1
|
Zhang X, Liu Z, Li Z, Qi L, Huang T, Li F, Li M, Wang Y, Ma Z, Gao Y. Ferroptosis pathways: Unveiling the neuroprotective power of cistache deserticola phenylethanoid glycosides. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118465. [PMID: 38944360 DOI: 10.1016/j.jep.2024.118465] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche deserticola is a kind of parasitic plant living in the roots of desert trees. It is a rare Chinese medicine, which has the effect of tonifying kidney Yang, benefiting essence and blood and moistening the intestinal tract. Cistache deserticola phenylethanoid glycoside (PGS), an active component found in Cistanche deserticola Ma, have potential kidney tonifying, intellectual enhancing, and neuroprotective effects. Cistanche total glycoside capsule has been marketed to treat vascular dementia disease. AIM OF THE STUDY To identify the potential renal, intellectual enhancing and neuroprotective effects of PGS and explore the exact targets and mechanisms of PGS. MATERIALS AND METHODS This study systematically investigated the four types of pathways leading to ferroptosis through transcriptome, metabolome, ultrastructure and molecular biology techniques and explored the molecular mechanism by which multiple PGS targets and pathways synergistically exert neuroprotective effects on hypoxia. RESULTS PGS alleviated learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia by attenuating hypobaric hypoxia-induced hippocampal histopathological damage, impairing blood‒brain barrier integrity, increasing oxidative stress levels, and increasing the expression of cognitive proteins. PGS reduced the formation of lipid peroxides and improved ferroptosis by upregulating the GPX-4/SCL7A311 axis and downregulating the ACSL4/LPCAT3/LOX axis. PGS also reduced ferroptosis by facilitating cellular Fe2+ efflux and regulating mitochondrial Fe2+ transport and effectively antagonized cell ferroptosis induced by erastin (a ferroptosis inducer). CONCLUSIONS This study demonstrated the mechanism by which PGS prevents hypobaric hypoxic nerve injury through four types of ferroptosis pathways, achieved neuroprotective effects and alleviated learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development and application of PGS.
Collapse
Affiliation(s)
- Xianxie Zhang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zuoxu Liu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zhihui Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Ling Qi
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Tianke Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Fang Li
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Maoxing Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yuguang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Zengchun Ma
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China
| | - Yue Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 510006, Guangzhou, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, 100850, Beijing, China.
| |
Collapse
|
2
|
Zarychta J, Kowalczyk A, Słowik K, Przywara D, Petniak A, Kondracka A, Wójtowicz-Marzec M, Słyk-Gulewska P, Kwaśniewska A, Kocki J, Gil-Kulik P. Pilot Study on the Effect of Patient Condition and Clinical Parameters on Hypoxia-Induced Factor Expression: HIF1A, EPAS1 and HIF3A in Human Colostrum Cells. Int J Mol Sci 2024; 25:11042. [PMID: 39456823 PMCID: PMC11507067 DOI: 10.3390/ijms252011042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) may play a role in mammary gland development, milk production and secretion in mammals. Due to the limited number of scientific reports on the expression of HIF genes in colostrum cells, it was decided to examine the expression of HIF1A, HIF3A and EPAS1 in the these cells, collected from 35 patients who voluntarily agreed to provide their biological material for research, were informed about the purpose of the study and signed a consent to participate in it. The expression of HIF genes was assessed using qPCR. Additionally, the influence of clinical parameters (method of delivery, occurrence of stillbirths in previous pregnancies, BMI level before pregnancy and at the moment of delivery, presence of hypertension during pregnancy, presence of Escherichia coli in vaginal culture, iron supplement and heparin intake during pregnancy) on the gene expression was assessed, revealing statistically significant correlations. The expression of HIF1A was 3.5-fold higher in the case of patients with the presence of E. coli in vaginal culture (p = 0.041) and 2.5 times higher (p = 0.031) in samples from women who used heparin during pregnancy. Approximately 1.7-fold higher expression of the EPAS1 was observed in women who did not supplement iron during pregnancy (p = 0.046). To our knowledge, these are the first studies showing the relationship between HIF expression in cells from breast milk and the method of delivery and health condition of women giving birth. The assessment of HIF expression requires deeper examination in a larger study group, and the results of further studies will allow to determine whether HIF can become biomarkers in pregnancy pathology states.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Adrian Kowalczyk
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Karolina Słowik
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
| | - Dominika Przywara
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Monika Wójtowicz-Marzec
- Chair and Department of Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Patrycja Słyk-Gulewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| |
Collapse
|
3
|
High-Altitude Hypoxia Exposure Induces Iron Overload and Ferroptosis in Adipose Tissue. Antioxidants (Basel) 2022; 11:antiox11122367. [PMID: 36552575 PMCID: PMC9774922 DOI: 10.3390/antiox11122367] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
High altitude (HA) has become one of the most challenging environments featuring hypobaric hypoxia, which seriously threatens public health, hence its gradual attraction of public attention over the past decade. The purpose of this study is to investigate the effect of HA hypoxia on iron levels, redox state, inflammation, and ferroptosis in adipose tissue. Here, 40 mice were randomly divided into two groups: the sea-level group and HA hypoxia group (altitude of 5000 m, treatment for 4 weeks). Total iron contents, ferrous iron contents, ROS generation, lipid peroxidation, the oxidative enzyme system, proinflammatory factor secretion, and ferroptosis-related biomarkers were examined, respectively. According to the results, HA exposure increases total iron and ferrous iron levels in both WAT and BAT. Meanwhile, ROS release, MDA, 4-HNE elevation, GSH depletion, as well as the decrease in SOD, CAT, and GSH-Px activities further evidenced a phenotype of redox imbalance in adipose tissue during HA exposure. Additionally, the secretion of inflammatory factors was also significantly enhanced in HA mice. Moreover, the remarkably changed expression of ferroptosis-related markers suggested that HA exposure increased ferroptosis sensitivity in adipose tissue. Overall, this study reveals that HA exposure is capable of inducing adipose tissue redox imbalance, inflammatory response, and ferroptosis, driven in part by changes in iron overload, which is expected to provide novel preventive targets for HA-related illness.
Collapse
|
4
|
Ma X, Pan Y, Xue Y, Li Y, Zhang Y, Zhao Y, Xiong X, Wang J, Yang Z. Tetrahydrocurcumin Ameliorates Acute Hypobaric Hypoxia-Induced Cognitive Impairment in Mice. High Alt Med Biol 2022; 23:264-272. [PMID: 35723652 DOI: 10.1089/ham.2021.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ma, Xuexinyu, Yang Pan, Yuye Xue, Yao Li, Yan Zhang, Yani Zhao, Xingzhao Xiong, Jianbo Wang, and Zhifu Yang. Tetrahydrocurcumin ameliorates acute hypobaric hypoxia-induced cognitive impairment in mice. High Alt Med Biol. 23:264-272, 2022. Background: Hypobaric hypoxia (HH) impairs spatial learning and increases oxidative stress in rodents. We hypothesized that tetrahydrocurcumin (THC) may attenuate HH-induced neurobehavioral deficits by reducing HH-induced lipid peroxidation and increasing glycolytic activity. Materials and Methods: A C57BL/6 mouse model of acute high altitude brain injury was established using an animal decompression chamber for 24 hours. Cognitive and behavioral assessments were conducted using the Y-maze, open field, and Rotarod tests. We measured superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity; malondialdehyde (MDA) and reactive oxygen species levels; anti-neuronal core antigen (NeuN) immunoreactivity; and active occludin, hypoxia-inducible factor-1α, glucose transporter 1 (GLUT1), and GLUT3 expression levels in mice brain tissue. Results: The mice in the THC group showed improved cognitive impairment compared with those in the HH group in cognitive and behavioral tests, but failed to show improvement in the decline in coordination. The mice in the THC group were more effected than those in the HH group in demonstrating alleviation of hyperemia in cortical vessels and cell voids, and cells in the CA1 region were more closely arranged. Compared with those in the mice of the HH group, the concentration of MDA decreased significantly, the expression of occludin, NeuN immunoreactivity, and the activities of SOD and GSH-Px significantly increased in the mice of the THC group. An increase in GLUT1 expression was observed in HH-exposed animals (N group vs. HH group: 0.4 ± 0.08 vs. 0.60 ± 0.07, p < 0.05), and this increase was enhanced in animals treated with THC (HH group vs. THC group: 0.60 ± 0.07 vs. 0.82 ± 0.08, p < 0.05). Conclusions: THC improved cognitive impairment in mice, accompanied by reduced oxidative stress and increased GLUT1 protein levels.
Collapse
Affiliation(s)
- Xuexinyu Ma
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China.,Department of Pharmacy, Xian Daxing Hospital, Xi'an, P.R. China
| | - Yang Pan
- Department of Chinese Materia Medica and Natural Medicines, School of Pharmacy, The Air Force Medical University, Xi'an, P.R. China
| | - Yuye Xue
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yao Li
- Faculty of Life Science & Medicine, Northwest University, Xi'an, P.R. China
| | - Yan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Yani Zhao
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China
| | - Xingzhao Xiong
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Jianbo Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, P.R. China.,Sichuan Institute for Translational Chinese Medicine, Chengdu, P.R. China.,Sichuan Academy of Chinese Medical Sciences, Chengdu, P.R. China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
5
|
Zhang X, Huang S, Li S, Wang W. Effects of Altitude on the Digestion Performance, Serum Antioxidative Characteristics, Rumen Fermentation Parameters, and Rumen Bacteria of Sanhe Heifers. Front Microbiol 2022; 13:875323. [PMID: 35572662 PMCID: PMC9097872 DOI: 10.3389/fmicb.2022.875323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
The production efficiency of dairy cows is affected by altitude, with lower efficiency reported at higher altitudes. However, only a few studies have investigated the digestion performance, serum antioxidative characteristics, rumen fermentation performance, and rumen bacteria of Sanhe heifers at different altitudes. Therefore, in this study, we explored the effects of altitude on these aspects of Sanhe heifers. We evaluated the effects of altitude on the apparent digestibility of nutrients, serum antioxidative characteristics, rumen fermentation parameters, and rumen bacteria in Sanhe heifers. Twenty Sanhe heifers from the same herd and managed with the same practice were used. However, the heifers were from two regions in China: 10 were fed in Hulunbuir City, Inner Mongolia Autonomous Region (119°57'E, 47°17'N; approximately 700 m altitude, named LA) and 10 were fed in Lhasa City, Tibet Autonomous Region (91°06'E, 29°36'N; approximately 3,750 m altitude, named HA). The dry matter intake (DMI), average daily gain (ADG), and DMI/ADG ratio were higher (p < 0.05) in LA than in HA heifers, whereas the apparent total tract digestibility of dry matter, ether extract, and crude proteins were higher (p < 0.05) in the HA group. Compared with LA heifers, the HA heifers showed decreased (p < 0.05) serum concentrations of superoxide dismutase and glutathione peroxidase and increased serum concentration of hydrogen peroxide (p < 0.05). Altitude did not significantly affect the volatile fatty acid concentration in the rumen, but HA presented a lower acetate-to-propionate ratio than LA. The 16S rRNA gene sequencing data showed that altitude significantly affected the rumen microbial composition. At the phylum level, the HA heifers presented a lower relative abundance of Actinobacteria (p < 0.05) and higher relative abundance of Spirochaetae (p < 0.05) than the LA heifers. The correlation analysis revealed that the operational taxonomic units belonging to the genus Prevotella_1 were correlated (p < 0.05) with altitude and DMI. The results indicate that altitude can influence the apparent digestibility of nutrients, serum antioxidant capacity, rumen fermentation, and rumen bacteria composition of Sanhe heifers. The study provides insights into the adaptation mechanism of Sanhe heifers to high-altitude areas.
Collapse
Affiliation(s)
| | | | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Iron Deficiency in Pulmonary Arterial Hypertension: A Deep Dive into the Mechanisms. Cells 2021; 10:cells10020477. [PMID: 33672218 PMCID: PMC7926484 DOI: 10.3390/cells10020477] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiovascular disease that is caused by the progressive occlusion of the distal pulmonary arteries, eventually leading to right heart failure and death. Almost 40% of patients with PAH are iron deficient. Although widely studied, the mechanisms linking between PAH and iron deficiency remain unclear. Here we review the mechanisms regulating iron homeostasis and the preclinical and clinical data available on iron deficiency in PAH. Then we discuss the potential implications of iron deficiency on the development and management of PAH.
Collapse
|
7
|
He R, Kong Y, Fang P, Li L, Shi H, Liu Z. Integration of quantitative proteomics and metabolomics reveals tissue hypoxia mechanisms in an ischemic-hypoxic rat model. J Proteomics 2020; 228:103924. [PMID: 32736140 DOI: 10.1016/j.jprot.2020.103924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/10/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022]
Abstract
Tissues hypoxia caused by hemorrhage is a common complication in many clinical diseases. However, its pathological mechanism remains largely unknown. To partly address this issue, an ischemic-hypoxic rat model was established and the plasma proteomic and metabolic profiles were quantified and analyzed using TMT-based quantitative proteomics and metabolomics. The analysis revealed a total of 177 differentially expressed proteins and 32 metabolites that were uniquely altered in the hypoxic rat plasma, compared to the control. Bioinformatics analysis showed that these altered proteins and metabolites were involved in a wide range of biological processes. Twelve of the 177 differentially expressed proteins were involved in PI3K-Akt signaling, a pathway that has been reported to be strongly associated with tissue hypoxia. Other signaling pathways such as complement and coagulation cascades, GnRH signaling, relaxin signaling, protein processing in endoplasmic reticulum, as well as AGE-RAGE signaling were markedly altered in the ischemic-hypoxic response, implying their potential roles in tissue hypoxia. A joint analysis of proteome and metabolome showed that the significantly altered metabolites such as guanine, tryptamine, dopamine, hexadecenoic, l-methionine, and fumarate may have participated in the pathogenesis of tissue hypoxia. Further, we found that changes in the levels of metabolites matched the changes in protein abundance within the same pathway. Overall, this study presents an overview of the molecular networks in ischemic-hypoxic pathology and offers biochemical basis for further study on the mechanism of tissue hypoxia. SIGNIFICANCE: We employed an integrated metabonomic-proteomic method to systematically analyze the profiles of metabolites and proteins in an ischemic-hypoxic rat model. Bioinformatics and enrichment analysis showed that the differentially expressed proteins were mainly involved in complement and coagulation cascades, PI3K-Akt signaling, GnRH signaling, relaxin signaling, protein processing in endoplasmic reticulum, and AGE-RAGE signaling. Moreover, a panel of 12 candidate proteins involved in PI3K-Akt signaling (i.e., Vtn, Hsp90b1, Ywhae, Tnc, Ywhaz, Thbs4, Lamc1, Col1a1, Il2rg, Egfr, Newgene 621,351, and Tfrc) may serve as the potential biomarkers to predict tissue hypoxia.
Collapse
Affiliation(s)
- Rui He
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Yujie Kong
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Peng Fang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ling Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, United States of America.
| | - Zhong Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China; Key Laboratory of Transfusion Adverse Reactions, Chinese Academy of Medical Sciences, Chengdu 610052, China.
| |
Collapse
|
8
|
Li Y, Jiang H, Huang G. Protein Hydrolysates as Promoters of Non-Haem Iron Absorption. Nutrients 2017; 9:E609. [PMID: 28617327 PMCID: PMC5490588 DOI: 10.3390/nu9060609] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/13/2017] [Accepted: 06/13/2017] [Indexed: 12/27/2022] Open
Abstract
Iron (Fe) is an essential micronutrient for human growth and health. Organic iron is an excellent iron supplement due to its bioavailability. Both amino acids and peptides improve iron bioavailability and absorption and are therefore valuable components of iron supplements. This review focuses on protein hydrolysates as potential promoters of iron absorption. The ability of protein hydrolysates to chelate iron is thought to be a key attribute for the promotion of iron absorption. Iron-chelatable protein hydrolysates are categorized by their absorption forms: amino acids, di- and tri-peptides and polypeptides. Their structural characteristics, including their size and amino acid sequence, as well as the presence of special amino acids, influence their iron chelation abilities and bioavailabilities. Protein hydrolysates promote iron absorption by keeping iron soluble, reducing ferric iron to ferrous iron, and promoting transport across cell membranes into the gut. We also discuss the use and relative merits of protein hydrolysates as iron supplements.
Collapse
Affiliation(s)
- Yanan Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Han Jiang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Guangrong Huang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
- Key Lab of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China.
- National and Local United Engineering Lab of Quality Controlling Technology and Instrument for Marine Food, Hangzhou 310018, China.
| |
Collapse
|
9
|
Wang G, Wang J, Sun D, Xin J, Wang L, Huang D, Wu W, Xian CJ. Short-Term Hypoxia Accelerates Bone Loss in Ovariectomized Rats by Suppressing Osteoblastogenesis but Enhancing Osteoclastogenesis. Med Sci Monit 2016; 22:2962-71. [PMID: 27550548 PMCID: PMC5006713 DOI: 10.12659/msm.899485] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Although it has been reported that hypoxic exposure can attenuate hypertension, heart disease, diabetes, and some other diseases, effects of hypoxia on osteoporosis are still unknown. Material/Methods The current study investigated whether short-term hypoxic exposure (in comparison with normoxic conditions) affects bone metabolism in normal or ovariectomized (OVX) adult female rats in an vivo study. Micro-computed tomography bone volume/structural analyses, histological examination, and serum bone turnover biochemical assays were used. In addition, the expressions of some associated major regulatory molecules were measured in osteoblastic cultures. Results While the 14-day hypoxic exposure did not change the bone-remodeling process in normal adult female rats, it decreased bone volume, osteoclast density, and serum bone formation marker (alkaline phosphatase) level, but increased osteoclast density and serum bone resorption marker (C-telopeptide of collagen) level in OVX rats. The bone marrow adipocyte number and serum fatty acid binding protein-4 level were increased in OVX-hypoxic rats compared with OVX-normoxic rats. Consistently, in human MG-63 osteoblastic cultures, the hypoxic condition suppressed protein expression of osteogenic transcriptional factors Runx2 and osterix, elevated protein expression of osteoclastogenic cytokine receptor activator of nuclear factor kappa-B ligand, but reduced that of osteoclastogenic inhibitor osteoprotegerin. Conclusions Our results suggest that, although no change occurred in the bone-remodeling process in normal adult female rats after hypoxic exposure, under the estrogen-deficient osteoporotic condition, the hypoxic condition can alter the bone microenvironment so that it may further impair osteoblastic differentiation and enhance osteoclastic formation, and thus reduce bone formation, enhance bone resorption, and accelerate bone loss.
Collapse
Affiliation(s)
- Guixin Wang
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Jia Wang
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Dawei Sun
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guanghzou, China (mainland)
| | - Jingyi Xin
- Department of Orthopaedic Traumatology, Tianjin Hospital, Tianjin, China (mainland)
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Dong Huang
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guanghzou, China (mainland)
| | - Weichi Wu
- Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, Guangdong, China (mainland)
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
10
|
Erythropoietin Levels in Elderly Patients with Anemia of Unknown Etiology. PLoS One 2016; 11:e0157279. [PMID: 27310832 PMCID: PMC4911007 DOI: 10.1371/journal.pone.0157279] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/26/2016] [Indexed: 01/10/2023] Open
Abstract
Background In many elderly patients with anemia, a specific cause cannot be identified. This study investigates whether erythropoietin levels are inappropriately low in these cases of “anemia of unknown etiology” and whether this trend persists after accounting for confounders. Methods This study includes all anemic patients over 60 years old who had erythropoietin measured between 2005 and 2013 at a single center. Three independent reviewers used defined criteria to assign each patient’s anemia to one of ten etiologies: chronic kidney disease, iron deficiency, chronic disease, confirmed myelodysplastic syndrome (MDS), suspected MDS, vitamin B12 deficiency, folate deficiency, anemia of unknown etiology, other etiology, or multifactorial etiology. Iron deficiency anemia served as the comparison group in all analyses. We used linear regression to model the relationship between erythropoietin and the presence of each etiology, sequentially adding terms to the model to account for the hemoglobin concentration, estimated glomerular filtration rate (eGFR) and Charlson Comorbidity Index. Results A total of 570 patients met the inclusion criteria. Linear regression analysis showed that erythropoietin levels in chronic kidney disease, anemia of chronic disease and anemia of unknown etiology were lower by 48%, 46% and 27%, respectively, compared to iron deficiency anemia even after adjusting for hemoglobin, eGFR and comorbidities. Conclusions We have shown that erythropoietin levels are inappropriately low in anemia of unknown etiology, even after adjusting for confounders. This suggests that decreased erythropoietin production may play a key role in the pathogenesis of anemia of unknown etiology.
Collapse
|
11
|
Xu C, Qiao X, Zhao Y, Sun R, Shang X, Niu W. Resveratrol ameliorates chronic high altitude exposure-induced oxidative stress and suppresses lipid metabolism alteration in rats. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; P. R. China
| | - Xiangjin Qiao
- The Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; P. R. China
| | - Yanfei Zhao
- Department of Agriculture and Medicine; The Open University of China, Beijing; P. R. China
| | - Rui Sun
- The Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; P. R. China
| | - Xiaoya Shang
- The Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; P. R. China
| | - Weining Niu
- The Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi; P. R. China
| |
Collapse
|