1
|
Chen J, Li A, Dai J, Fu Q, Yu Z, Xu S, Zhang W, Li P. Optimal submicron roughness for balancing degradation behavior, immune modulation, and microbial adhesion on zinc-based barrier membranes. BIOMATERIALS ADVANCES 2025; 169:214146. [PMID: 39799898 DOI: 10.1016/j.bioadv.2024.214146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/15/2025]
Abstract
Metallic zinc (Zn) has been demonstrated to be a promising alternative to barrier membrane materials for guided bone regeneration. Surface roughness significantly affects the properties of degradable Zn-based metals, especially within the Janus micro-environments of tissue regeneration. However, the effects of optimal surface roughness on Zn remain unknown. In this study, pure Zn surfaces were fabricated with three roughness scales: nano (Sa < 0.1 μm), submicron (Sa: 0.5-1.0 μm), and micron (Sa > 1.0 μm). Submicron-scale pure Zn exhibited a moderate degradation rate in simulated body fluids, and no deep corrosion pits appeared on the surface. By contrast, the degradation rate of nano-surface pure Zn decreased significantly, while localized corrosion tended to appear on micron surfaces. In addition, the degradation rate of Zn with different roughness was overall accelerated in artificial saliva, accompanied by varying degradation morphologies. Co-culturing with submicron samples inhibited macrophage polarization to the M1 phenotype. Nano-scale surfaces promoted macrophage polarization towards the M1 phenotype and exhibited significantly reduced antibacterial rates compared to rougher surfaces. These findings demonstrate that submicron-scale pure Zn could be an optimal choice for barrier membrane surfaces.
Collapse
Affiliation(s)
- Jiahao Chen
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - An Li
- Department of Periodontology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Jingtao Dai
- Department of Orthodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, South Jiangnan Road No. 366, Guangzhou 510280, China
| | - Qingyun Fu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Zhentao Yu
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China
| | - Shulan Xu
- Center of Oral Implantology, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Wentai Zhang
- Dongguan Key Laboratory of Smart Biomaterials and Regenerative Medicine, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, Guangdong 523000, China.
| | - Ping Li
- Department of Prosthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Medical University, Guangzhou 510180, China; Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510180, China.
| |
Collapse
|
2
|
Yang B, Wang F, Yang X, Yuan X, Yang Y, Chen X, Tian T, Chen F, Tang D, He Z, Liu Y, Li Y. The Role of SIRT1-BDNF Signaling Pathway in Fluoride-Induced Toxicity for Glial BV-2 Cells. Biol Trace Elem Res 2025:10.1007/s12011-024-04503-y. [PMID: 39825065 DOI: 10.1007/s12011-024-04503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/25/2024] [Indexed: 01/20/2025]
Abstract
Chronic fluorosis is often accompanied by neurological symptoms, leading to attention, memory and learning ability decline and causing tension, anxiety, depression, and other mental symptoms. In the present study, we analyzed the molecular mechanisms of SIRT1-BDNF regulation of PI3K-AKT, MAPK, and FOXO1A in F-treated BV2 cells. The cytotoxic effect of sodium fluoride (NaF) on BV2 cells was assessed using Cell Counting Kit-8 (CCK-8), crystal violet, and 5-ethynyl-2'-deoxyuridine (EdU) staining. Cell cycle progression and apoptosis were evaluated through flow cytometry and western blotting. Reactive oxygen species (ROS) levels, oxidative stress, and inflammatory markers were measured by ROS staining, microplate reader assays, and western blotting. The role of SIRT1 in fluoride-induced toxicity for glial cells was determined using the SIRT1 activator SRT1720. The experiments demonstrated that NaF was toxic to BV2 cells, inhibited their proliferative ability, halted their cell cycle progression, triggered cellular apoptosis, promoted cellular oxidative stress (detected by ROS, SOD, MDA, GSH-Px, T-AOC) and associated protein NQO-1 and HO-1, and elevated inflammatory mediator associated protein IL-1and IL-6 expression). The fluoride-exposed groups had reduced SIRT1, BDNF, TrkB, PI3K, AKT, and MAPK protein expression levels, and increased FOXO1A protein expression. SRT1720 mitigated the harmful effects of NaF, stimulated cell proliferation and cell cycle progression, decreased apoptosis, reduced oxidative stress and inflammatory factors, elevated SIRT1, BDNF, TrkB, PI3K, AKT, and MAPK protein levels, and suppressed FOXO1A protein expression. The results indicate that NaF potentially harms glial cells by suppressing SIRT1 activation, and SIRT1 significantly mitigated the damage. Furthermore, the SIRT1 signaling pathway might regulate the nerve damage caused by fluoride poisoning and may be a protective factor in treating fluoride-induced brain injury.
Collapse
Affiliation(s)
- Bo Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Feiqing Wang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin City, China
| | - Xu Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Xiaoshuang Yuan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China
| | - Yuting Yang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Xiaoxu Chen
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Tingting Tian
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Fa Chen
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Dongxin Tang
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China
| | - Zhixu He
- Center of Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yang Liu
- Clinical Medical Research Center, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, No. 71 Bao Shan North Road, Yunyan District, Guiyang, 550001, Guizhou Province, China.
| | - Yanju Li
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, No. 4 Bei Jing Road, Yunyan District, Guiyang, 550004, Guizhou Province, China.
| |
Collapse
|
3
|
Niu Z, Duan L, Du Y, Yu F, Chen R, Li Z, Ba Y, Zhou G. Effect of zinc intake on association between fluoride exposure and abnormal sex steroid hormones among US pubertal males: NHANES, 2013-2016. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2759-2772. [PMID: 38063965 DOI: 10.1007/s11356-023-31135-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Excessive fluoride exposure can disturb the balance of sex hormones. Zinc is essential for sex hormone synthesis and spermatogenesis. But it is not clear how zinc affects the relationship of fluoride exposure with abnormal sex steroid hormones. Here, a total of 1008 pubertal males from the National Health and Nutrition Examination Survey (NHANES) in two cycles (2013-2014, 2015-2016) were enrolled. The concentrations of water fluoride and plasma fluoride and the levels of serum testosterone, estradiol, and sex hormone binding globulin (SHBG) were measured. Two 24-h dietary recall interviews were conducted to assess the dietary zinc intake. The relationships of fluoride exposure and zinc intake with sex hormones were examined using linear regression and logistic regression models, while the generalized additive model was used to evaluate their non-linear relationship. Our findings revealed that for every two-fold increase in plasma fluoride concentration, testosterone levels decreased by 7.27% (95% CI - 11.49%, - 2.86%) and estradiol levels decreased by 8.73% (95% CI - 13.61%, - 3.57%). There was also significant non-linear association observed between zinc intake and SHBG levels. Being in the first tertile of plasma fluoride had a 60% lower risk of high SHBG (OR = 0.40, 95% CI 0.18, 0.89) compared with being in the second tertile. When compared to the first tertile, being in the second tertile of zinc intake was associated with a 63% (OR = 0.37, 95% CI 0.14, 0.98) lower risk of high SHBG. Furthermore, we observed an interactive effect between the plasma fluoride and zinc intake on estradiol and SHBG, as well as the risk of high SHBG (P-interaction < 0.10). These findings suggest that fluoride exposure and zinc intake can affect sex steroid hormone levels and the risk of high SHBG. Notably, zinc intake may alleviate the increased risk of high SHBG and the abnormal changes of estradiol and SHBG caused by higher fluoride exposure.
Collapse
Affiliation(s)
- Zeyuan Niu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Leizhen Duan
- Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuhui Du
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Fangfang Yu
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan, People's Republic of China
| | - Zhiyuan Li
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yue Ba
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China
- Yellow River Institute for Ecological Protection & Regional Coordinated Development, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Guoyu Zhou
- Department of Environment Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China.
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
4
|
Shi YQ, Zhu XT, Zhang SN, Ma YF, Han YH, Jiang Y, Zhang YH. Premature ovarian insufficiency: a review on the role of oxidative stress and the application of antioxidants. Front Endocrinol (Lausanne) 2023; 14:1172481. [PMID: 37600717 PMCID: PMC10436748 DOI: 10.3389/fendo.2023.1172481] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
Normal levels of reactive oxygen species (ROS) play an important role in regulating follicular growth, angiogenesis and sex hormone synthesis in ovarian tissue. When the balance between ROS and antioxidants is disrupted, however, it can cause serious consequences of oxidative stress (OS), and the quantity and quality of oocytes will decline. Therefore, this review discusses the interrelationship between OS and premature ovarian insufficiency (POI), the potential mechanisms and the methods by which antioxidants can improve POI through controlling the level of OS. We found that OS can mediate changes in genetic materials, signal pathways, transcription factors and ovarian microenvironment, resulting in abnormal apoptosis of ovarian granulosa cells (GCs) and abnormal meiosis as well as decreased mitochondrial Deoxyribonucleic Acid(mtDNA) and other changes, thus accelerating the process of ovarian aging. However, antioxidants, mesenchymal stem cells (MSCs), biological enzymes and other antioxidants can delay the disease process of POI by reducing the ROS level in vivo.
Collapse
Affiliation(s)
- Yu-Qian Shi
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xi-Ting Zhu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Su-Na Zhang
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yi-Fu Ma
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan-Hua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue-Hui Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
5
|
Upregulated Solute Carrier SLC39A1 Promotes Gastric Cancer Proliferation and Indicates Unfavorable Prognosis. Genet Res (Camb) 2022; 2022:1256021. [PMID: 36407082 PMCID: PMC9652071 DOI: 10.1155/2022/1256021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/19/2022] [Accepted: 08/28/2022] [Indexed: 11/06/2022] Open
Abstract
Backgrounds Solute carrier 39A1 (SLC39A1) is an indirect zinc transporter which showed diverse tumor-related functions in different malignancies. Here, we aimed to investigate its expression and role in gastric adenocarcinoma. Methods A retrospective gastric adenocarcinoma cohort (n = 154) was collected from our hospital to test their tissue expression of SLC39A1 through immunohistochemical staining method. After SLC39A1 overexpression or knockdown, proliferation and invasion assays were conducted for proliferation and invasion estimation, respectively. Xenograft in nude mice was used as the in vivo strategy to validate in vitro findings. Results Compared with adjacent stomach tissues, gastric adenocarcinoma tissues showed significantly higher SLC39A1 on both mRNA and protein levels. Higher SLC39A1 was observed in patients with larger tumor size (P=0.003) and advanced tumor stages (P < 0.001). Univariate (P=0.001) and multivariate analyses (P=0.035) confirmed the independent prognostic significance of SLC39A1 on gastric adenocarcinoma outcomes. The median survival time was 22.0 months in patients with high-SLC39A1 expression, while up to 57.0 months in those with low-SLC39A1 (P=0.001). In vitro and in vivo assays demonstrated that overexpressing SLC39A1 could promote gastric cancer growth and invasion, while silencing SLC39A1 led to opposite effects. Conclusions Aberrant high-SLC39A1 expression can serve as an independent unfavorable prognostic factor for gastric adenocarcinoma. High SLC39A1 is critical for a more aggressive tumor phenotype by promoting cell proliferation and invasion. Therefore, targeting SLC39A1 may provide novel therapeutic insights.
Collapse
|
6
|
Xiong Y, Li J, He S. Zinc Protects against Heat Stress-Induced Apoptosis via the Inhibition of Endoplasmic Reticulum Stress in TM3 Leydig Cells. Biol Trace Elem Res 2022; 200:728-739. [PMID: 33738683 DOI: 10.1007/s12011-021-02673-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/10/2021] [Indexed: 01/19/2023]
Abstract
Heat stress (HS)-induced apoptosis in Leydig cells is mediated by various molecular mechanisms, including endoplasmic reticulum (ER) stress. Zinc, an inorganic mineral element, exhibits several cytoprotective properties, but its potential protective action against Leydig cell apoptosis and the related molecular mechanisms has not been fully elucidated. In this study, we evaluated the effects of zinc sulfate, a predominant chemical form of zinc, exerted on cell viability, apoptosis, and testosterone production in HS-treated TM3 Leydig cells and investigated the underlying signaling pathways. HS treatment inhibited cell viability and induced apoptosis, which was accompanied by the induction of the activity of caspase 3, an executioner of apoptosis, involved in the expression of pro-apoptotic protein B cell lymphoma 2-associated X protein (Bax), and in the reduction of the expression of anti-apoptotic protein B cell lymphoma 2 (Bcl-2), thereby activating ER stress marker protein expression (glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)). However, zinc sulfate led to the attenuation of deleterious effects, including increases in apoptosis, caspase-3 activity, Bax, GRP78, and CHOP expression, and decreases in cell viability and Bcl-2 protein expression in cells treated with HS or thapsigargin (an ER stress activator). Furthermore, 4-phenylbutyric acid (an ER stress inhibitor) treatment markedly alleviated the HS-induced adverse effects in cells exposed to HS, which was similar to zinc sulfate. Additionally, zinc sulfate supplementation in the culture medium effectively restored the HS-induced decrease in testosterone levels in HS-treated cells. In summary, these findings indicate that HS triggers apoptosis in TM3 Leydig cells via the ER stress pathway and that zinc confers protection against these detrimental effects. This study provides new insights into the benefits of using zinc against HS-induced apoptosis and cell injury.
Collapse
Affiliation(s)
- Yongjie Xiong
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Jing Li
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China
| | - Shaojun He
- College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, 233100, Anhui, China.
| |
Collapse
|
7
|
Lu X, Yu S, Chen G, Zheng W, Peng J, Huang X, Chen L. Insight into the roles of melatonin in bone tissue and bone‑related diseases (Review). Int J Mol Med 2021; 47:82. [PMID: 33760138 PMCID: PMC7979260 DOI: 10.3892/ijmm.2021.4915] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Bone‑related diseases comprise a large group of common diseases, including fractures, osteoporosis and osteoarthritis (OA), which affect a large number of individuals, particularly the elderly. The progressive destruction and loss of alveolar bone caused by periodontitis is a specific type of bone loss, which has a high incidence and markedly reduces the quality of life of patients. With the existing methods of prevention and treatment, the incidence and mortality of bone‑related diseases are still gradually increasing, creating a significant financial burden to societies worldwide. To prevent the occurrence of bone‑related diseases, delay their progression or reverse the injuries they cause, new alternative or complementary treatments need to be developed. Melatonin exerts numerous physiological effects, including inducing anti‑inflammatory and antioxidative functions, resetting circadian rhythms and promoting wound healing and tissue regeneration. Melatonin also participates in the health management of bone and cartilage. In the present review, the potential roles of melatonin in the pathogenesis and progression of bone injury, osteoporosis, OA and periodontitis are summarized. Furthermore, the high efficiency and diversity of the physiological regulatory effects of melatonin are highlighted and the potential benefits of the use of melatonin for the clinical prevention and treatment of bone‑related diseases are discussed.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shaoling Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenhao Zheng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jinfeng Peng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
8
|
Li W, Guo F, Jiang X, Li Y, Li X, Yu Z. Compound ammonium glycyrrhizin protects hepatocytes from injury induced by lipopolysaccharide/florfenicol through oxidative stress and a MAPK pathway. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108585. [PMID: 31398390 DOI: 10.1016/j.cbpc.2019.108585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 12/26/2022]
Abstract
Compound ammonium glycyrrhizin (CAG) protects hepatocytes from injury induced by lipopolysaccharide (LPS)/florfenicol (FFC) through a mitochondrial pathway. On this basis, the research was aimed to investigate whether CAG protects hepatocytes from injury induced by LPS/FFC through oxidative stress and the MAPK pathway. For liver injury induced by LPS/FFC, not only CAG can protect hepatocytes and prevent membrane permeability from being increased, but also the activities of ALT and AST were decreased significantly by CAG. Flow cytometry analysis indicated that the apoptosis rate (35.65 ± 2.48%) of LPS/FFC group was significantly higher than that of the control group (8.60 ± 0.32%). CAG (concentration of 0.01 μg/mL, 0.1 μg/mL, 1 μg/mL) significantly decreased the apoptosis rate (23.69 ± 0.54%, 14.92 ± 2.45% and 9.47 ± 1.28%) for the liver injury induced by LPS/FFC. The activities of SOD and GSH were increased with the increased concentration of CAG, and the activity of MDA was decreased with the increased concentration of CAG. All the mRNA and proteins expression levels were increased by LPS/FFC-induced liver injury which associated with the MAPK pathway, and those of the CAG group were decreased with the increased concentration of CAG. And the change of caspase-3 activity was consistent with that of proteins and mRNA. It is suggested that LPS/FFC can induce liver injury through apoptosis and the CAG can protect hepatocytes from injury through the MAPK pathway and oxidative stress.
Collapse
Affiliation(s)
- Wenyang Li
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Fanxi Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiangyuan Jiang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ying Li
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaohui Li
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zugong Yu
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
10
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N, Zhou HF. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res 2015; 35:600-4. [DOI: 10.3109/10799893.2015.1030412] [Citation(s) in RCA: 902] [Impact Index Per Article: 90.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Melatonin exerts protective effect on N2a cells under hypoxia conditions through Zip1/ERK pathway. Neurosci Lett 2015; 595:74-80. [DOI: 10.1016/j.neulet.2015.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 01/08/2023]
|