1
|
Shi Z, Wu Z, Wang Z, Liu T, Xie T, Liu N, Li F, Yan J. Protective effects of dietary supplementation of Bacillus Subtilis MZ18 against the reproductive toxicity of zearalenone in pregnant rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117954. [PMID: 40054341 DOI: 10.1016/j.ecoenv.2025.117954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/28/2024] [Accepted: 02/22/2025] [Indexed: 03/17/2025]
Abstract
The microbial detoxification method demonstrates significant potential for detoxifying feed contaminated with mycotoxins, but the application of degrading bacteria in mammals was rarely investigated. In this study, the effects of dietary zearalenone on the growth performance, reproductive performance, reproductive organs, hormone levels of rats and the toxicity alleviation of Bacillus subtilis MZ18 were studied. From gestation day 0-20, pregnant SD rats received either a normal diet or a diet supplemented with zearalenone at a dose of 20 mg/kg⋅BW, and with or without supplementation of Bacillus subtilis MZ18 culture. In addition to the negative effects on the growth performance of dietary zearalenone, we found that the ovarian weight was increased, the number of follicles and granulosa lutein cells in the corpus luteum was reduced, and the placental tissue exhibited an enlarged interstitial space and signs of stasis. Further analysis revealed a reduction in serum levels of LH, FSH, and E2, followed by verification using quantitative RT-PCR analysis and Western blot analysis. Additionally, fetal weight and fetal brain weight were decreased, indicating that exposure to zearalenone during gestation has a negative impact on fetal development. As expected, our research revealed that dietary supplementation with MZ18 effectively mitigates reproductive toxicity caused by zearalenone exposure, including histopathological damage to reproductive organs, and disorders in reproductive hormone levels. The MZ18 treatment had no adverse effects on pregnant rats and fetal rats. The findings of this study provide a foundation for analyzing the mechanism of protective actions.
Collapse
Affiliation(s)
- Zhuo Shi
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhibo Wu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhongyu Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianshu Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Ting Xie
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Nengwen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Feng Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, Heilongjiang, China.
| | - Junshu Yan
- Key Laboratory for Crop and Animal Integrated Farming of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wang H, She F, Chen F, Li K, Qin S. Selenium-Chitosan Protects Porcine Endometrial Epithelial Cells from Zearalenone-induced Apoptosis via the JNK/SAPK Signaling Pathway. Biol Trace Elem Res 2024; 202:2075-2084. [PMID: 37610602 DOI: 10.1007/s12011-023-03816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
This study was designed to assess whether selenium-chitosan (Se-CTS) can protect porcine endometrial epithelial cells (PEECs) against damage and apoptosis induced by zearalenone (ZEA) via modulating the JNK/SAPK signaling pathway. The cell cycle, mitochondrial membrane potential (MMP), reactive oxygen species (ROS), and apoptosis rates of porcine endometrial epithelial cells were determined, as well as the expression levels of genes related to the SAPK/JNK signaling pathway. The results showed that 3.0 µmol/L Se-CTS decreased the percentage of ZEA-induced G1 phase in PEECs (P < 0.01), whereas 1.5 and 3.0 µmol/L Se-CTS increased the percentage of ZEA-induced percentage of G2 phase of PEECs (P < 0.01). Further, Se-CTS at 1.5 and 3.0 µmol/L improved the ZEA-induced decrease in MMP (P < 0.01), whereas Se-CTS at 0.5, 1.5, and 3.0 µmol/L reduced the increase in ROS levels and apoptosis rate induced by ZEA in PEECs (P < 0.01 or P < 0.05). Furthermore, 3.0 µmol/L Se-CTS ameliorated the increase in the expression of c-Jun N-terminal kinase (JNK), apoptosis signal-regulated kinase (ASK1), and c-Jun induced by ZEA (P < 0.01) and the reduction in mitogen-activated protein kinase kinase 4 (MKK4) and protein 53 (p53) expression (P < 0.01), while 1.5 µmol/L Se-CTS improved the expression of ASK1 and c-Jun induced by ZEA (P < 0.05). The results proved that Se-CTS alleviates ZEA-induced cell cycle stagnation, cell mitochondrial damage, and cell apoptosis via decreasing ZEA-produced ROS and modulating the JNK/SAPK signaling pathway.
Collapse
Affiliation(s)
- Huanhuan Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Chengyang District, No 700 Changcheng Road, Qingdao, 266109, China.
| | - Kun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China
| | - Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing District, No 22 Jinjing Road, Tianjin, 300392, China.
- Department of Agricultural Science and Technology, Hotan Vocational and Technical College, 10 Jinghuai Avenue, Beijing Industrial Zone, Hotan, 848000, China.
| |
Collapse
|
3
|
Alenazi A, Virk P, Almoqhem R, Alsharidah A, Al-Ghadi MQ, Aljabr W, Alasmari F, Albasher G. The Efficacy of Hispidin and Magnesium Nanoparticles against Zearalenone-Induced Fungal Toxicity Causing Polycystic Ovarian Syndrome in Rats. Biomedicines 2024; 12:943. [PMID: 38790905 PMCID: PMC11118902 DOI: 10.3390/biomedicines12050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Contamination by fungi and the toxins they secrete is a worldwide health concern. One such toxin is zearalenone (Zea), which is structurally similar to the hormone estrogen, interferes with its action on the reproductive system, and is therefore classified as an endocrine disruptor. This study aims to determine the effectiveness of hispidin and magnesium nanoparticles (MgONPs) against zearalenone-induced myotoxicity, which causes polycystic ovary syndrome (PCOS) in rats. A three-month exposure study was performed using female Wistar rats (n = 42) with an average weight of 100-150 g. The animals were divided into six groups (I to VI) of seven rats each. Group I was administered distilled water as a negative control. Group II was exposed to Zea 0.1 mg/kg b.w. through gavage daily. Group III was treated with 0.1 mg/kg of hispidin through gavage daily. Group IV was given 150 µg/mL MgONPs orally each day. Group V was treated with Zea 0.1 mg/kg b.w. + 0.1 mg/kg hispidin orally each day. Group VI was treated with Zea 0.1 mg/kg b.w. and the combination treatment of 0.1 mg/kg hispidin + 150 µg/mL MgONPs through gavage every day. The effectiveness of hispidin and MgONPs against Zea toxicity was evaluated in terms of ovarian histological changes, gene expression, oxidative stress biomarkers, biochemical variables, and hormone levels. The findings showed that exposure to Zea promotes PCOS in rats, with Zea-treated rats displaying hyper-ovulation with large cysts; elevated testosterone, luteinizing hormone, insulin, and glucose; and reduced sex hormone-binding globulin. In addition, qRT-PCR for aromatase (Cyp19α1) showed it to be downregulated. Treatment with hispidin improved the histopathological and hormonal situation and rescued expression of Cyp19α. Our data indicate the potential therapeutic effects of hispidin against Zea-induced Fungal Toxicity.
Collapse
Affiliation(s)
- Amenah Alenazi
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
- Department of Biological Sciences, College of Science, Northern Border University, Arar 73213, Saudi Arabia
| | - Promy Virk
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
| | - Reem Almoqhem
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
| | - Amani Alsharidah
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
| | - Waleed Aljabr
- King Fahad Medical City, Riyadh 11525, Saudi Arabia;
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11459, Saudi Arabia;
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh 11459, Saudi Arabia; (A.A.); (P.V.); (R.A.); (A.A.); (M.Q.A.-G.)
| |
Collapse
|
4
|
Cai J, Yuan X, Sun Y, Chen J, Li P, Yang S, Long M. Bacillus velezensis A2 Can Protect against Damage to IPEC-J2 Cells Induced by Zearalenone via the Wnt/FRZB/β-Catenin Signaling Pathway. Toxins (Basel) 2024; 16:44. [PMID: 38251260 PMCID: PMC10818814 DOI: 10.3390/toxins16010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Zearalenone (ZEA) has adverse effects on human and animal health, and finding effective strategies to combat its toxicity is essential. The probiotic Bacillus velezensis A2 shows various beneficial physiological functions, including the potential to combat fungal toxins. However, the detailed mechanism by which the Bacillus velezensis A2 strain achieves this protective effect is not yet fully revealed. This experiment was based on transcriptome data to study the protective mechanism of Bacillus velezensis A2 against ZEA-induced damage to IPEC-J2 cells. The experiment was divided into CON, A2, ZEA, and A2+ZEA groups. This research used an oxidation kit to measure oxidative damage indicators, the terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) method to detect cell apoptosis, flow cytometry to determine the cell cycle, and transcriptome sequencing to screen and identify differentially expressed genes. In addition, gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were adopted to screen out relevant signaling pathways. Finally, to determine whether A2 can alleviate the damage caused by ZEA to cells, the genes and proteins involved in inflammation, cell apoptosis, cell cycles, and related pathways were validated using a quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot methods. Compared with the CON group, the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the ZEA group increased significantly (p < 0.01), while the levels of antioxidant enzyme activity, total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), and catalase (CAT) decreased significantly (p < 0.01). Compared with the ZEA group, the A2+ZEA group showed a significant decrease in ROS and MDA levels (p < 0.01), while the levels of T-SOD, GSH-PX, T-AOC, and CAT increased significantly (p < 0.01). TUNEL and cell cycle results indicated that compared with the ZEA group, the A2+ZEA group demonstrated a significant decrease in the cell apoptosis rate (p < 0.01), and the cell cycle was restored. Combining transcriptome data, qRT-PCR, and Western blot, the results showed that compared with the CON group, the mRNA and protein expression levels of Wnt10 and β-catenin increased significantly (p < 0.01), while the expression level of FRZB decreased significantly (p < 0.01); compared with the ZEA group, the expression levels of these mRNA and proteins were reversed. Bacillus velezensis A2 can increase the antioxidant level, reduce inflammatory damage, decrease cell apoptosis, and correct the cell cycle when that damage is being caused by ZEA. The protective mechanism may be related to the regulation of the Wnt/FRZB cell/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (J.C.); (X.Y.); (Y.S.); (J.C.); (P.L.); (S.Y.)
| |
Collapse
|
5
|
Deng T, Chen Y, Zhang J, Gao Y, Yang C, Jiang W, Ou X, Wang Y, Guo L, Zhou T, Yuan QS. A Probiotic Bacillus amyloliquefaciens D-1 Strain Is Responsible for Zearalenone Detoxifying in Coix Semen. Toxins (Basel) 2023; 15:674. [PMID: 38133178 PMCID: PMC10747864 DOI: 10.3390/toxins15120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Zearalenone (ZEN) is a mycotoxin produced by Fusarium spp., which commonly and severely contaminate food/feed. ZEN severely affects food/feed safety and reduces economic losses owing to its carcinogenicity, genotoxicity, reproductive toxicity, endocrine effects, and immunotoxicity. To explore efficient methods to detoxify ZEN, we identified and characterized an efficient ZEN-detoxifying microbiota from the culturable microbiome of Pseudostellaria heterophylla rhizosphere soil, designated Bacillus amyloliquefaciens D-1. Its highest ZEN degradation rate reached 96.13% under the optimal condition. And, D-1 can almost completely remove ZEN (90 μg·g-1) from coix semen in 24 h. Then, the D-1 strain can detoxify ZEN to ZEM, which is a new structural metabolite, through hydrolyzation and decarboxylation at the ester group in the lactone ring and amino acid esterification at C2 and C4 hydroxy. Notably, ZEM has reduced the impact on viability, and the damage of cell membrane and nucleus DNA and can significantly decrease the cell apoptosis in the HepG2 cell and TM4 cell. In addition, it was found that the D-1 strain has no adverse effect on the HepG2 and TM4 cells. Our findings can provide an efficient microbial resource and a reliable reference strategy for the biological detoxification of ZEN.
Collapse
Affiliation(s)
- Tao Deng
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yefei Chen
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Jinqiang Zhang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yanping Gao
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Changgui Yang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Weike Jiang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Xiaohong Ou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Yanhong Wang
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Lanping Guo
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China;
| | - Tao Zhou
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
| | - Qing-Song Yuan
- Resource Institute for Chinese & Ethnic Materia Medica, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China; (T.D.); (J.Z.); (Y.G.); (C.Y.); (W.J.); (Y.W.)
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China;
| |
Collapse
|
6
|
Sun H, Chen J, Xiong D, Long M. Detoxification of Selenium Yeast on Mycotoxins and Heavy Metals: a Review. Biol Trace Elem Res 2023; 201:5441-5454. [PMID: 36662349 PMCID: PMC9854417 DOI: 10.1007/s12011-023-03576-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
Mycotoxins are secondary metabolites produced by specific fungi. More than 400 different mycotoxins are known in the world, and the concentration of these toxins in food and feed often exceeds the acceptable limit, thus causing serious harm to animals and human body. At the same time, modern industrial agriculture will also bring a lot of environmental pollution in the development process, including the increase of heavy metal content, and often the clinical symptoms of low/medium level chronic heavy metal poisoning are not obvious, thus delaying the best treatment opportunity. However, the traditional ways of detoxification cannot completely eliminate the adverse effects of these toxins on the body, and sometimes bring some side effects, so it is essential to find a new type of safe antidote. Trace element selenium is among the essential mineral nutrient elements of human and animal bodies, which can effectively remove excessive free radicals and reactive oxygen species in the body, and has the effects of antioxidant, resisting stress, and improving body immunity. Selenium is common in nature in inorganic selenium and organic selenium. In previous studies, it was found that the use of inorganic selenium (sodium selenite) can play a certain protective role against mycotoxins and heavy metal poisoning. However, while it plays the role of antioxidant, it will also have adverse effects on the body. Therefore, it was found in the latest study that selenium yeast could not only replace the protective effect of sodium selenite on mycotoxins and heavy metal poisoning, but also improve the immunity of the body. Selenium yeast is an organic selenium source with high activity and low toxicity, which is produced by selenium relying on the cell protein structure of growing yeast. It not only has high absorption rate, but also can be stored in the body after meeting the physiological needs of the body for selenium, so as to avoid selenium deficiency again in the short term. However, few of these studies can clearly reveal the protective mechanism of yeast selenium. In this paper, the detoxification mechanism of selenium yeast on mycotoxins and heavy metal poisoning was reviewed, which provided some theoretical support for further understanding of the biological function of selenium yeast and its replacement for inorganic selenium. The conclusions suggest that selenium yeast can effectively alleviate the oxidative damage by regulating different signaling pathways, improving the activity of antioxidant enzymes, reversing the content of inflammatory factors, regulating the protein expression of apoptosis-related genes, and reducing the accumulation of mycotoxins and heavy metals in the body.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Jia Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Dongwei Xiong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866 People’s Republic of China
| |
Collapse
|
7
|
Bisconsin-Junior A, Feitosa BF, Silva FL, Barros Mariutti LR. Mycotoxins on edible insects: Should we be worried? Food Chem Toxicol 2023; 177:113845. [PMID: 37209938 DOI: 10.1016/j.fct.2023.113845] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/27/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Edible insects are a solid alternative to meet the growing demand for animal protein. However, there are doubts regarding the safety of insect consumption. Mycotoxins are substances of concern for food safety, as they may cause harmful effects on the human organism and accumulate in the tissues of some animals. This study focuses on the characteristics of the main mycotoxins, the mitigation of human consumption of contaminated insects, and the effects of mycotoxins on insect metabolism. To date, studies reported the interaction of the mycotoxins aflatoxin B1, ochratoxin A, zearalenone, deoxynivalenol, fumonisin B1, and T-2, isolated or combined, in three insect species from Coleoptera and one from Diptera order. The use of rearing substrates with low mycotoxin contamination did not reduce the survival and development of insects. Fasting practices and replacing contaminated substrate with a decontaminated one decreased the concentration of mycotoxins in insects. There is no evidence that mycotoxins accumulate in the tissues of the insects' larvae. Coleoptera species showed high excretion capacity, while Hermetia illucens had a lower excretion capacity of ochratoxin A, zearalenone, and deoxynivalenol. Thus, a substrate with low mycotoxin contamination could be used for raising edible insects, particularly from the Coleoptera order.
Collapse
Affiliation(s)
- Antonio Bisconsin-Junior
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil; Federal Institute of Rondônia, Ariquemes, RO, Brazil.
| | | | | | | |
Collapse
|
8
|
Wang K, Zhou M, Du Y, Li P, Huang Z. Zearalenone induces the senescence of cardiovascular cells in vitro and in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56037-56053. [PMID: 36913015 DOI: 10.1007/s11356-023-25869-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Zearalenone is a contaminant in food and feed products. It has been reported that zearalenone could lead to serious damage to health. So far, it is unclear whether zearalenone could lead to cardiovascular aging-related injury. For this, we assessed the effect of zearalenone on cardiovascular aging. Cardiomyocyte cell lines and primary coronary endothelial cells were used as two cell models in vitro experiments, and Western-blot, indirect immunofluorescence, and flow cytometry were performed to study the effect of zearalenone on cardiovascular aging. Experimental results indicated zearalenone treatment increased Sa-β-gal positive cell ratio, and the expression of senescence markers (p16 and p21) was significantly upregulated. Additionally zearalenone upregulated the inflammation and oxidative stress in cardiovascular cells. Furthermore, the effect of zearalenone on cardiovascular aging was also evaluated in vivo, and the results indicated that zearalenone treatment also led to the aging of myocardial tissue. These findings suggest that zearalenone could lead to cardiovascular aging-related injury. Furthermore, we also preliminarily explored the potential effect of zeaxanthin (which is a powerful antioxidant) on zearalenone-caused aging-related damage in vitro cell model, and found that zeaxanthin could alleviate zearalenone-induced aging-related damage. Collectively, the most important finding of the current work is that zearalenone could lead to cardiovascular aging. Next in importance, we also found that zeaxanthin could partially alleviate zearalenone-induced cardiovascular aging in vitro, indicating that zeaxanthin can be used as a drug or functional food to treat cardiovascular damage caused by zearalenone.
Collapse
Affiliation(s)
- Kaihao Wang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Min Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yipeng Du
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peixin Li
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zheng Huang
- Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Xia D, Mo Q, Yang L, Wang W. Crosstalk between Mycotoxins and Intestinal Microbiota and the Alleviation Approach via Microorganisms. Toxins (Basel) 2022; 14:859. [PMID: 36548756 PMCID: PMC9784275 DOI: 10.3390/toxins14120859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/30/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Mycotoxins are secondary metabolites produced by fungus. Due to their widespread distribution, difficulty in removal, and complicated subsequent harmful by-products, mycotoxins pose a threat to the health of humans and animals worldwide. Increasing studies in recent years have highlighted the impact of mycotoxins on the gut microbiota. Numerous researchers have sought to illustrate novel toxicological mechanisms of mycotoxins by examining alterations in the gut microbiota caused by mycotoxins. However, few efficient techniques have been found to ameliorate the toxicity of mycotoxins via microbial pathways in terms of animal husbandry, human health management, and the prognosis of mycotoxin poisoning. This review seeks to examine the crosstalk between five typical mycotoxins and gut microbes, summarize the functions of mycotoxins-induced alterations in gut microbes in toxicological processes and investigate the application prospects of microbes in mycotoxins prevention and therapy from a variety of perspectives. The work is intended to provide support for future research on the interaction between mycotoxins and gut microbes, and to advance the technology for preventing and controlling mycotoxins.
Collapse
Affiliation(s)
- Daiyang Xia
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qianyuan Mo
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
10
|
Qin S, She F, Zhao F, Li L, Chen F. Selenium-chitosan alleviates the toxic effects of Zearalenone on antioxidant and immune function in mice. Front Vet Sci 2022; 9:1036104. [PMID: 36277059 PMCID: PMC9582340 DOI: 10.3389/fvets.2022.1036104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022] Open
Abstract
This study assessed the protective effects of selenium-chitosan (SC) against antioxidant and immune function-related damage induced by zearalenone (ZEN) in mice. In total, 150 female mice were allotted to five groups for a 30-day study. Control mice were fed a basal diet. Mice in the ZEN, ZEN-Se1, ZEN-Se2 and ZEN-Se3 groups were fed the basal diet supplemented with same dose of ZEN (2 mg/kg) and different doses of SC, 0.0, 0.2, 0.4 and 0.6 mg/kg, respectively (calculated by selenium). After 30 days, the total antioxidant capacity (T-AOC) level, glutathione peroxidase (GSH-Px) activity, total superoxide dismutase (T-SOD) activity and malondialdehyde (MDA) content in plasma and liver, as well as Con A-induced splenocyte proliferation, plasma interleukins concentrations and liver interleukin mRNA expression levels were determined. The plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, interleukin (IL) contents and mRNA expression levels in the ZEN group were significantly lower than in the control group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN group were significantly higher than in the control group (P < 0.01 or P < 0.05). Additionally, plasma and liver GSH-Px activities, liver T-AOC levels, Con A-induced splenocyte proliferation, IL-1β, IL-17A, IL-2 and IL-6 contents and mRNA expression levels in ZEN+Se2 and ZEN+Se3 groups were significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas plasma and liver MDA contents in the ZEN+Se2 and ZEN+Se3 groups were significantly lower than in the ZEN group (P < 0.01 or P < 0.05). The plasma and liver GSH-Px activities, Con A-induced splenocyte proliferation, IL-1β and IL-6 contents, IL-2 and IL-17A mRNA expression levels in the ZEN+Se1 group were also significantly higher than in the ZEN group (P < 0.01 or P < 0.05), whereas the plasma MDA content in the ZEN+Se1 group was also significantly lower than in the ZEN group (P < 0.01). Thus, SC may alleviate antioxidant function-related damage and immunosuppression induced by ZEN in mice.
Collapse
Affiliation(s)
- Shunyi Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fuze She
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fanghong Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Fu Chen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China,*Correspondence: Fu Chen
| |
Collapse
|
11
|
Jing S, Liu C, Zheng J, Dong Z, Guo N. Toxicity of zearalenone and its nutritional intervention by natural products. Food Funct 2022; 13:10374-10400. [PMID: 36165278 DOI: 10.1039/d2fo01545e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zearalenone (ZEN) is a toxic secondary metabolite mainly produced by fungi of the genus Fusarium, and is often present in various food and feed ingredients such as corn and wheat. The structure of ZEN is similar to that of natural estrogen, and it can bind to estrogen receptors and has estrogenic activity. Therefore, it can cause endocrine-disrupting effects and promote the proliferation of estrogen receptor-positive cell lines. In addition, ZEN can cause oxidative damage, endoplasmic reticulum stress, apoptosis, and other hazards, resulting in systemic toxic effects, including reproductive toxicity, hepatotoxicity, and immunotoxicity. In the past few decades, researchers have tried many ways to remove ZEN from food and feed, but it is still a challenge to eliminate it. In recent years, natural compounds have become of interest for their excellent protective effects on human health from food contaminants. Researchers have discovered that natural compounds often used as dietary supplements can effectively alleviate ZEN-induced systemic toxic effects. Most of the compounds mitigate ZEN-induced toxicity through antioxidant effects. In this article, the contamination of food and feed by ZEN and the various toxic effects and mechanisms of ZEN are reviewed, as well as the mitigation effects of natural compounds on ZEN-induced toxicity.
Collapse
Affiliation(s)
- Siyuan Jing
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Chunmei Liu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Jian Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhijian Dong
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Na Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Yuan T, Li J, Wang Y, Li M, Yang A, Ren C, Qi D, Zhang N. Effects of Zearalenone on Production Performance, Egg Quality, Ovarian Function and Gut Microbiota of Laying Hens. Toxins (Basel) 2022; 14:toxins14100653. [PMID: 36287922 PMCID: PMC9610152 DOI: 10.3390/toxins14100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a ubiquitous contaminant in poultry feed, since ZEN and its metabolites can interfere with estrogen function and affect the reproductive ability of animals. The estrogen-like effect of ZEN on mammal is widely reported, while little information is available, regarding the effect of relatively low dose of ZEN on estrogen function and production performance of laying hens, and the relationship between them. This work was aimed to investigate the effects of ZEN on the production performance, egg quality, ovarian function and gut microbiota of laying hens. A total of 96 Hy-line brown laying hens aged 25-week were randomly divided into 3 groups including basal diet group (BD group), basal diet supplemented with 250 μg/kg (250 μg/kg ZEN group) and 750 μg/kg (750 μg/kg ZEN group) ZEN group. Here, 750 μg/kg ZEN resulted in a significant increase in the feed conversion ratio (FCR) (g feed/g egg) (p < 0.05), a decrease in the egg production (p > 0.05), albumen height and Haugh unit (p > 0.05), compared to the BD group. The serum Follicle-stimulating hormone (FSH) levels significantly decreased in ZEN supplemented groups (p < 0.05). Serum Luteinizing hormone (LH) and Progesterone (P) levels in the 750 μg/kg ZEN group were significantly lower than those in the BD group (p < 0.05). 16S rRNA sequencing indicated that ZEN reduced cecum microbial diversity (p < 0.05) and altered gut microbiota composition. In contrast to 250 μg/kg ZEN, 750 μg/kg ZEN had more dramatic effects on the gut microbiota function. Spearman’s correlation analysis revealed negative correlations between the dominant bacteria of the 750 μg/kg ZEN group and the production performance, egg quality and ovarian function of hens. Overall, ZEN was shown to exert a detrimental effect on production performance, egg quality and ovarian function of laying hens in this study. Moreover, alterations in the composition and function of the gut microbiota induced by ZEN may be involved in the adverse effects of ZEN on laying hens.
Collapse
|
13
|
Shahidi M, Moradi A, Dayati P. Zingerone attenuates zearalenone-induced steroidogenesis impairment and apoptosis in TM3 Leydig cell line. Toxicon 2022; 211:50-60. [PMID: 35331755 DOI: 10.1016/j.toxicon.2022.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/24/2022]
Abstract
Zingerone1 (Zing) is one of the bioactive compounds of ginger rhizome (Zingiber officinale), whose beneficial effects have been reported previously on reproductive organ complications. The current study purposed to survey probable protective impacts of Zing against Zearalenone (ZEA)-induced changes in the TM3 Leydig cell line. Exposure of TM3 cells to ZEA (25 μM) attenuates the levels of testosterone and steroidogenesis-related genes, which was reversed by 25 μM of Zing. ZEA also induced ROS generation and apoptosis in TM3 cells. Zing treatment improved the stress oxidative and apoptosis-related changes induced by ZEA in TM3 cells by modulating autophagy-related proteins and activating PI3K-AKT-mTOR and Nrf2 pathways. The findings of this study represented a theoretical basis for Zing's protective actions against ZEA toxic effects on TM3 cells.
Collapse
Affiliation(s)
- Maryamsadat Shahidi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Belgacem H, Venditti M, Ben Salah-Abbès J, Minucci S, Abbès S. Potential protective effect of lactic acid bacteria against zearalenone causing reprotoxicity in male mice. Toxicon 2022; 209:56-65. [PMID: 35181403 DOI: 10.1016/j.toxicon.2022.02.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
Zearalenone (ZEN) is a worldwide fusarotoxin that poses a threat to the consumer due to its chronic toxicity. Herein we examined the effects of ZEN on adult mouse testis, focusing on oxidative stress, biochemical and morphological parameters. In addition, since cytoskeletal remodeling is a key event for the production of good quality gametes, the expression and localization of two proteins, Dishevelled-associated activator of morphogenesis 1 (DAAM1) and Prolyl endopeptidase (PREP), involved in cytoskeletal dynamics during spermatogenesis were evaluated. To ameliorate the testicular dysfunction induced by ZEN we tested the eventual protective effects of lactic bacteria Lactobacillus plantarum MON03 (LP) on its reprotoxicity. Adult male mice were then treated daily for 2 wks by oral gavage with ZEN and/or LP. The results confirmed that ZEN altered sperm parameters, generated oxidative stress and provoked structural alteration, evidenced by the increased number of abnormal seminiferous tubules and of apoptotic cells, particularly Leydig cells. Interestingly, at molecular level we evaluated, for the first time, the ability of ZEN to alter DAAM1 and PREP protein level and localization. Moreover, the co-treatment with LP, thanks to its capacity to reduce ZEN bioavailability in the gastrointestinal tract, ameliorated all the considered parameters. These results suggest the use of this probiotic as food supplement to prevent/counteract ZEN-induced reprotoxicity.
Collapse
Affiliation(s)
- Hela Belgacem
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Massimo Venditti
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Jalila Ben Salah-Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia
| | - Sergio Minucci
- Department of Experimental Medicine, University Degli Studi Della Campania Luigi Vanvitelli, Napoli, Italy
| | - Samir Abbès
- Laboratory of Genetic, Biodiversity and Bio-resources Valorisation, University of Monastir, Monastir, Tunisia; Higher Institute of Biotechnology of Béja, University of Jendouba, Jendouba, Tunisia.
| |
Collapse
|
15
|
Shen W, Liu Y, Zhang X, Zhang X, Rong X, Zhao L, Ji C, Lei Y, Li F, Chen J, Ma Q. Comparison of Ameliorative Effects between Probiotic and Biodegradable Bacillus subtilis on Zearalenone Toxicosis in Gilts. Toxins (Basel) 2021; 13:toxins13120882. [PMID: 34941719 PMCID: PMC8703852 DOI: 10.3390/toxins13120882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to compare the potential ameliorative effects between probiotic Bacillus subtilis and biodegradable Bacillus subtilis on zearalenone (ZEN) toxicosis in gilts. Thirty-six Landrace×Yorkshire gilts (average BW = 64 kg) were randomly divided into four groups: (1) Normal control diet group (NC) fed the basal diet containing few ZEN (17.5 μg/kg); (2) ZEN contaminated group (ZC) fed the contaminated diet containing an exceeded limit dose of ZEN (about 300 μg/kg); (3) Probiotic agent group (PB) fed the ZC diet with added 5 × 109 CFU/kg of probiotic Bacillus subtilis ANSB010; (4) Biodegradable agent group (DA) fed the ZC diet with added 5 × 109 CFU/kg of biodegradable Bacillus subtilis ANSB01G. Results showed that Bacillus subtilis ANSB010 and ANSB01G isolated from broiler intestinal chyme had similar inhibitory activities against common pathogenic bacteria. In addition, the feed conversion ratio and the vulva size in DA group were significantly lower than ZC group (p < 0.05). The levels of IgG, IgM, IL-2 and TNFα in the ZC group were significantly higher than PB and DA groups (p < 0.05). The levels of estradiol and prolactin in the ZC group was significantly higher than those of the NC and DA groups (p < 0.05). Additionally, the residual ZEN in the feces of the ZC and PB groups were higher than those of the NC and DA groups (p < 0.05). In summary, the ZEN-contaminated diet had a damaging impact on growth performance, plasma immune function and hormone secretion of gilts. Although probiotic and biodegradable Bacillus subtilis have similar antimicrobial capacities, only biodegradable Bacillus subtilis could eliminate these negative effects through its biodegradable property to ZEN.
Collapse
Affiliation(s)
- Wenqiang Shen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yaojun Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xinyue Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiong Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiaoping Rong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yuanpei Lei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Fengjuan Li
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Jing Chen
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
- Correspondence:
| |
Collapse
|
16
|
Li L, Zhang T, Ren X, Li B, Wang S. Male reproductive toxicity of zearalenone-meta-analysis with mechanism review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112457. [PMID: 34175827 DOI: 10.1016/j.ecoenv.2021.112457] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Zearalenone (ZEA) is an oestrogen-like mycotoxin produced by Fusarium fungi, which has a considerable impact on human and animal health and results in substantial economic losses worldwide. This study aimed to demonstrate the reproductive injury induced by ZEA in rodents. We conducted a rigorous meta-analysis of the related literature via PubMed, Embase, and Web of Science. The scope of the study includes the following: development of reproductive organs, serum testosterone, oestradiol, and luteinizing hormone (LH) levels; parameters of Leydig cells; and parameters of semen. In total, 19 articles were reviewed. Compared with the control group, the increased relative epididymis weight, increased serum oestradiol level, and decreased LH levels in the prenatally exposed group were observed. In pubertal and adult rodents, the relative testicular weight, serum oestradiol level, Leydig cell number, and percentage of ST (+) Leydig cells decreased under ZEA exposure. In rodents at all ages, decreased serum testosterone level, sperm concentration, sperm motility rate, and increased serum deformity rate were observed in exposed groups compared with control groups. Although subgroup analysis failed to identify a clear dose-response relationship between ZEA exposure and reproductive system damage in male rodents, we still managed to confirm that zearalenone could decrease the serum testosterone level at the dosage of 50 mg/kg*day, 1.4 mg/kg*day, and 84 mg/kg*day, of prenatal, pubertal, and mature rodents respectively; pubertal zearalenone exposure impairs the quality and quantity of sperms of rodents at the dosage of 1.4 mg/kg*day and mature zearalenone exposure has the same effect at the dosage of 84 mg/kg*day. In conclusion, we found that ZEA exposure can cause considerable damage to the reproductive system of rodents of all ages. While the exact underlying mechanism of ZEA-induced toxicity in the reproductive system remains largely unknown, the theories of oestrogen-like effects and oxidative stress damage are promising.
Collapse
Affiliation(s)
- Lin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Tongtong Zhang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Xiaohan Ren
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China
| | - Bingxin Li
- Nanjing Medical University, Nanjing 211166, China
| | - Shangqian Wang
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Street, Nanjing, Jiangsu Province 210029, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
17
|
Ruan H, Lu Q, Wu J, Qin J, Sui M, Sun X, Shi Y, Luo J, Yang M. Hepatotoxicity of food-borne mycotoxins: molecular mechanism, anti-hepatotoxic medicines and target prediction. Crit Rev Food Sci Nutr 2021; 62:2281-2308. [PMID: 34346825 DOI: 10.1080/10408398.2021.1960794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mycotoxins are metabolites produced by fungi. The widespread contamination of food and feed by mycotoxins is a global food safety problem and a serious threat to people's health. Most food-borne mycotoxins have strong hepatotoxicity. However, no effective methods have been found to prevent or treat Mycotoxin- Induced Liver Injury (MILI) in clinical and animal husbandry. In this paper, the molecular mechanisms and potential anti-MILI medicines of six food-borne MILI are reviewed, and their targets are predicted by network toxicology, which provides a theoretical basis for further study of the toxicity mechanism of MILI and the development of effective strategies to manage MILI-related health problems in the future and accelerate the development of food safety.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Lu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiashuo Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaan Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming Sui
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinqi Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Shi
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
18
|
ZEA-induced autophagy in TM4 cells was mediated by the release of Ca 2+ activates CaMKKβ-AMPK signaling pathway in the endoplasmic reticulum. Toxicol Lett 2020; 323:1-9. [PMID: 31982503 DOI: 10.1016/j.toxlet.2020.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 11/11/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Zearalenone (ZEA) is a prevalent non-steroidal estrogenic mycotoxin produced mainly by Fusarium contamination. Our previous study showed that ZEA induces the autophagy of Sertoli cells (SCs). However, the underlying mechanisms are still unknown. Several studies have indicated that the increasing level of cytoplasmic Ca2+ could induce autophagy through CaMKKβ and AMPK pathways. Thus in order to investigate the potential mechanism underlying ZEA-induced autophagy, the activity of calmodulin-dependent kinase kinase β(CaMKKβ)and AMP-activated protein kinase (AMPK) signaling pathway in ZEA-infected TM4 cells was studied. In the present study, ZEA activated the CaMKKβ and AMPK signaling pathways. The AMPK inhibitor and activator significantly inhibited and stimulated the effect of ZEA on AMPK, the transformation from LC3I to LC3II, and the distribution of LC3 dots. In addition, cytosolic calcium (Ca2+) was increased gradually with the concentration of ZEA. After treatment of ZEA-infected cells with 1, 2-bis (2-aminophenoxy) ethane-N, N, N', N'- tetraacetic acid- tetraac etoxymethyl ester (BAPTA-AM) and 2-aminoethyl diphenylborinate (2-APB), the intracellular concentration of Ca2+ reduced significantly. Also, the activities of CaMKKβ and AMPK and subsequent autophagy decreased. Moreover, the antioxidant NAC significantly decreased activities of AMPK and autophagy -related protein. Therefore, it can be speculated that ROS- mediated ER-stress induced by ZEA activates AMPK via Ca2+-CaMKKβ leading to autophagy in TM4 cells.
Collapse
|
19
|
Effects of zearalenone and its derivatives on the synthesis and secretion of mammalian sex steroid hormones: A review. Food Chem Toxicol 2019; 126:262-276. [PMID: 30825585 DOI: 10.1016/j.fct.2019.02.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 02/20/2019] [Indexed: 02/08/2023]
Abstract
Zearalenone (ZEA), a non-steroidal estrogen mycotoxin produced by several species of Fusarium fungi, can be metabolized into many other derivatives by microorganisms, plants, animals and humans. It can affect mammalian reproductive capability by impacting the synthesis and secretion of sex hormones, including testosterone, estradiol and progesterone. This review summarizes the mechanisms in which ZEA and its derivatives disturb the synthesis and secretion of sex steroid hormones. Because of its structural analogy to estrogen, ZEA and its derivatives can exert a variety of estrogen-like effects and engage in estrogen negative feedback regulation, which can result in mediating the production of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) in the pituitary gland. ZEA and its derivatives can ultimately reduce the number of Leydig cells and granulosa cells by inducing oxidative stress, endoplasmic reticulum (ER) stress, cell cycle arrest, cell apoptosis, and cell regeneration delay. Additionally, they can disrupt the mitochondrial structure and influence mitochondrial functions through overproduction of reactive oxygen species (ROS) and aberrant autophagy signaling ways. Finally, ZEA and its derivatives can disturb the expressions and activities of the related steroidogenic enzymes through cross talking between membrane and nuclear estrogen receptors.
Collapse
|
20
|
Wang N, Li P, Wang M, Chen S, Huang S, Long M, Yang S, He J. The Protective Role of Bacillus velezensis A2 on the Biochemical and Hepatic Toxicity of Zearalenone in Mice. Toxins (Basel) 2018; 10:toxins10110449. [PMID: 30384460 PMCID: PMC6267044 DOI: 10.3390/toxins10110449] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/26/2018] [Accepted: 10/28/2018] [Indexed: 12/17/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin produced by Fusarium that seriously compromises the safety of animal and human health. In this study, our aim was to evaluate the protective effect of Bacillus velezensis A2 against biochemical and pathological changes induced by zearalenone in mice. Kunming mice (n = 40; 25 ± 2 g) were allotted to four treatment groups: a control group (basic feed); a ZEN group (basic feed with a ZEN dose of 60 mg/kg); an A2 strain fermented feed group (150 g of feed mixed with 150 mL of sterile distilled water and inoculated with 5 mL of phosphate buffer salt (PBS) resuspended A2 strain); and an A2 strain fermented ZEN-contaminated feed group. (A2 strain group 150 mL pure bacterial distilled water system mixed with 150 g ZEN-contaminated feed.) Our results showed that the Bacillus velezensis A2 strain can completely degrade the ZEN-contaminated feed within 5 days. (The concentration of ZEN in fermentation was 60 μg/mL.) After the mice fed for 28 days, compared with the control group, the activities of AST and ALT were increased, the activities of glutathione peroxidase (GSH-PX) and total superoxide dismutase (T-SOD) were decreased, and the amount of creatinine (CRE), blood urea nitrogen (BUN), uric acid (UA), and malondialdehyde (MDA) in the ZEN group were increased in the mice serum (p < 0.05; p < 0.01). However, compared with the ZEN group, these biochemical levels were reversed in the A2 strain fermented feed group and in the A2 strain fermented ZEN-contaminated feed group (p < 0.05; p < 0.01). Furthermore, histopathological analysis only showed pathological changes of the mice liver in the ZEN group. The results showed that Bacillus velezensis A2 as additive could effectively remove ZEN contamination in the feed and protect the mice against the toxic damage of ZEN. In conclusion, Bacillus velezensis A2 has great potential use as a microbial feed additive to detoxify the toxicity of zearalenone in production practice.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Si Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Sheng Huang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
21
|
Wang N, Li P, Pan J, Wang M, Long M, Zang J, Yang S. Bacillus velezensis A2 fermentation exerts a protective effect on renal injury induced by Zearalenone in mice. Sci Rep 2018; 8:13646. [PMID: 30206282 PMCID: PMC6133983 DOI: 10.1038/s41598-018-32006-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022] Open
Abstract
Zearalenone (ZEN) is an estrogen-like mycotoxin occurring in food and feeds, and it can cause oxidative damage and apoptosis in the testis, liver, and kidney. A current concern for researchers is how to reduce the harm it causes to humans and animals. In this study, our aim was to isolate and identify a novel and efficient ZEN-detoxifying strain of bacteria, and we aimed to assess the protective effect of the isolated strain on kidney damage caused by ZEN in mice. Our results indicated that a strain of Bacillus velezensis (B. velezensis), named A2, could completely degrade ZEN (7.45 μg/mL) after three days of incubation at 37 °C in the Luria-Bertani (LB) medium. This fermentation broth of the B. velezensis A2 strain was given to mice. The histopathological analysis indicated that the fermentation broth from the B. velezensis A2 strain reduced the degree of renal injury that is induced by ZEN. Furthermore, it greatly reduced the increase in serum levels of creatinine (CRE), uric acid (UA), and urea nitrogen (BUN) caused by ZEN. In addition, B. velezensis A2 strain also significantly inhibited the increase of malonaldehyde (MDA) content, and reversed the decreases of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) activities caused by ZEN. Studies have shown that ZEN is involved in the regulation of mRNA and protein levels of genes involved in the ER stress-induced apoptotic pathway, such as heavy chain binding protein (BIP), C-/-EBP homologous protein (CHOP), cysteine Aspartate-specific protease-12 (Caspase-12), c-Jun N-terminal kinase (JNK), and BCL2-related X protein (Bcl-2 and Bax). However, when mice were administered the fermentation broth of the B. velezensis A2 strain, it significantly reversed the expressions of these genes in their kidney tissue. In conclusion, our results indicate that the newly identified strain of B. velezensis A2, has a protective effect from renal injury induced by ZEN in mice. This strain has a potential application in the detoxification of ZEN in feed and protects animals from ZEN poisoning.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jian Zang
- Testing& Analysis Center, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
22
|
Chang S, Su Y, Sun Y, Meng X, Shi B, Shan A. Response of the nuclear receptors PXR and CAR and their target gene mRNA expression in female piglets exposed to zearalenone. Toxicon 2018; 151:111-118. [PMID: 30017994 DOI: 10.1016/j.toxicon.2018.06.081] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
A study was conducted to determine the effects of zearalenone (ZEN) on the mRNA expression of pregnane X receptor (PXR), constitutive and rostane receptor (CAR), and phase I and II enzymes as well as the toxicity in the liver of female weanling piglets. Thirty-two female weanling piglets (Duroc × Landrace × Large white, 12.27 ± 0.30 kg)were divided into four groups (n = 8 piglets/group) that were supplemented with 0 (control), 0.5, 1 or 2 mg/kg ZEN. The trial period lasted for 28 d. The results showed that the ZEN supplementation in the diets (0.5-2 mg/kg) had no effect on growth performance but dose-dependently increased serum aspartate aminotransferase, alanineaminotransferase, alkaline phosphatase, and γ-glutamyltransferase activities (P < 0.05). The ZEN residue in the liver (P < 0.01) was also linearly and dose-dependently increased. Furthermore, the mRNA expression of PXR, CAR, phase I enzymes (i.e., cyp2e1, cyp3a5, cyp2a6, cyp1a1, and cyp1a2), and phase II enzymes (i.e., gsta1, gsta2, ugt1a3) significantly increased linearly in a dose-dependent manner (P < 0.05). However, the spleen relative weight and the glutathione peroxidase activity in the liver (P < 0.05) linearly decreased as the dietary ZEN concentration increased; the mRNA expression of the nuclear receptors PXR and CAR is responsive to ZEN in female piglets, and ZEN increases the mRNA expression of their target genes. This finding shows that the nuclear receptor signaling system plays an important role in the defense against ZEN.
Collapse
Affiliation(s)
- Siying Chang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yang Su
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiangyu Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
23
|
Long M, Yang S, Dong S, Chen X, Zhang Y, He J. Characterization of semen quality, testicular marker enzyme activities and gene expression changes in the blood testis barrier of Kunming mice following acute exposure to zearalenone. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27235-27243. [PMID: 28965173 DOI: 10.1007/s11356-017-0299-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
A total of 95 8-week-old male Kunming mice were randomly assigned into five groups and exposed to zearalenone (ZEA) at doses of 25, 50, and 75 mg/kg delivered by intra-peritoneal (i.p.) injection for 5 days. The testis and epididymis indices involving sperm quality and morphology, testis enzyme activities, serum concentrations of testosterone and estrogen, and the expression levels of the three gene and protein of N-cadherin, vimentin, and claudin 11 related to the blood testis barrier (BTB) were analyzed. Results showed that ZEA significantly decreased body weight and semen quality compared to the control group along with increased activity of alkaline phosphatase (ALP), acid phosphatase (ACP), lactate dehydrogenase (LDH), and reduced serum concentrations of testosterone and estrogen. At the mRNA and protein levels, expression of N-cadherin, vimentin, and claudin 11 significantly increased; however, the mRNA and protein of N-cad expression decreased. These data suggest acute exposure to ZEA reduces sperm quality and significantly decreases the concentration of serum testosterone and estradiol. In addition, the activities of the testis marker enzymes and associated mRNA and protein expressions of the BTB were also significantly affected. Our results demonstrated that ZEA has a significant impact on the reproductive parameters of male mice which showed compensatory response to strengthen the barrier function of the BTB following ZEA exposure.
Collapse
Affiliation(s)
- Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Dong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinliang Chen
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Zhang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
24
|
The Protective Effect of Selenium on Chronic Zearalenone-Induced Reproductive System Damage in Male Mice. Molecules 2016; 21:molecules21121687. [PMID: 27941626 PMCID: PMC6274099 DOI: 10.3390/molecules21121687] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 11/17/2022] Open
Abstract
This study aims to explore the protective effect of selenium (Se) on chronic zearalenone (ZEN)-induced reproductive system damage in male mice and the possible protective molecular mechanism against this. The chronic ZEN-induced injury mouse model was established with the continuous intragastric administration of 40 mg/kg body mass (B.M.) ZEN for 28 days. Then, interventions with different doses (0.1, 0.2, and 0.4 mg/kg B.M.) of Se were conducted on mice to analyse the changes in organ indexes of epididymis and testis, antioxidant capability of testis, serum level of testosterone, sperm concentration and motility parameters, and the expression levels of apoptosis-associated genes and blood testis barrier- (BTB) related genes. Our results showed that Se could greatly improve the ZEN-induced decrease of epididymis indexes and testis indexes. Results also showed that the decrease in sperm concentration, sperm normality rate, and sperm motility parameters, including percentage of motile sperm (motile), tropism percentage (progressive) and sperm average path velocity (VAP), caused by ZEN were elevated upon administration of the higher dose (0.4 mg/kg) and intermediate dose (0.2 mg/kg) of Se. Selenium also significantly reduced the content of malondialdehyde (MDA) but enhanced the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the testis tissue. Further research demonstrated that ZEN increased the level of mRNA expression of BCL2-associated X protein (Bax) and caspase 3 (Casp3), decreased the level of mRNA expression of B cell leukemia/lymphoma 2 (Bcl2), vimentin (Vim) and cadherin 2 (Cdh2), whereas the co-administration of Se reversed these gene expression levels. Our results indicated that high levels of Se could protect against reproductive system damage in male mice caused by ZEN and the mechanism might such be that Se improved mice antioxidant ability, inhibited reproductive cell apoptosis, and increased the decrease of BTB integrity-related genes caused by ZEN.
Collapse
|