1
|
Galiciolli MEA, Joshee L, Oliveira CS, Barkin JL, Bridges CC. Multidrug Resistance-Associated Proteins 3 and 5 Play a Role in the Hepatic Transport of Mercuric Conjugates of Glutathione. Int J Mol Sci 2025; 26:1194. [PMID: 39940963 PMCID: PMC11818351 DOI: 10.3390/ijms26031194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Multidrug resistance proteins (MRPs) are transporters for metabolic waste and xenobiotics and are known to export a wide range of substances from renal tubular cells. This study aimed to define and characterize the transport of mercuric conjugates of glutathione (GSH-Hg-GSH) in inside-out membrane vesicles containing MRP3 and MPR5. The functionality of the MRP3 and MRP5 vesicles was confirmed by measuring the uptake of [3H]-estradiol and 5-6-carboxy-2',7'-dichloro-fluorescein (CDCF) over time (at 1, 5, 15, and 30 min). The uptake of GSH-Hg-GSH, containing radioactive mercury ([203Hg]), was measured in each set of membrane vesicles over time, and the findings suggest that GSH-Hg-GSH is a substrate of MRP3 and MRP5. The saturation kinetics were also analyzed by measuring the uptake of 10 µM GSH-[203Hg]-GSH in the presence of 25, 50, or 100 µM unlabeled GSH-Hg-GSH for 5 min at 37 °C. The transport of GSH-Hg-GSH by MRP3 (Vmax = 25.6 µM; Km = 2.8 µM) and MRP5 (Vmax = 32.9 µM; Km = 4.9 µM) was saturable. These findings are the first to show that MRP3 and MRP5 are capable of mediating the export of any form of mercury.
Collapse
Affiliation(s)
- Maria Eduarda Andrade Galiciolli
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA; (M.E.A.G.); (L.J.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil;
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Lucy Joshee
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA; (M.E.A.G.); (L.J.)
| | - Cláudia S. Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba 80250-060, PR, Brazil;
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Jennifer L. Barkin
- Department of Community Medicine, Mercer University School of Medicine, Macon, GA 31207, USA;
| | - Christy C. Bridges
- Department of Biomedical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA; (M.E.A.G.); (L.J.)
| |
Collapse
|
2
|
Sales MVS, Barros EDSS, Azevedo RDS, Cunha FAS, Santos JCC, Leite ACR. Does acute exposure to thimerosal, an organic mercury compound, affect the mitochondrial function of an infant model? J Trace Elem Med Biol 2024; 83:127399. [PMID: 38325180 DOI: 10.1016/j.jtemb.2024.127399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Thimerosal (TM) is a toxic, organometallic mercury compound (which releases ethyl-mercury-containing compounds in aqueous solutions) used as a preservative in vaccines. Mitochondria are organelle which are highly vulnerable to many chemical compounds, including mercury (Hg) and its derivatives. METHOD Wistar rats (at 21 days of age) were used to model a child's TM exposure following childhood vaccination, divided in two groups: TM exposed (20 μg/kg/day) and unexposed controls (saline solution), both for 24 h. Atomic Fluorescence Spectrometry was used to quantify the amounts of mercury in tissues. The electron transport chain (ETC) from isolated mitochondria was evaluated using an oxygen electrode. The mitochondrial membrane potential and H2O2 production were analyzed using selective fluorescence probes. The activity of some enzymes (SOD, CAT, GPx, and AChE) and secondary markers of oxidative stress (GSH, GSSG, total free thiol) were also examined in tissues. RESULTS Hg accumulation in the brain and liver was higher in exposed animals when compared to the control. Liver-isolated mitochondria showed that TM improved respiratory control by 23%; however, states 3 and 4 of the ETC presented a decrease of 16% and 37%, respectively. Furthermore, brain-isolated mitochondria presented an improvement of 61% in respiratory control. Brain enzyme activities were significantly impacted in TM-exposed rats compared to unexposed rats as follows: decreases in SOD (32%) and AChE (42%) and increases in GPx (79%) and CAT (100%). GPx enzyme activity in the liver was significantly increased (37%). Among secondary oxidative stress markers, the brain's total reduced thiol (SH) concentration was significantly increased (41%). CONCLUSION Acute TM treatment exposure in a Wistar rat model mimicking TM exposure in an infant following childhood vaccination significantly damaged brain bioenergetic pathways. This study supports the ability of TM exposure to preferentially damage the nervous system.
Collapse
Affiliation(s)
- Marcos V S Sales
- Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil
| | | | - Rafael D S Azevedo
- Universidade de Pernambuco (UPE), Campus Garanhuns, 55294-902 São José, Pernambuco, Brazil
| | - Francisco A S Cunha
- Instituto de Química, Universidade Federal da Bahia (UFBA), Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | | | - Ana C R Leite
- Universidade Federal de Alagoas (UFAL), Campus A. C. Simões, 57072-900 Maceió, Alagoas, Brazil.
| |
Collapse
|
3
|
Lin HH, Jung CR, Lin CY, Chang YC, Hsieh CY, Hsu PC, Chuang BR, Hwang BF. Prenatal and postnatal exposure to heavy metals in PM 2.5 and autism spectrum disorder. ENVIRONMENTAL RESEARCH 2023; 237:116874. [PMID: 37595830 DOI: 10.1016/j.envres.2023.116874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders, and its incidence is increasing over time. Although several environmental factors have been suspected to be risk factors for ASD, studies on the effects of airborne heavy metals on newly developed ASD are still limited. We conducted a large birth cohort study of 168,062 live term births in Taichung during 2004-2011 to assess the association of heavy metals in particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) with ASD, and identify sensitive time windows during prenatal and postnatal periods. Heavy metals, including arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) in PM2.5, were estimated using the Weather Research and Forecasting/Chem (WRF/Chem), inserted from the top 75 emission sources for the module. The association between childhood ASD and 4 metals were analyzed from pregnancy to 9 months after birth. The Cox proportional hazard model with a distributed lag nonlinear model (DLNM) was used to estimate the association between heavy metals in PM2.5 and ASD. We identified 666 incident ASD cases in 168,062 participants. A positive association between Hg and ASD was found at 9 months after birth (Hazard Ratio: 1.63; 95% CI: 1.13-2.36). According to the DLNM, there was an increased risk of exposure to Hg during 10-25 weeks after birth, and decreased risk of exposure to Hg during gestational weeks 4-6. Exposure to As and Hg on the risk of ASD were significantly stronger in low birth weight infants (<2500 g) than in those of birth weight ≥2500 g during postnatal period. Postnatal exposure to Hg in PM2.5 may associate with increased ASD incidence. Infants with low birth weight and exposure to As and Hg in PM2.5 are more likely to develop ASD.
Collapse
Affiliation(s)
- Hao-Hsuan Lin
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Institute of Epidemiology and Preventive Medicine, National Taiwan University College of Public Health, Taipei, Taiwan
| | - Chau-Ren Jung
- Department of Public Health, College of Public Health, China Medical University, Taichung, Taiwan; Japan Environment and Children's Study Programme Office, Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Chuan-Yao Lin
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Ya-Chu Chang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Chia-Yun Hsieh
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Chuan Hsu
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Bao-Ru Chuang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan
| | - Bing-Fang Hwang
- Department of Occupational Safety and Health, College of Public Health, China Medical University, Taichung, Taiwan; Department of Occupational Therapy, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
4
|
Chen Y, Lu S, Zhang Y, Chen B, Zhou H, Jiang H. Examination of the emerging role of transporters in the assessment of nephrotoxicity. Expert Opin Drug Metab Toxicol 2022; 18:787-804. [PMID: 36420583 DOI: 10.1080/17425255.2022.2151892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The kidney is vulnerable to various injuries based on its function in the elimination of many xenobiotics, endogenous substances and metabolites. Since transporters are critical for the renal elimination of those substances, it is urgent to understand the emerging role of transporters in nephrotoxicity. AREAS COVERED This review summarizes the contribution of major renal transporters to nephrotoxicity induced by some drugs or toxins; addresses the role of transporter-mediated endogenous metabolic disturbances in nephrotoxicity; and discusses the advantages and disadvantages of in vitro models based on transporter expression and function. EXPERT OPINION Due to the crucial role of transporters in the renal disposition of xenobiotics and endogenous substances, it is necessary to further elucidate their renal transport mechanisms and pay more attention to the underlying relationship between the transport of endogenous substances and nephrotoxicity. Considering the species differences in the expression and function of transporters, and the low expression of transporters in general cell models, in vitro humanized models, such as humanized 3D organoids, shows significant promise in nephrotoxicity prediction and mechanism study.
Collapse
Affiliation(s)
- Yujia Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Shuanghui Lu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Yingqiong Zhang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Binxin Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, P.R. China.,Jinhua Institute of Zhejiang University, Jinhua, P.R. China
| |
Collapse
|
5
|
Ma HH, Ding YN, Wang A, Li X, Wang Y, Shi FG, Lu YF. Cinnabar protects serum-nutrient starvation induced apoptosis by improving intracellular oxidative stress and inhibiting the expression of CHOP and PERK. Biochem Biophys Rep 2021; 27:101055. [PMID: 34258395 PMCID: PMC8255187 DOI: 10.1016/j.bbrep.2021.101055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 04/30/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cinnabar has been used for treatment of various disorders for thousands of years. The medical use of cinnabar, however, has been controversial because of its heavy metal mercury content. A large quantity of studies indicate that the toxicity of cinnabar is far below other inorganic or organic mercury-containing compounds. Yet, the underlying molecular basis has remained unresolved. Here, we investigated the beneficial effects of cinnabar on serum-nutrient starvation-elicited cell injury. Our findings showed that treatment of human renal proximal tubular cells (HK-2) with 4 nM cinnabar effectively inhibited nutrient deprivation induced apoptosis, reduced intracellular reactive oxygen species generation and increased GSH content, which was contrary to the exacerbated apoptotic cell death and oxidative stress in cells treated with HgCl2 at equal mercury concentration. In addition, cinnabar exerted robust antioxidative and antiapoptotic effects in cells under dual challenges of nutrient deprivation and treatment of H2O2. The protein expression levels of both CHOP and PERK were remarkably down-regulated in the cells treated with cinnabar compared to the control cells or cells treated with HgCl2. Overall, our data indicates that cinnabar at low concentration exerts anti-oxidative stress and anti-apoptosis effects by inhibiting the expression of the endoplasmic reticulum stress pathway proteins CHOP and PERK.
Collapse
Affiliation(s)
- Hong-Hong Ma
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yan-Nan Ding
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Ao Wang
- Zunyi Institute of Product Quality Inspection and Testing, Zunyi, 563000, China
| | - Xia Li
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yang Wang
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Fu-Guo Shi
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| | - Yuan-Fu Lu
- Joint International Research Laboratory of Ethnomedicine, and Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
6
|
Hazelhoff MH, Torres AM. Effect of erythropoietin on mercury-induced nephrotoxicity: Role of membrane transporters. Hum Exp Toxicol 2021; 40:515-525. [PMID: 32909846 DOI: 10.1177/0960327120958109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury is a widespread pollutant. Mercuric ions uptake into tubular cells is supported by the Organic anion transporter 1 (Oat1) and 3 (Oat3) and its elimination into urine is through the Multidrug resistance-associated protein 2 (Mrp2). We investigated the effect of recombinant human erythropoietin (Epo) on renal function and on renal expression of Oat1, Oat3, and Mrp2 in a model of mercuric chloride (HgCl2)-induced renal damage. Four experimental groups of adult male Wistar rats were used: Control, Epo, HgCl2, and Epo + HgCl2. Epo (3000 IU/kg, b.w., i.p.) was administered 24 h before HgCl2 (4 mg/kg, b.w., i.p.). Experiments were performed 18 h after the HgCl2 dose. Parameters of renal function and structure were evaluated. The protein expression of Oat1, Oat3 and Mrp2 in renal tissue was assessed by immunoblotting techniques. Mercury levels were determined by cold vapor atomic absorption spectrometry. Pretreatment with Epo ameliorated the HgCl2-induced tubular injury as assessed by histopathology and urinary biomarkers. Immunoblotting showed that pretreatment with Epo regulated the renal expression of mercury transporters in a way to decrease mercury content in the kidney. Epo pretreatment ameliorates HgCl2-induced renal tubular injury by modulation of mercury transporters expression in the kidneys.
Collapse
Affiliation(s)
- M H Hazelhoff
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| | - A M Torres
- Área Farmacología, Facultad de Ciencias Bioquímicas y Farmacéuticas, 63029Universidad Nacional de Rosario, CONICET, Rosario, Argentina
| |
Collapse
|
7
|
Lian G, Yuan J, Gao Y. In vitro Transport Ability of ABCC2 (G1249A) Polymorphic Variant Towards Anticancer Drugs. Onco Targets Ther 2020; 13:1413-1419. [PMID: 32110040 PMCID: PMC7035141 DOI: 10.2147/ott.s207613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022] Open
Abstract
Objective Multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene, is involved in the efflux of certain anticancer drugs. Here we observed whether the ABCC2 (G1249A) polymorphism impacts the transport abilities of MRP2-dependent paclitaxel, docetaxel, and doxorubicin in recombinant LLC-PK1 cell lines. Methods LLC-PK1 cell lines transfected with ABCC21249G wild-type and ABCC21249A variant alleles were used to evaluate the sensitivity, intracellular accumulation, and transmembrane transport of paclitaxel, docetaxel, and doxorubicin. Results The recombinant ABCC21249A variant cell line showed higher IC50 values for paclitaxel and doxorubicin than ABCC21249G wild-type cell system (p<0.01). Intracellular accumulations of paclitaxel and doxorubicin in cells transfected with ABCC21249A variant allele were significantly decreased compared to cells transfected with ABCC21249G wild-type allele (p<0.01). The efflux ratios of paclitaxel and doxorubicin across ABCC21249A cell line were significantly increased compared with ABCC21249G cell system (p<0.01). However, ABCC2 (G1249A) polymorphism had no effect on the transport activity of MRP2-mediated docetaxel. Conclusion Our results indicate that ABCC2 (G1249A) polymorphism affects the transport activities of MRP2-dependent paclitaxel and doxorubicin, resulting in greater efflux of these anticancer drugs.
Collapse
Affiliation(s)
- Guo Lian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Jia Yuan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Ats and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Yuan Gao
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| |
Collapse
|
8
|
Oliveira CS, Nogara PA, Ardisson-Araújo DMP, Aschner M, Rocha JBT, Dórea JG. Neurodevelopmental Effects of Mercury. ADVANCES IN NEUROTOXICOLOGY 2018; 2:27-86. [PMID: 32346667 PMCID: PMC7188190 DOI: 10.1016/bs.ant.2018.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The toxicology of mercury (Hg) is of concern since this metal is ubiquitously distributed in the environment, and living organisms are routinely exposed to Hg at low to high levels. The toxic effects of Hg are well studied and it is known that they may differ depending on the Hg chemical species. In this chapter, we emphasize the neurotoxic effects of Hg during brain development. The immature brain is more susceptible to Hg exposure, since all the Hg chemical forms, not only the organic ones, can harm it. The possible consequences of Hg exposure during the early stages of development, the additive effects with other co-occurring neurotoxicants, and the known mechanisms of action and targets will be addressed in this chapter.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Pablo A Nogara
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniel M P Ardisson-Araújo
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Laboratório de Virologia de Insetos, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - João B T Rocha
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - José G Dórea
- Professor Emeritus, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| |
Collapse
|