1
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
2
|
Yang X, Song W, Zhang K, Wang Y, Chen F, Chen Y, Huang T, Jiang Y, Wang X, Zhang C. p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114695. [PMID: 36857919 DOI: 10.1016/j.ecoenv.2023.114695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/11/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
T-2 toxin is an unavoidable food and feed contaminant that seriously threatens human and animal health. Exposure to T-2 toxin can cause testosterone synthesis disorder in male animals, but the molecular mechanism is still not completely clear. The MAPK pathway participates in the regulation of testosterone synthesis by Leydig cells, but it is unclear whether the MAPK pathway participates in T-2 toxin-induced testosterone synthesis disorders. In this research, testosterone synthesis capacity, testosterone synthase expression and MAPK pathway activation were examined in male mice and TM3 cells exposed to T-2 toxin. The results showed that T-2 toxin exposure decreased testicular volume and caused pathological changes in the microstructure and ultrastructure of testicular Leydig cells. T-2 toxin exposure also decreased testicular testosterone content and the protein expression of testosterone synthase. In vitro, T-2 toxin inhibited cell viability and decreased the expression of testosterone synthase in TM3 cells, and it decreased the testosterone contents in cell culture supernatants. Moreover, T-2 toxin activated the MAPK pathway by increasing the expression of p38, JNK and ERK as well as the expression of p-p38, p-JNK and p-ERK in testis and TM3 cells. The p38 molecular inhibitor (SB203580) significantly alleviated the T-2 toxin-induced decrease in testosterone synthase expression in TM3 cells and the T-2 toxin-induced reduction in testosterone content in TM3 cell culture supernatants. In summary, p38 mediates T-2 toxin-induced Leydig cell testosterone synthesis disorder.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Wenxi Song
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Kefei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Youshuang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Fengjuan Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yunhe Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Tingyu Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yibao Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Cong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Wei X, Li D, Luo Y, Wu B. Role of Autophagy and Apoptosis in Aluminum Exposure-Induced Liver Injury in Rats. Biol Trace Elem Res 2023:10.1007/s12011-022-03497-9. [PMID: 36600167 DOI: 10.1007/s12011-022-03497-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/17/2022] [Indexed: 01/06/2023]
Abstract
Aluminum (Al) exposure can lead to different degrees of damage to various organ systems of the body. It has been previously revealed that Al exposure can damage the liver, causing liver dysfunction. However, the specific mechanism remains unclear. This research aims to uncover the damaging effect of Al exposure on rat liver and to demonstrate the role of autophagy and apoptosis in this effect. Thirty-two Wistar rats were randomly divided into the control group (C group), low-dose Al exposure group (L group), middle-dose Al exposure group (M group), and high-dose Al exposure group (H group) (n = 8). The rats, respectively, received intraperitoneal injections of 0, 5, 10, and 20 mg/kg·day AlCl3 solution for 4 weeks (5 times/week). After the experiment, changes in the ultrastructure and autolysosome in rat liver were observed; the liver function, apoptosis rate, as well as levels of apoptosis-associated proteins and autophagy-associated proteins were detected. The results indicated that Al exposure damaged rat liver function and structure and resulted in an increase in autolysosomes. TUNEL staining revealed an elevated number of apoptotic hepatocytes after Al exposure. Moreover, we found from Western blotting that the levels of autophagy-associated proteins Beclin1 and LC3-II were increased; apoptotic protein Caspase-3 level was elevated and the Bcl-2/Bax ratio was reduced. Our research suggested that Al exposure can lead to high autophagy and apoptosis levels of rat hepatocytes, accompanied by hepatocyte injury and impaired liver function. This study shows that autophagy and apoptosis pathways participate in Al toxication-induced hepatocyte injury.
Collapse
Affiliation(s)
- Xi Wei
- The First Clinical Medical College of Jinan University, Guangzhou, 510000, China
- Department of Health Supervision Center, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Dong Li
- Department of Oncology, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Yueling Luo
- Department of Health Supervision Center, the Affiliated Hospital of YouJiang Medical University for Nationalities, Baise, 533000, China
| | - Biaoliang Wu
- The First Clinical Medical College of Jinan University, Guangzhou, 510000, China.
- Department of Endocrinology, the Affiliated Hospital of YouJiang Medical University for Nationalities, Zhongshan No 2 Road 18, Baise, 533000, China.
| |
Collapse
|
4
|
Huang J, Ye Y, Xiao Y, Ren Q, Zhou Q, Zhong M, Jiao L, Wu L. Geniposide ameliorates glucocorticoid-induced osteoblast apoptosis by activating autophagy. Biomed Pharmacother 2022; 155:113829. [DOI: 10.1016/j.biopha.2022.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 11/27/2022] Open
|
5
|
PINK1/Parkin-mediated mitophagy is activated to protect against testicular damage caused by aluminum. J Inorg Biochem 2022; 232:111840. [DOI: 10.1016/j.jinorgbio.2022.111840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/22/2022]
|
6
|
Yang Z, Wu C, Shi H, Luo X, Sun H, Wang Q, Zhang D. Advances in Barrier Membranes for Guided Bone Regeneration Techniques. Front Bioeng Biotechnol 2022; 10:921576. [PMID: 35814003 PMCID: PMC9257033 DOI: 10.3389/fbioe.2022.921576] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Guided bone regeneration (GBR) is a widely used technique for alveolar bone augmentation. Among all the principal elements, barrier membrane is recognized as the key to the success of GBR. Ideal barrier membrane should have satisfactory biological and mechanical properties. According to their composition, barrier membranes can be divided into polymer membranes and non-polymer membranes. Polymer barrier membranes have become a research hotspot not only because they can control the physical and chemical characteristics of the membranes by regulating the synthesis conditions but also because their prices are relatively low. Still now the bone augment effect of barrier membrane used in clinical practice is more dependent on the body’s own growth potential and the osteogenic effect is difficult to predict. Therefore, scholars have carried out many researches to explore new barrier membranes in order to improve the success rate of bone enhancement. The aim of this study is to collect and compare recent studies on optimizing barrier membranes. The characteristics and research progress of different types of barrier membranes were also discussed in detail.
Collapse
Affiliation(s)
- Ze Yang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Chang Wu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Huixin Shi
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Luo
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hui Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
- *Correspondence: Qiang Wang, ; Dan Zhang,
| |
Collapse
|
7
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
8
|
Liu P, Guo C, Cui Y, Zhang X, Xiao B, Liu M, Song M, Li Y. Activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by aluminum. J Inorg Biochem 2022; 230:111765. [PMID: 35182845 DOI: 10.1016/j.jinorgbio.2022.111765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
Aluminum (Al) induces apoptosis via oxidative stress and/or mitochondrial damage. Kidney is the main organ of Al excretion, but whether Al causes apoptosis in kidney of mice remains unclear. Mitophagy maintains cell homeostasis via clearing damaged mitochondria and reducing oxidative stress, but the role in kidney damage caused by Al has also not been investigated. In this study, firstly, forty wild type (WT) male C57 mice were randomly exposed to AlCl3 at 0, 44.825, 89.65 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. Our results confirmed that Al induced apoptosis, and activated PINK1 (phosphatase and tensin homolog (PTEN)-induced putative kinase1)/Parkin (E3 ubiquitin ligase PARK2)-mediated mitophagy with the dose increased. And secondly, to further assess the role of PINK1/Parkin-mediated mitophagy in Al-induced kidney damage, twenty Parkin knockout (Parkin-/-) mice and twenty WT mice were divided into WT group, WT + Al group, Parkin-/- group, and Parkin-/- + Al group, and they were provided with AlCl3 at a dose of 0 or 179.3 mg/kg body weight in drinking water for 90 days, respectively. The results showed that Parkin-/- induced more severe kidney injury caused by Al. Besides, Parkin-/- aggravated oxidative stress and apoptosis caused by Al. Overall, our findings indicate that the activation of PINK1/Parkin-mediated mitophagy protects against apoptosis in kidney damage caused by Al.
Collapse
Affiliation(s)
- Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Chen Guo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
9
|
Yang X, Liu P, Zhang X, Zhang J, Cui Y, Song M, Li Y. T-2 toxin causes dysfunction of Sertoli cells by inducing oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112702. [PMID: 34478974 DOI: 10.1016/j.ecoenv.2021.112702] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
T-2 toxin is an inevitable mycotoxin in food products and feeds. It is a proven toxicant impairing the male reproductive system. However, previous studies have concentrated on the toxic effect of T-2 toxin on Leydig cells, with little attention on the Sertoli cell cytotoxicity. Therefore, this study aimed to establish the toxic mechanism of T-2 toxin on Sertoli cells. The Sertoli cell line (TM4 cell) was cultured and exposed to different concentrations of T-2 toxin with/without N-acetyl-L-cysteine (NAC) for 24 h. A CCK-8 assay then measured the cell viability. In addition, the expression of TM4 cell biomarkers (FSHR and ABP) and functional factors (occludin (Ocln), zonula occluden-1 (ZO-1), Connexin 43 (Cx-43), and N-Cadherin (N-cad)) were measured by qRT-PCR and Western blotting. The oxidative stress status (ROS, MDA, CAT, and SOD) and apoptosis rate, including the caspase-9, 8, and 3 activities in TM4 cells, were analyzed. We established that (1): T-2 toxin decreased TM4 cells viability and the half-maximal inhibitory concentration was 8.10 nM. (2): T-2 toxin-induced oxidative stress, evidenced by increased ROS and MDA contents, and inhibited CAT and SOD activities. (3): T-2 toxin inhibited FSHR, ABP, ocln, ZO-1, Cx-43, and N-Cad expressions. (4): T-2 toxin promoted TM4 cell apoptosis and caspase-9, 8, and 3 activities. (5): N-acetyl-L-cysteine relieved oxidative stress, functional impairment, and apoptosis in TM4 cells treated with T-2 toxin. Thus, T-2 toxin induced TM4 cell dysfunction through ROS-induced apoptosis.
Collapse
Affiliation(s)
- Xu Yang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
10
|
Liu P, Cui Y, Liu M, Xiao B, Zhang J, Huang W, Zhang X, Song M, Li Y. Protective effect of mitophagy against aluminum-induced MC3T3-E1 cells dysfunction. CHEMOSPHERE 2021; 282:131086. [PMID: 34119729 DOI: 10.1016/j.chemosphere.2021.131086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Abstract
Aluminum (Al) is a ubiquitous environmental metal toxicant that causes osteoblast (OB) damage which leads to Al-related bone diseases. Mitochondrial damage plays a key role in Al-related bone diseases, and while mitophagy can clear damaged mitochondria and improve OB function, the relationship between mitophagy and Al-induced OB dysfunction is unknown. To explore the role of mitophagy in Al-induced OB dysfunction in vitro, we used 2 μM carbonyl cyanide m-chlorophenylhydrazone (CCCP) and 0.4 μM Cyclosporin A (CsA) to activate and inhibit mitophagy, respectively. MC3T3-E1 cells were treated with 0 mM AlCl3 (control group); 2 mM AlCl3 (Al group); 2 μM CCCP (CCCP group); 2 μM CCCP and 2 mM AlCl3 (CCCP + Al group); 0.4 μM CsA (CsA group); 0.4 μM CsA and 2 mM AlCl3 (CsA + Al group). The results showed that Al induced ultrastructural and functional impairment of MC3T3-E1 cells. Compared to the Al group, mitophagy activation caused mitochondrial membrane potentials to collapse, up-regulated PINK1, Parkin, and LC3 expression, down-regulated p62 expression, and increased mitophagosome numbers. Mitophagy activation also reduced Al-induced oxidative stress and MC3T3-E1 cell functional damage, as seen in improvement in cell viability, cellular calcium and phosphorus contents, and collagen I, osteocalcin, and bone alkaline phosphatase gene expression. Mitophagy inhibition had the opposite effects on activation. Overall, these results show that mitophagy can protect against Al-induced OB dysfunction.
Collapse
Affiliation(s)
- Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
11
|
Liu M, Wu X, Cui Y, Liu P, Xiao B, Zhang X, Zhang J, Sun Z, Song M, Shao B, Li Y. Mitophagy and apoptosis mediated by ROS participate in AlCl 3-induced MC3T3-E1 cell dysfunction. Food Chem Toxicol 2021; 155:112388. [PMID: 34242719 DOI: 10.1016/j.fct.2021.112388] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 02/08/2023]
Abstract
Aluminum (Al), as a common environmental pollutant, causes osteoblast (OB) dysfunction and then leads to Al-related bone diseases (ARBD). One of the mechanisms of ARBD is oxidative stress, which leads to an increase in the production of reactive oxygen species (ROS). ROS can induce mitochondrial damage, thereby inducing mitophagy and apoptosis. But whether mitophagy and apoptosis mediated by ROS, and the role of ROS in AlCl3-induced MC3T3-E1 cell dysfunction is still unclear. In this study, MC3T3-E1 cells used 0 mM Al (control group), 2 mM Al (Al group), 5 mM N-acetyl cysteine (NAC) (NAC group), 2 mM Al and 5 mM NAC (Al + NAC group) for 24 h. We found AlCl3-induced MC3T3-E1 cell dysfunction accompanied by oxidative stress, apoptosis, and mitophagy. While NAC, a ROS scavenger treatment, restored cell function and alleviated the mitophagy and apoptosis. These results suggested that mitophagy and apoptosis mediated by ROS participate in AlCl3-induced MC3T3-E1 cell dysfunction.
Collapse
Affiliation(s)
- Menglin Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xia Wu
- College of Food Science, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Pengli Liu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Zhuo Sun
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural. University, Harbin, 150030, Heilongjiang, China.
| |
Collapse
|
12
|
Cui Y, Song M, Xiao B, Huang W, Zhang J, Zhang X, Shao B, Han Y, Li Y. PINK1/Parkin-Mediated Mitophagy Plays a Protective Role in the Bone Impairment Caused by Aluminum Exposure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6054-6063. [PMID: 34018397 DOI: 10.1021/acs.jafc.1c01921] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The pollution of aluminum (Al) in agricultural production and its wide application in food processing greatly increase the chance of human and animal exposure. Al can accumulate in bone and cause bone diseases by inducing oxidative stress. Mitophagy can maintain normal cell function by degrading damaged mitochondria and scavenging reactive oxygen species. However, the role of mitophagy in the bone impairment caused by Al is unknown. In this study, we demonstrated that PTEN induced putative kinase 1 (PINK1)/ E3 ubiquitin ligase PARK2 (Parkin)-mediated mitophagy was activated in the bone impairment caused by Al in vivo. Then, the Al-induced mitophagy in Parkin-deficient mice and MC3T3-E1 cells were decreased. Meanwhile, Parkin deficiency exacerbated the bone impairment, mitochondrial damage, and oxidative stress under Al exposure, both in vivo and in vitro. In general, the results reveal that Al exposure can activate PINK1/Parkin-mediated mitophagy, and the PINK1/Parkin-mediated mitophagy plays a protective role in the bone impairment caused by Al.
Collapse
Affiliation(s)
- Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bing Shao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Han
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
13
|
Gu X, Zhu LY, Xu ZY, Shen KP. Astragaloside IV and Saponins of Rhizoma Polygonati Cure Cyclophosphamide-Induced Myelosuppression in Lung Adenocarcinoma via Down-Regulating miR-142-3p. Front Oncol 2021; 11:630921. [PMID: 33959499 PMCID: PMC8093395 DOI: 10.3389/fonc.2021.630921] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 01/25/2023] Open
Abstract
Our previous study revealed that Shuanghuang Shengbai granule could cure the myelosuppression induced by cyclophosphamide (CTX) in lung cancer. However, its hematopoietic effects and molecular mechanisms remain not fully understood. Therefore, this study was intended to investigate the effects and the underlying mechanisms of Astragaloside IV (AS) and saponins of rhizoma polygonati (SRP), the two main bioactive ingredients of Shuanghuang Shengbai granule, on CTX-induced myelosuppression. CTX inhibited the proliferation and promoted apoptosis in bone marrow hematopoietic stem cells (BMHSCs), accompanied by the increased expression of miR-142-3p. AS and/or SRP treatment could alleviate CTX-induced cell injury and suppress the expression of miR-142-3p. Over-expression of miR-142-3p partially reversed the therapeutic effect of AS and/or SRP on CTX-induced cell injury in BMHSCs. Further mechanism exploration discovered that HMGB1 was the target gene of miR-142-3p, and miR-142-3p negatively regulated the expression of HMGB1. To further explore the function of AS and/or SRP in vivo, we constructed a lung cancer xenograft combined with CTX-induced myelosuppression mouse model, and we found that AS and SRP remarkably reversed the CTX-induced reduction of white blood cells, bone marrow nucleated cells, and thymus index in vivo and did not affect the chemotherapy effect of lung cancer. Collectively, our results strongly suggested that AS and SRP could improve the hematopoietic function of myelosuppressed lung cancer mice, and their effects may be related to the inhibition of miR-142-3p expression in BMHSCs.
Collapse
Affiliation(s)
- Xian Gu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling-Yu Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Ye Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke-Ping Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Li S, Zhang Q, Ding Y, Wang X, Liu P. Flavonoids ameliorate aluminum chloride-induced learning and memory impairments via suppression of apoptosis and oxidative stress in rats. J Inorg Biochem 2020; 212:111252. [PMID: 32950828 DOI: 10.1016/j.jinorgbio.2020.111252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/12/2022]
Abstract
The study was to investigate the effects of flavonoids (rutin, puerarin, and silymarin) on learning and memory function in rats exposed to aluminum chloride (AlCl3). Wistar rats were administered flavonoids at a dose of 100 mg/(kg·bw)/day or 200 mg/(kg·bw)/day after exposed to 281.40 mg/(kg·bw)/day AlCl3·6H2O. The results of Morris water maze suggested that rutin and puerarin increased the frequency of crossing the platform and swimming time spent in the target quadrant of AlCl3-induced rats significantly. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay indicated that three flavonoids could alleviate apoptosis of hippocampal neurons induced by AlCl3. Real time-PCR and western blot suggested that rutin, puerarin and 100 mg/(kg·bw)/day silymarin could decrease the AlCl3-induced high expression of Bcl-2 associated X protein (Bax) mRNA and protein in hippocampus, but the expression of B cell lymphoma/leukemia-2 (Bcl-2) mRNA and protein was not significantly different among groups. Flavonoids could up regulate the low expression of autophagy related proteins (Beclin 1 (Bcl-2-interacting protein with a coiled-coil domain 1) and LC3 (microtubule-associated protein 1 light chain 3)) caused by AlCl3 exposure. Flavonoids could also adjust the change in adenosine triphosphatase, superoxide dismutase, glutathione peroxidase and malondialdehyde induced by intake of AlCl3. The results of inductively coupled plasma atomic emission spectroscopy (ICP-AES) suggested that flavonoids could effectively reduce the high Al level in brain and serum of AlCl3 exposed rats. In conclusion, three flavonoids may improve learning and memory function by inhibiting excessive apoptosis and oxidative stress in AlCl3 exposed rats.
Collapse
Affiliation(s)
- Shuling Li
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qiongyao Zhang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yun Ding
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Wang
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ping Liu
- Department of Hygiene Detection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
15
|
Cao Z, Geng X, Jiang X, Gao X, Liu K, Li Y. Melatonin Attenuates AlCl 3-Induced Apoptosis and Osteoblastic Differentiation Suppression by Inhibiting Oxidative Stress in MC3T3-E1 Cells. Biol Trace Elem Res 2020; 196:214-222. [PMID: 31502178 DOI: 10.1007/s12011-019-01893-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 12/11/2022]
Abstract
Aluminum (Al) inhibits osteoblast-mediated bone formation by oxidative stress, resulting in Al-induced bone disease. Melatonin (MT) has received extensive attention due to its antioxidant and maintenance of bone health effect. To evaluate the protective effect and mechanism of MT on AlCl3-induced osteoblast dysfunction, MC3T3-E1 cells were treated with MT (100 μM) and/or AlCl3 (8 μM). First, MT alleviated AlCl3-induced osteoblast dysfunction, presenting as the reduced apoptosis rate as well as increased cell viability, alkaline phosphatase (ALP) activity, and type I collagen (COL-1) level. Then, MT significantly attenuated AlCl3-induced oxidative stress, presenting as the reduced reactive oxygen species and 8-hydroxy-2'-deoxyguanosine levels as well as increased glutathione level and superoxide dismutase activity. Finally, MT protected MC3T3-E1 cells against p53-dependent apoptosis and differentiation suppression, as assessed by Caspase-3 activity, protein levels of p53, Bcl-2-associated X protein (Bax), B cell lymphoma gene 2 (Bcl-2), cytosolic Cytochrome c, Runt-related transcription factor 2 (Runx2), and Osterix, as well as the mRNA levels of Bax, Bcl-2, Runx2, Osterix, ALP, and COL-1. Overall, our findings demonstrate MT attenuates AlCl3-induced apoptosis and osteoblastic differentiation suppression by inhibiting oxidative stress in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Zheng Cao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Street, Xiangfang District, Harbin, 150030, China
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Xue Geng
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Street, Xiangfang District, Harbin, 150030, China
| | - Xinpeng Jiang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiang Gao
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Street, Xiangfang District, Harbin, 150030, China
| | - Kexiang Liu
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Street, Xiangfang District, Harbin, 150030, China
| | - Yanfei Li
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, College of Veterinary Medicine, Northeast Agricultural University, NO. 600 Changjiang Street, Xiangfang District, Harbin, 150030, China.
| |
Collapse
|
16
|
Cheng D, Wang G, Wang X, Tang J, Yu Q, Zhang X, Wang S. Neuro-protection of Chlorogenic acid against Al-induced apoptosis in PC12 cells via modulation of Al metabolism and Akt/GSK-3β pathway. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
17
|
Yang X, Liu P, Cui Y, Xiao B, Liu M, Song M, Huang W, Li Y. Review of the Reproductive Toxicity of T-2 Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:727-734. [PMID: 31895560 DOI: 10.1021/acs.jafc.9b07880] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
T-2 toxin, an inevitable environmental pollutant, is the most toxic type A trichothecene mycotoxin. Reproductive disruption is a key adverse effect of T-2 toxin. Herein, this paper reviews the reproductive toxicity of T-2 toxin and its mechanisms in male and female members of different species. The reproductive toxicity of T-2 toxin is evidenced by decreased fertility, disrupted structures and functions of reproductive organs, and loss of gametogenesis in males and females. T-2 toxin disrupts the reproductive endocrine axis and inhibits reproductive hormone synthesis. Furthermore, exposure to T-2 toxin during pregnancy results in embryotoxicity and the abnormal development of offspring. We also summarize the research progress in counteracting the reproductive toxicity of T-2 toxin. This review provides information toward a comprehensive understanding of the reproductive toxicity mechanisms of T-2 toxin.
Collapse
Affiliation(s)
- Xu Yang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Pengli Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yilong Cui
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Bonan Xiao
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Menglin Liu
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Miao Song
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Wanyue Huang
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| | - Yanfei Li
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine , Northeast Agricultural University , 600 Changjiang Road , Xiangfang District, Harbin , Heilongjiang 150030 , People's Republic of China
| |
Collapse
|