross-sectional study was conducted. Brick-tea water was tested by the standard of GB1996-2005 (China). Urinary fluoride was tested by the standard of WS/T 89-2006 (China). Skeletal fluorosis was diagnosed by X-ray, the part we scheduled was forearm, shank, and pelvic, then diagnosed the skeletal fluorosis by the standard of WS/192-2008 (China). Gene polymorphism was tested by Sequenom MassARRAY system. Result The prevalence rate in different ethnical participants was different: Tibetan individuals had the highest prevalence rate of skeletal fluorosis. There were significant differences in genotype frequencies of GSTP1 Rs1695 among different ethnical participants (p<0.001): Tibetan, Mongolian and Han subjects with homozygous wild type (GSTP1-AA) genotype were numerically higher than Kazakh and Russian subjects (p<0.001). Compared to Tibetan participants who carried homozygous A allele of GSTP1 Rs1695, Tibetan participants who carried G allele had a significantly decreased risk of skeletal fluorosis (OR = 0.558 [95% CI, 0.326-0.955]). For Kazakh participants, a decreased risk of skeletal fluorosis among carriers of the G allele was limited to non high-loaded fluoride status (OR = 0. 166 [95% CI, 0.035–0.780] vs. OR = 1.478 [95% CI, 0.866–2.552] in participants with high-loaded fluoride status). Neither SNP-IF nor SNP-age for GSTP1 Rs1695 was observed. Conclusion The prevalence rate of the brick tea type fluorosis might have ethnic difference. For Tibetan individuals, who had the highest prevalence rate, G allele of GSTP1 Rs1695 might be a protective factor for brick tea type skeletal fluorosis.
Collapse
Affiliation(s)
- Junhua Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Wei Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Jing Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Yan Ye
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Bingyun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Hongxu Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Zhenqi Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Mang Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Jing Cui
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
- * E-mail: (YY); (YG)
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin 150081, Heilongjiang Province, China
- * E-mail: (YY); (YG)
| |
Collapse
|
28
|
Luo Q, Cui H, Peng X, Fang J, Zuo Z, Liu J, Wu B, Deng Y. The association between cytokines and intestinal mucosal immunity among broilers fed on diets supplemented with fluorine. Biol Trace Elem Res 2013; 152:212-8. [PMID: 23354543 DOI: 10.1007/s12011-013-9612-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Fluorine (F) bioaccumulation has been reported in the organs and tissues of organisms, including intestine. The intestinal mucosa is very important to the immune development. Meanwhile, cytokines are present in the normal intestinal mucosal and play an important role in the immune function. Thus, changes of the cytokine contents are related to the state of intestinal mucosal immunity. In this study, we investigated the changes in contents of cytokines such as interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-6 (IL-6), interferon gamma (IFN-γ), and tumor necrosis factor-alpha (TNF-α) induced by dietary high F in the mucosa of different parts of intestines (duodenum, jejunum, and ileum) by enzyme-linked immunosorbent assay. A total of 280 one-day-old healthy avian broilers were randomly divided into four groups and fed on a corn-soybean basal diet as control diet (F 22.6 mg/kg) or the same basal diet supplemented with 400, 800, and 1,200 mg F/kg (high F groups I, II, and III) in the form of sodium fluoride for 42 days. The experimental data showed that the contents of IL-2, IL-4, IL-6, IFN-γ, and TNF-α in the intestinal mucosa were significantly decreased in the high F groups II and III when compared with those of the control group from 14 to 42 days of age. It was concluded that dietary F in the range of 800-1,200 mg/kg significantly reduced the contents of aforementioned cytokines in the intestinal mucosa of broilers, which could impact the function of intestinal mucosal immunity through the pathways that decreased the lymphocyte population and/or lymphocyte activation.
Collapse
Affiliation(s)
- Qin Luo
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | | | | | | | | | | | | | | |
Collapse
|