1
|
Islam S, Sarkar O, Mukherjee S, Chattopadhyay A. Long-Term Impact of Cr(VI) Exposure in Swiss Albino Mice: ROS-Driven Modulation of Autophagy and Cellular Fate. Biol Trace Elem Res 2025:10.1007/s12011-025-04599-w. [PMID: 40180680 DOI: 10.1007/s12011-025-04599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
Hexavalent chromium [Cr(VI)], due to its high solubility and permeability, is significantly more toxic than trivalent chromium [Cr(III)] as it generates reactive oxygen species (ROS) during cellular reduction. Industrial discharges have led to increasing Cr(VI) contamination in surface and groundwater, posing serious environmental and public health concerns. In our previous study, we demonstrated that exposure to 5 ppm Cr(VI) for 4 and 8 months adversely affected body weight, water consumption, and liver function in Swiss albino mice. Histological analyses revealed tissue alterations, disrupted DNA repair gene expression in liver tissue, and a marked increase in apoptotic gene expression after 8 months of exposure. Building on these findings, we employed the same Cr(VI) concentration (5 ppm via drinking water) over 4 and 8 months in the present study. Our results showed a significant increase in ROS generation in the liver, brain, and kidney tissues at both time intervals. Additionally, the presence of autophagolysosomes was markedly elevated after chronic Cr(VI) exposure in each tissue. We also observed altered expression patterns of key autophagy-related genes (Atg5, Beclin1, and Lc3) and mTor in these tissues. Immunohistochemical analysis further confirmed a significant increase in LC3B expression after 4 months of exposure. Our findings suggest that heightened intracellular oxidative stress triggers a protective autophagy response, mediated via mTOR signaling, to maintain cellular integrity. However, prolonged toxic insult and ROS accumulation may eventually shift pro-survival autophagy toward apoptotic cell death in the liver and brain tissues.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Olivia Sarkar
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | - Sunanda Mukherjee
- Department of Zoology, Visva-Bharati, Santiniketan, 731235, West Bengal, India
| | | |
Collapse
|
2
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
3
|
Cui Y, Zhang P, Song K, Qi C, Liu Y, Liu J. Role of PERK-Mediated Endoplasmic Reticulum Stress in Ferroptosis Caused by Hexavalent Chromium in Chicken Hepatocytes. Biol Trace Elem Res 2024; 202:5208-5218. [PMID: 38183555 DOI: 10.1007/s12011-023-04046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
This study aimed to investigate whether Cr(VI) can induce ferroptosis in chicken hepatocytes and determine the role of PERK-mediated endoplasmic reticulum stress (ERS). First, a model of Cr(VI) poisoning was established by exposing chicken hepatocytes to Cr(VI). The levels of ferroptosis-related proteins, meanwhile, GSH, SOD, MDA, and lipid ROS, were measured. Furthermore, the expression of GRP78 and PERK proteins was examined. Changes in ERS and ferroptosis were evaluated by silencing the PERK gene. Results showed that Cr(VI) led to the accumulation of lipid ROS, decreased expression of GPX4 and HSP27, increased expression of COX2, and induced ferroptosis in chicken hepatocytes. Exposure to Cr(VI) increased the protein expression of GRP78 and PERK, and silencing of PERK worsened Cr(VI)-induced ferroptosis. In conclusion, Cr(VI) can induce ferroptosis in chicken hepatocytes, and PERK plays an important role as a negative regulator.
Collapse
Affiliation(s)
- Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Pu Zhang
- The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shandong, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
4
|
Li X, Li N, Zhang X, Zhang L, Jia G, Yu S. Low-Dose Hexavalent Chromium Exposure Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Rat Liver. Biol Trace Elem Res 2024; 202:4136-4145. [PMID: 38064039 DOI: 10.1007/s12011-023-03995-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/30/2023] [Indexed: 07/18/2024]
Abstract
This study investigated the toxic effects of low-dose hexavalent chromium (Cr(VI)) on rat liver. Male specific pathogen-free (SPF) Sprague-Dawley (SD) rats (4-5 weeks of age) were randomly divided into groups: saline, 0.05 mg/kg Cr(VI), and 0.25 mg/kg Cr(VI). The rats were subjected to intratracheal instillation of K2Cr2O7 suspensions or saline once weekly, for a total of five times. The results showed that the accumulation of Cr(VI) in the blood of the 0.25 mg/kg K2Cr2O7 group was significantly higher than that in the saline group. Transmission electron microscopy (TEM) showed that exposure to hexavalent chromium caused endoplasmic reticulum (ER) oedema and a disordered arrangement. The levels of endoplasmic reticulum stress (ERS)-related proteins (ATF6, P-PERK, P-IRE1, Grp78, and CHOP) in the 0.25 mg/kg K2Cr2O7 group were significantly higher than those in the saline group. The expression of apoptosis-inhibitory protein Bcl-2 was significantly lower in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, and the expression of apoptosis protein Bax was significantly higher in the 0.25 mg/kg K2Cr2O7 group than that in the saline group, indicating that Cr(VI) increased apoptosis. These findings revealed that Cr(VI) may be involved in rat liver injury by initiating ERS-mediated apoptosis. The expression of ATF6, P-PERK, P-IRE1, and Bax in the 0.05 mg/kg K2Cr2O7 group was not significantly different from that in the saline group, and the different effects produced by the two different dose groups provide a possible experimental basis for further study of occupational exposure limits.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Lixia Zhang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Aghakhani A, Hezave MB, Rasouli A, Saberi Rounkian M, Soleimanlou F, Alhani A, Sabet Eqlidi N, Pirani M, Mehrtabar S, Zerangian N, Pormehr-Yabandeh A, Keylani K, Tizro N, Deravi N. Endoplasmic Reticulum as a Therapeutic Target in Cancer: Is there a Role for Flavonoids? Curr Mol Med 2024; 24:298-315. [PMID: 36959143 DOI: 10.2174/1566524023666230320103429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/25/2023]
Abstract
Flavonoids are classified into subclasses of polyphenols, a multipurpose category of natural compounds which comprises secondary metabolites extracted from vascular plants and are plentiful in the human diet. Although the details of flavonoid mechanisms are still not realized correctly, they are generally regarded as antimicrobial, anti-fungal, anti-inflammatory, anti-oxidative; anti-mutagenic; anti-neoplastic; anti-aging; anti-diabetic, cardio-protective, etc. The anti-cancer properties of flavonoids are evident in functions such as prevention of proliferation, metastasis, invasion, inflammation and activation of cell death. Tumors growth and enlargement expose cells to acidosis, hypoxia, and lack of nutrients which result in endoplasmic reticulum (ER) stress; it triggers the unfolded protein response (UPR), which reclaims homeostasis or activates autophagy. Steady stimulation of ER stress can switch autophagy to apoptosis. The connection between ER stress and cancer, in association with UPR, has been explained. The signals provided by UPR can activate or inhibit anti-apoptotic or apoptotic pathways depending on the period and grade of ER stress. In this review, we will peruse the link between flavonoids and their impact on the endoplasmic reticulum in association with cancer therapy.
Collapse
Affiliation(s)
- Ava Aghakhani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Asma Rasouli
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Soleimanlou
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arian Alhani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Sabet Eqlidi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Maryam Pirani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasibeh Zerangian
- Department of Health Education and Health Promotion, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asiyeh Pormehr-Yabandeh
- Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kimia Keylani
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Tizro
- Student Research Committee, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Li Q, Feng Y, Wang R, Liu R, Ba Y, Huang H. Recent insights into autophagy and metals/nanoparticles exposure. Toxicol Res 2023; 39:355-372. [PMID: 37398566 PMCID: PMC10313637 DOI: 10.1007/s43188-023-00184-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/08/2023] [Accepted: 04/04/2023] [Indexed: 07/04/2023] Open
Abstract
Some anthropogenic pollutants, such as heavy metals and nanoparticles (NPs), are widely distributed and a major threat to environmental safety and public health. In particular, lead (Pb), cadmium (Cd), chromium (Cr), arsenic (As), and mercury (Hg) have systemic toxicity even at extremely low concentrations, so they are listed as priority metals in relation to their significant public health burden. Aluminum (Al) is also toxic to multiple organs and is linked to Alzheimer's disease. As the utilization of many metal nanoparticles (MNPs) gradually gain traction in industrial and medical applications, they are increasingly being investigated to address potential toxicity by impairing certain biological barriers. The dominant toxic mechanism of these metals and MNPs is the induction of oxidative stress, which subsequently triggers lipid peroxidation, protein modification, and DNA damage. Notably, a growing body of research has revealed the linkage between dysregulated autophagy and some diseases, including neurodegenerative diseases and cancers. Among them, some metals or metal mixtures can act as environmental stimuli and disturb basal autophagic activity, which has an underlying adverse health effect. Some studies also revealed that specific autophagy inhibitors or activators could modify the abnormal autophagic flux attributed to continuous exposure to metals. In this review, we have gathered recent data about the contribution of the autophagy/mitophagy mediated toxic effects and focused on the involvement of some key regulatory factors of autophagic signaling during exposure to selected metals, metal mixtures, as well as MNPs in the real world. Besides this, we summarized the potential significance of interactions between autophagy and excessive reactive oxygen species (ROS)-mediated oxidative damage in the regulation of cell survival response to metals/NPs. A critical view is given on the application of autophagy activators/inhibitors to modulate the systematic toxicity of various metals/MNPs.
Collapse
Affiliation(s)
- Qiong Li
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yajing Feng
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Ruike Wang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Rundong Liu
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Yue Ba
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| | - Hui Huang
- Department of Environmental Health and Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Zhengzhou, 450001 Henan People’s Republic of China
| |
Collapse
|
7
|
Ahammed GJ, Shamsy R, Liu A, Chen S. Arbuscular mycorrhizal fungi-induced tolerance to chromium stress in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121597. [PMID: 37031849 DOI: 10.1016/j.envpol.2023.121597] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/11/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Chromium (Cr) is one of the toxic elements that harms all forms of life, including plants. Industrial discharges and mining largely contribute to Cr release into the soil environment. Excessive Cr pollution in arable land significantly reduces the yield and quality of important agricultural crops. Therefore, remediation of polluted soil is imperative not only for agricultural sustainability but also for food safety. Arbuscular mycorrhizal fungi (AMF) are widespread soil-borne endophytic fungi that form mutualistic relationships with the vast majority of land plants. In mycorrhizal symbiosis, AMF are largely dependent on the host plant-supplied carbohydrates and lipids, in return, AMF aid the host plants in acquiring water and mineral nutrients, especially phosphorus, nitrogen and sulfur from distant soils, and this distinguishing feature of the two-way exchange of resources is a functional requirement for such mutualism and ecosystem services. In addition to supplying nutrients and water to plants, the AMF symbiosis enhances plant resilience to biotic and abiotic stresses including Cr stress. Studies have revealed vital physiological and molecular mechanisms by which AMF alleviate Cr phytotoxicity and aid plants in nutrient acquisition under Cr stress. Notably, plant Cr tolerance is enhanced by both the direct effects of AMF on Cr stabilization and transformation, and the indirect effects of AMF symbiosis on plant nutrient uptake and physiological regulation. In this article, we summarized the research progress on AMF and associated mechanisms of Cr tolerance in plants. In addition, we reviewed the present understanding of AMF-assisted Cr remediation. Since AMF symbiosis can enhance plant resilience to Cr pollution, AMF may have promising prospects in agricultural production, bioremediation, and ecological restoration in Cr-polluted soils.
Collapse
Affiliation(s)
- Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| | - Rubya Shamsy
- Microbiology Program, Department of Mathematics & Natural Sciences, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China.
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang, 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop Safety and Disease Control, Luoyang, 471023, PR China
| |
Collapse
|
8
|
Liu K, Ge H, Liu C, Jiang Y, Yu Y, Zhou Z. Notch-RBPJ Pathway for the Differentiation of Bone Marrow Mesenchymal Stem Cells in Femoral Head Necrosis. Int J Mol Sci 2023; 24:ijms24076295. [PMID: 37047268 PMCID: PMC10094204 DOI: 10.3390/ijms24076295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Femoral head necrosis (FHN) is a common leg disease in broilers, resulting in economic losses in the poultry industry. The occurrence of FHN is closely related to the decrease in the number of bone marrow mesenchymal stem cells (BMSCs) and the change in differentiation direction. This study aimed to investigate the function of differentiation of BMSCs in the development of FHN. We isolated and cultured BMSCs from spontaneous FHN-affected broilers and normal broilers, assessed the ability of BMSCs into three lineages by multiple staining methods, and found that BMSCs isolated from FHN-affected broilers demonstrated enhanced lipogenic differentiation, activated Notch-RBPJ signaling pathway, and diminished osteogenic and chondrogenic differentiation. The treatment of BMSCs with methylprednisolone (MP) revealed a significant decrease in the expressions of Runx2, BMP2, Col2a1 and Aggrecan, while the expressions of p-Notch1/Notch1, Notch2 and RBPJ were increased significantly. Jagged-1 (JAG-1, Notch activator)/DAPT (γ-secretase inhibitor) could promote/inhibit the osteogenic or chondrogenic ability of MP-treated BMSCs, respectively, whereas the differentiation ability of BMSCs was restored after transfection with si-RBPJ. The above results suggest that the Notch-RBPJ pathway plays important role in FHN progression by modulating the osteogenic and chondrogenic differentiation of BMSCs.
Collapse
|
9
|
Yan G, Gao Y, Xue K, Qi Y, Fan Y, Tian X, Wang J, Zhao R, Zhang P, Liu Y, Liu J. Toxicity mechanisms and remediation strategies for chromium exposure in the environment. FRONTIERS IN ENVIRONMENTAL SCIENCE 2023; 11. [DOI: 10.3389/fenvs.2023.1131204] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Chromium (Cr) is the seventh most abundant chemical element in the Earth’s crust, and Cr(III) and Cr(VI) are common stable valence states of Cr. Several Cr-containing substances, such as FeOCr2O3 and stainless-steel products, exist in nature and in life. However, Cr(VI) is toxic to soil, microorganisms, and plants and poses a serious threat to human health through direct and indirect exposure. By collecting published journal literature, we found that Cr(VI) can cause acute and chronic toxicity in organisms and has carcinogenic effects, and the mechanisms causing these toxicity include endoplasmic reticulum stress, autophagy and apoptosis. However, the relationship between these mechanisms remains unclear. Many methods have been researched to purify chromium, but each of these methods has its own advantages and disadvantages. Therefore, this review summarizes the hazards of chromium and the mechanisms of chromium toxicity after entering cells and provides a number of methods for chromium contamination management, providing a direction for the next step in chromium toxicology and contamination decontamination research.
Collapse
|
10
|
Islam S, Kamila S, Chattopadhyay A. Toxic and carcinogenic effects of hexavalent chromium in mammalian cells in vivo and in vitro: a recent update. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 40:282-315. [PMID: 36728911 DOI: 10.1080/26896583.2022.2158675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chromium VI (Cr (VI)) can cross cell membranes readily and causes the formation of Cr-DNA adducts, genomic damages, elevation of reactive oxygen species (ROS) and alteration of survival signaling pathways, as evidenced by the modulation in p53 signaling pathway. Mammals, including humans are exposed to Cr, including Cr (VI), frequently through inhalation, drinking water, and food. Several studies demonstrated that Cr (VI) induces cellular death through apoptosis and autophagy, genotoxicity, functional alteration of mitochondria, endocrine and reproductive impairments. In the present review, studies on deleterious effects of Cr (VI) exposure to mammalian cells (in vivo and in vitro) have been documented. Special attention is paid to the underlying molecular mechanism of Cr (VI) toxicity.
Collapse
Affiliation(s)
- Shehnaz Islam
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | - Sreejata Kamila
- Department of Zoology, Visva-Bharati, Santiniketan, West Bengal, India
| | | |
Collapse
|
11
|
Zhuge R, Li Z, He C, Ma W, Yan J, Xue Q, Wang R, Liu Y, Lu R, Du H, Yin F, Guo L. Bone marrow mesenchymal stem cells repair hexavalent chromium-induced testicular injury by regulating autophagy and ferroptosis mediated by the AKT/mTOR pathway in rats. ENVIRONMENTAL TOXICOLOGY 2023; 38:289-299. [PMID: 36416502 DOI: 10.1002/tox.23713] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
There is no ideal therapy for testicular damage induced by Cr(VI); however, bone marrow mesenchymal stem cells (BMSCs) transplantation may be a promising therapy. A Cr(VI) solution was administered to rats by intraperitoneal injection for 30 days, then BMSCs from donor rats were transplanted. Two weeks later, decreased activity and appetite, along with other pathological changes, were improved in the BMSCs group. The location of BMSCs in damaged testes was observed via laser confocal microscopy. Chromium content in the Cr(VI) and BMSCs groups significantly increased compared with that in the control group, but there was no significant difference between the two groups, as revealed by atomic absorption spectrometry. The ferrous iron and the total iron content of testes in the BMSCs group were significantly lower than those in the Cr(VI) group, as observed by Lillie staining and a tissue iron assay kit. Western blotting and immunohistochemical analyses revealed that the expression of Beclin 1, LC3B, 4-hydroxynonenal, and transferrin receptor 1 was decreased in the BMSCs group, compared with the Cr(VI) group. The expression of glutathione peroxidase 4 (GPX4), SLC7A11, p-AKT, mammalian target of rapamycin (mTOR), and p-mTOR in the BMSCs group was higher than that in the Cr(VI) group. Taken together, we propose that BMSCs repair Cr(VI)-damaged testes by alleviating ferroptosis and downregulating autophagy-associated proteins through the upregulation of AKT and mTOR phosphorylation.
Collapse
Affiliation(s)
- Ruijian Zhuge
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Zhongrun Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Changhao He
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Wenxuan Ma
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jun Yan
- Department of Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Qian Xue
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rui Wang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Ying Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Rifeng Lu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Haiying Du
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Fei Yin
- Department of Orthopaedics, China-Japan Union Hospital, Jilin University, Changchun, Jilin Province, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Wang L, Zheng P, Cui Y, Zhang Z, Song K, Liu Y, Liu J. Regulation of Parkin in Cr (VI)-induced mitophagy in chicken hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114315. [PMID: 36423368 DOI: 10.1016/j.ecoenv.2022.114315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/29/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The large amount of heavy metal chromium emissions from industrial production, ore smelting and sewage treatment plants have made chromium one of the most widespread heavy metal pollutants, with Cr (VI) being the most toxic. In recent years, people have gradually recognized the great harm of heavy metal chromium pollution, but the research on its pathogenic mechanism is still not deep enough. In this study, we treated the Primary cells of chicken liver with Cr (VI) to establish a model of toxicity. The optimal treatment time and Cr (VI) concentration were screened using the CCK-8 test. The intracellular mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were measured qualitatively and quantitatively by laser confocal and flow cytometry, respectively. This result was confirmed by the fact that Cr (VI) could cause mitophagy by causing damage to mitochondria. Subsequently, this study used LMH cells to construct a Parkin silencing model to further investigate that Parkin exerts the function on the Cr (VI)-induced mitophagy in chicken hepatocytes. The results showed that the knockdown of Parkin effectively blocked p62 degradation and LC3 lipidation and that PINK1 expression was significantly inhibited in LMH cells, further suggesting that the knockdown of Parkin effectively inhibited mitophagy. Mitochondrial morphology, MMP, and ROS were observed using laser confocal. The results showed that Parkin knockdown resulted in mitochondrial fission and increased levels of reactive oxygen species, together with increased depolarization of the mitochondrial membrane potential. These changes led to increased mitochondrial damage. In conclusion, this study showed that Cr (VI) could cause the occurrence of mitophagy by damaging mitochondria, and Parkin played a crucial role in Cr (VI)-induced mitophagy in chicken hepatocytes.
Collapse
Affiliation(s)
- Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Pimiao Zheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yukun Cui
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Kaimin Song
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai`an, Shandong 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai`an, Shandong 271018, China.
| |
Collapse
|
13
|
Bao S, Zhang C, Luo S, Jiang L, Li Q, Kong Y, Cao J. HMGA2 mediates Cr (VI)-induced metabolic reprogramming through binding to mitochondrial D-Loop region. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114085. [PMID: 36116352 DOI: 10.1016/j.ecoenv.2022.114085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Hexavalent chromium [Cr (VI)] exists environmentally and occupationally. It has been shown to pose a carcinogenic hazard in certain occupations. This study was to investigate the role of high mobility group A2 (HMGA2) in Cr (VI)-induced metabolism reprogramming from oxidative phosphorylation (OXPHOS) to glycolysis in A549 and HELF cells. First, knockdown of HMGA2 by siHMGA2 significantly attenuated Cr (VI)-reduced expression of OXPHOS-related proteins (COX IV and ND1) and mitochondrial mass, indicating that HMGA2 was involved in Cr (VI)-reduced OXPHOS. Overexpression of HMGA2 by transfection of HMGA2-DNA plasmids reduced the expression of COX IV, ND1 and mitochondrial mass, suggesting the negative role of HMGA2 in OXPHOS. Secondly, both CCCP, the inhibitor of mitochondrial function, and the ER stress inhibitor, 4-phenylbutyric acid (4-PBA), decreased the level of HMGA2, indicating that the interaction of mitochondrial dysfunction and ER stress resulted in Cr (VI)-induced HMGA2 expression. Further study demonstrated that ER stress/HMGA2 axis mediated the metabolism rewiring from OXPHOS to aerobic glycolysis. Notably, Cr (VI) induced the accumulation of HMGA2 proteins in mitochondria and ChIP assay demonstrated that HMGA2 proteins could bind to D-loop region of mitochondrial DNA (mtDNA), which provided the proof for HMGA2-modulating OXPHOS. Taken together, our results suggested that the interaction of mitochondria and ER stress-enhanced HMGA2 played an important role in Cr (VI)-induced metabolic reprogramming from OXPHOS to glycolysis by binding directly to D-loop region of mtDNA. This work informs on the potential mode of action for Cr (VI)-induced tumors and builds on growing evidence regarding the contribution of cellular metabolic disruption contributing to carcinogenicity.
Collapse
Affiliation(s)
- Shibo Bao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, Dalian 116044, China
| | - Shengxiang Luo
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Liping Jiang
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Qiujuan Li
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China
| | - Ying Kong
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China
| | - Jun Cao
- Department of Occupational and Environmental Health, Dalian Medical University, No. 9 W. Lvshun South Road, Dalian 116044, China.
| |
Collapse
|
14
|
Guo S, Qi M, Li H, Cui Y, Qi C, Cheng G, Lv M, Zheng P, Liu J. The Protective Effect of Lycium Ruthenicum Murr Anthocyanins in Cr (VI)-Induced Mitophagy in DF-1 Cells. Life (Basel) 2022; 12:1115. [PMID: 35892917 PMCID: PMC9332502 DOI: 10.3390/life12081115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022] Open
Abstract
Cr (VI) is an extremely toxic environment and professional pollutant that seriously damages mitochondrial dysfunction when it enters a cell. Anthocyanins possess anti-oxidant, antiaging, and antifatigue properties. The regulatory effect of Lycium ruthenicum Murr anthocyanin (LRMA) on Cr (VI)-induced mitophagy in DF-1 cells was determined. The experimental design was divided into blank group, groups subjected to Cr (VI) and Cr (VI), and LRMA co-treatment groups. Cell viability was determined by the CCK-8 assay. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) were assessed by flow cytometry and immunofluorescence. Mitophagy was monitored by ELISA and Western blot. Data showed that Cr (VI) caused the overexpression of autophagy-related proteins (LC3, Beclin-1) and reduced the expressions of autophagy protein p62 and TOMM20. Compared with the Cr (VI) group, the LRMA group showed considerably decreased mitochondrial damage and mitophagy. LRMA decreased the mitochondrial protein expression of PINK1 and Parkin's transfer from the cytoplasm to mitochondria. LRMA may confer protective effects by reducing PINK1/Parkin-mediated mitophagy in Cr (VI)-induced DF-1 cell models.
Collapse
Affiliation(s)
- Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Mengzhu Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Hongyan Li
- Central Hospital of Tai’an City, Tai’an 271018, China;
| | - Yukun Cui
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Meiyun Lv
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
| | - Pimiao Zheng
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China; (S.G.); (G.C.); (M.L.)
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai’an 271018, China; (M.Q.); (Y.C.); (C.Q.)
| |
Collapse
|
15
|
Liu K, Cui Y, Li H, Qi C, Cheng G, Gao X, Zhang Z, Liu Y, Liu J. Hydrogen-Rich Medium Regulates Cr(VI)-Induced ER Stress and Autophagy Signaling in DF-1 Cells. Biol Trace Elem Res 2022; 200:2329-2337. [PMID: 34327609 DOI: 10.1007/s12011-021-02850-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Related studies have shown that chromium (Cr) is toxic to cells, and hydrogen can protect cells by regulating endoplasmic reticulum (ER) stress and autophagy. However, there are few reports on the protective effects of hydrogen on heavy metal-induced cell damage. The objective of this study was to investigate the protection of hydrogen-rich medium (HRM) on Cr(VI)-induced ER stress and autophagy in DF-1 cells. Therefore, HRM were pretreated for 30 min before Cr(VI) treatment, and detected the autophagy and ER stress-related indicators to determine the role of HRM. The results showed that HRM could reduce the cell damage caused by Cr(VI), and 3-methyladenine (3-MA) could protect cells by inhibiting over autophagy. HRM can reverse the changes of ER stress- and autophagy-related indexes caused by Cr(VI), and inhibit the excessive autophagy caused by Cr(VI). In conclusion, HRM can protect cells from damage induced by Cr(VI), and play a role by inhibiting ER stress-mediated autophagy.
Collapse
Affiliation(s)
- Kangping Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yukun Cui
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Hongyan Li
- Central Hospital of Tai'an City, Tai'an, 271018, Shandong, China
| | - Changxi Qi
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xin Gao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhuanglong Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
16
|
Peng W, Wu Y, Peng Z, Qi W, Liu T, Yang B, He D, Liu Y, Wang Y. Cyanidin-3-glucoside improves the barrier function of retinal pigment epithelium cells by attenuating endoplasmic reticulum stress-induced apoptosis. Food Res Int 2022; 157:111313. [DOI: 10.1016/j.foodres.2022.111313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/27/2022]
|
17
|
Wang Y, Wang L, Wang X, Cheng G, Xing Y, Zhang M, Zhang P, Liu J. Inflammatory Injury and Mitophagy in the Cock Heart Induced by the Oral Administration of Hexavalent Chromium. Biol Trace Elem Res 2022; 200:1312-1320. [PMID: 33851329 DOI: 10.1007/s12011-021-02715-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
As a highly toxic heavy metal, chromium has caused a certain threat to public health and livestock breeding in recent years. In poultry, as one of our most commonly consumed meat product, its health issues will seriously threaten the safety of human life. As previous studies have confirmed, when cells are stimulated by the external environment, mitochondria, as an organelle that provides energy to the cells, can cause damage and autophagy. The purpose of this study is to confirm whether Cr(VI) can cause mitophagy in cock heart. We first randomly divided 32 cocks into four groups to explore the mechanism of this effect. The cocks were then separately exposed to four different dose levels, namely, the control level and 10, 30, and 50 mg/kg levels, via daily oral intake into the body through mixed feeding for 45 days. After 45 days, we sampled and detected pathological changes and the levels of inflammatory factors (IL-6, TNF-α, and IFN-γ), mitochondrial membrane potential (MMP), adenosine triphosphatases (ATPases), and mitophagy-related proteins (LC3, p62/SQTM1, TOMM20, and Parkin). We found that IL-6, TNF-α, IFN-γ, and LC3II contents increased with the increase in Cr(VI) concentration. However, MMP, ATPases, p62/SQTM1, and TOMM20 levels decreased with the increase in Cr(VI) concentration. At the same time, Cr(VI) exposure caused heart tissue damages and Parkin translocation. In conclusion, our results proved that inflammatory damage, mitochondrial function damage, and mitophagy in cock heart tissues were dependent on Cr(VI) concentration.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiaozhou Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Guodong Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Meihua Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Pu Zhang
- Central Hospital of Tai'an City, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
18
|
Liu K, Fan R, Zhou Z. Endoplasmic reticulum stress, chondrocyte apoptosis and oxidative stress in cartilage of broilers affected by spontaneous femoral head necrosis. Poult Sci 2021; 100:101258. [PMID: 34175798 PMCID: PMC8242058 DOI: 10.1016/j.psj.2021.101258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/20/2022] Open
Abstract
With the promotion of the intensive breeding model, the incidence of leg diseases has risen in fast-growing commercial broilers with higher body weight, seriously affecting their feed efficiency and causing animal welfare problems. Femoral head necrosis (FHN) is the most common leg disease in broilers. Previous studies reported that hormone-induced FHN is related to endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress, but no detailed study has been conducted in broilers with spontaneous FHN. In the study, the articular cartilage of 5-wk-old Ross 308 broilers with spontaneous FHN was used to investigate the pathogenesis of the disease. According to the degree of femoral head injury, the birds participating in the experiment were divided into 3 groups, namely a control group, femoral head separation group and femoral head separation with growth plate lacerations group. The morphological changes in articular cartilage were observed by hematoxylin and eosin, toluidine blue, alcian blue and safranine O-solid green staining, and the expressions of genes related to cartilage homeostasis, ER stress, autophagy, apoptosis and oxidative stress was detected using Real-Time Quantitative PCR. In the results, the expression of aggrecan and collagen-2 mRNA levels decreased in the articular cartilage of spontaneous FHN broilers, and the same changes were observed in the tissue staining results, indicating the disordered nature of articular cartilage homeostasis. At the same time, FHN in broilers causes ER stress in articular chondrocytes and regulates oxidative stress by activating the nuclear factor erythroid 2-related factor 2/antioxidant response element pathway through protein kinase RNA-like ER kinase. Autophagy can be activated through the protein kinase RNA-like ER kinase-activating transcription factor-4 pathway, and apoptosis can even be activated through CCAAT-enhancer-binding protein homologous protein. Therefore, the secretory activity of articular chondrocytes in spontaneous FHN broilers is negatively affected, which leads to the disorder of cartilage homeostasis and results in FHN due to ER-stress-mediated chondrocyte apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Kangping Liu
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rubin Fan
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenlei Zhou
- Department of Veterinary Clinical Science, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
19
|
Zhang S, Zhao X, Hao J, Zhu Y, Wang Y, Wang L, Guo S, Yi H, Liu Y, Liu J. The role of ATF6 in Cr(VI)-induced apoptosis in DF-1 cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124607. [PMID: 33243643 DOI: 10.1016/j.jhazmat.2020.124607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a common heavy metal pollutant in environment and has been proved possessing the cytotoxicity. In this study, we aimed to investigate the role of activating transcription factor 6 (ATF-6) in apoptosis of chicken embryo fibroblasts cell line (DF-1) induced by Cr(VI). Firstly, DF-1 cells were exposed to Cr(VI) to establish the cytotoxicity model, then the cell apoptosis and ATF-6 protein level were analyzed. By silencing ATF-6 gene, changes of the apoptosis rate and apoptotic proteins were examined. To further explore the regulatory mechanism of ATF-6, endoplasmic reticulum (ER) stress, mitochondrial function, reactive oxygen species (ROS) level, as well as the related pathway were evaluated. Results showed that Cr(VI) can result in DF-1 cell apoptosis, along with mitochondrial membrane potential (MMP) reducing and ER stress. Meanwhile, ATF-6 silencing lowered the apoptosis rate and ER stress level, showing with the decrease of XBP-1, PERK, GRP78, Caspase-12, Cleaved Caspase-3 and the increase of Bcl-2. Further analysis found that ATF-6 silencing down-regulated ROS and caused MMP loss, suggesting that ATF-6 silencing inhibited Cr(VI)-induced mitochondrial damage. In conclusion, this study indicate that ATF-6 plays an important regulatory role in Cr(VI)-induced DF-1 cell apoptosis through the ER stress and mitochondrial pathway.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaona Zhao
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yue Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lumei Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuhua Guo
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Hui Yi
- Animal Husbandry and Veterinary Services Centre of Tai'an City, Tai'an, Shandong 271000, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
20
|
Saddik MS, Elsayed MMA, Abdelkader MSA, El-Mokhtar MA, Abdel-Aleem JA, Abu-Dief AM, Al-Hakkani MF, Farghaly HS, Abou-Taleb HA. Novel Green Biosynthesis of 5-Fluorouracil Chromium Nanoparticles Using Harpullia pendula Extract for Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13020226. [PMID: 33562032 PMCID: PMC7915530 DOI: 10.3390/pharmaceutics13020226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third highest major cause of morbidity and mortality worldwide. Hence, many strategies and approaches have been widely developed for cancer treatment. This work prepared and evaluated the antitumor activity of 5-Fluorouracil (5-Fu) loaded chromium nanoparticles (5-FuCrNPs). The green biosynthesis approach using Harpullia (H) pendula aqueous extract was used for CrNPs preparation, which was further loaded with 5-Fu. The prepared NPs were characterized for morphology using scanning and transmission electron microscopes (SEM and TEM). The results revealed the formation of uniform, mono-dispersive, and highly stable CrNPs with a mean size of 23 nm. Encapsulation of 5-Fu over CrNPs, with a higher drug loading efficiency, was successful with a mean size of 29 nm being produced. In addition, Fourier transform infrared (FTIR) and X-ray diffraction pattern (XRD) were also used for the investigation. The drug 5-Fu was adsorbed on the surface of biosynthesized CrNPs in order to overcome its clinical resistance and increase its activity against CRC cells. Box–Behnken Design (BBD) and response surface methodology (RSM) were used to characterize and optimize the formulation factors (5-Fu concentration, CrNP weight, and temperature). Furthermore, the antitumor activity of the prepared 5-FuCrNPs was tested against CRC cells (CACO-2). This in vitro antitumor study demonstrated that 5-Fu-loaded CrNPs markedly decreased the IC50 of 5-Fu and exerted more cytotoxicity at nearly all concentrations than 5-Fu alone. In conclusion, 5-FuCrNPs is a promising drug delivery system for the effective treatment of CRC.
Collapse
Affiliation(s)
- Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
| | - Mahmoud M. A. Elsayed
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt;
- Correspondence: ; Tel.: +20-1226770470
| | | | - Mohamed A. El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71516, Egypt;
| | - Jelan A. Abdel-Aleem
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71516, Egypt;
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, Madinah 42353, Saudi Arabia;
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mostafa F. Al-Hakkani
- Department of Chemistry, Faculty of Science, New Valley University, Al-Kharja 72511, Egypt;
| | - Hatem S. Farghaly
- Department of Biochemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Sueif 62511, Egypt;
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
21
|
Li Y, Wu K, Wang B, Li X. Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. Int J Biol Macromol 2021; 174:370-376. [PMID: 33539953 DOI: 10.1016/j.ijbiomac.2021.01.182] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/17/2022]
Abstract
Intelligent colorimetric indicator films were prepared to monitor freshness/spoilage of milk and fish by incorporating purple tomato anthocyanin (PTA) into chitosan (CS) matrix via solution casting method with PTA concentration (w/w, based on CS) of 10%, 30%, and 50%, respectively. The pH-response, UV absorption, Swelling Index, and the mechanical properties of CS/PTA films were determined. It was found that the color of the original CS/PTA films became darker with an improvement of PTA content and expressed well pH-sensitivity. With increasing of pH, the color of the CS/PTA films exposed to pH = 3-11 solutions became darker and the change in color of the CS/10% PTA film was the most discernable. The tensile strength and Young's modulus of the CS/PTA film was much lower than that of CS film, however, the elongation at breaking and Swelling Index were both improved by adding PTA. The intelligent films with 10% PTA changed their color during progressive spoilage of milk or fish, revealing their potential application for monitoring food freshness/spoilage.
Collapse
Affiliation(s)
- Yana Li
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Kaixuan Wu
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Beihai Wang
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuezhong Li
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
22
|
Hao J, Song Y, Tian B, Qi C, Li L, Wang L, Xing Y, Zhao X, Liu J. Platycodon grandifloras polysaccharides inhibit mitophagy injury induced by Cr (VI) in DF-1 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110901. [PMID: 32593805 DOI: 10.1016/j.ecoenv.2020.110901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to investigate the role of Platycodon grandiflorus polysaccharide (PGPS) in chromium (VI)-induced autophagy in a chicken embryo fibroblast cell lines (DF-1 cells). DF-1 cells were exposed to Cr (VI), PGPSt, and Cr (VI) + PGPSt, and their effects on cell viability, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and autophagy-related proteins were examined. The results showed that the cell viability was reduced after Cr (VI) treatment, and 3-MA, CsA or PGPSt suppressed this decrease. Cr (VI) treatment increased the ROS levels and decreased the MMP, thereby enhancing the expression of mitochondrial autophagy marker proteins (PINK1, Parkin, and LC3-II), inhibiting mitophagy autophagy protein TOMM20 expression, and promoting the degradation of autophagy-related marker p62. These changes led to exceeding mitochondrial autophagy and cell trauma and could be mitigated by PGPSt. Overall, our research showed that Cr (VI) can induce exceeding mitochondrial autophagy in DF-1 cells, whereas PGPSt can improve Cr (VI)-induced mitochondrial autophagy by inhibiting ROS and restoring MMP.
Collapse
Affiliation(s)
- Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yafen Song
- Department of Veterinary Culture Collection, China Institute of Veterinary Drug Control, 8 Nandajie, Zhongguancun, Haidian District, Beijing, 100081, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changxi Qi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lumei Wang
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuxiao Xing
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiaona Zhao
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
23
|
Wang Y, Hao J, Zhang S, Li L, Wang R, Zhu Y, Liu Y, Liu J. Inflammatory injury and mitophagy induced by Cr(VI) in chicken liver. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22980-22988. [PMID: 32329004 DOI: 10.1007/s11356-020-08544-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Cr(VI) is a widely used chemical. Excessive Cr(VI) exposure not only causes inflammatory damage but also induces mitophagy. This study aimed to demonstrate the effect of Cr(VI) on inflammatory injury and mitophagy in chicken liver. A total of 120 Hyland Brown cockerels (1 day old) were randomly divided into four groups and orally treated with different Cr(VI) doses (10% median lethal dose, 6% median lethal dose, 2% median lethal dose, and 0% median lethal dose) daily for 45 days to explore the underlying mechanism. Results showed that excessive Cr(VI) increased tumor necrosis factor-α, interleukin-6, and heat shock protein but decreased interferon-γ expression and adenosine triphosphate content in chicken liver. Cr(VI) significantly increased reactive oxygen species production, induced mitochondrial membrane potential collapse, and promoted autophagosome formation. Cr(VI) treatment also caused an increase in LC3-II, stimulated Parkin translocation, and inhibited the expression of p62/SQSTM1 and translocase of outer mitochondrial membrane 20. Therefore, excessive Cr(VI) caused inflammatory damage and mitophagy in chicken liver.
Collapse
Affiliation(s)
- Yue Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Jiajia Hao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shuo Zhang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Liping Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Run Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yiran Zhu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Yongxia Liu
- Research Center for Animal Disease Control Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jianzhu Liu
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|