1
|
Aguiar RPSD, Souza JMT, de Menezes AAPM, do Nascimento MLLB, de Castro E Sousa JM, Cavalcante AADCM, Ferreira PMP, Araújo AJ, Marinho-Filho JDB. Ascorbic acid regulates in vitro and in vivo toxicogenetic effects of hydroxyurea on eukaryotic cells. Drug Chem Toxicol 2024:1-10. [PMID: 39538962 DOI: 10.1080/01480545.2024.2425990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Hydroxyurea (HU) exerts unique and diverse biological effects as an anti-leukemic agent, irradiation sensitizer, and HbS inducer in patients with sickle cell anemia. Herein, we assessed the potential toxicogenic and/or oxidant effects of hydroxyurea associated with ascorbic acid by in vivo examinations in Allium cepa and human cancer cells and systemically on mice tissues. Growing A. cepa roots and HCT-116 colorectal tumor cells were examined after HU and HU plus ascorbic acid exposure. DNA damage and antioxidant enzymatic activity were quantified in peripheral blood mononuclear cells (PBMC), bone marrow leukocytes and livers of mice after 7 day-HU treatment (7.5, 15 and 30 mg/kg/day) and Vitamin C 2 μM. Hydroxyurea presented toxic effects on meristematic Allium cepa cells, causing chromosomal abnormalities and reduction of mitotic index, killed HCT-116 colorectal carcinoma cells and induced DNA injuries upon mice cells (hepatocytes, bone marrow leukocytes and PBMC). Simultaneously, hydroxyurea decreased levels of CAT and GSH activities and expand lipid peroxidation. All these biochemical and physiological changes were ameliorated when associated with ascorbic acid, indicating it restored antioxidant enzymes, decreased MDA levels, removed peroxides and, consequently, presented cytoprotection against HU-provoked cellular damage in normal cells. On the other hand, antioxidants compounds may interfere on effectiveness of HU during anticancer chemotherapies.
Collapse
Affiliation(s)
- Raí Pablo Sousa de Aguiar
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | - Jéssica Maria Teles Souza
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | - Ag-Anne Pereira Melo de Menezes
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Maria Luísa Lima Barreto do Nascimento
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - João Marcelo de Castro E Sousa
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Ana Amélia de Carvalho Melo Cavalcante
- Laboratory of Toxicological Genetics (Lapgenic), Department of Biochemistry and Pharmacology, Postgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Laboratory of Experimental Cancerology (LabCancer), Department of Biophysics and Physiology, Federal University of Piauí, Teresina, Brazil
| | - Ana Jérsia Araújo
- Cell Culture Laboratory of the Delta (LCCDelta), Parnaiba Delta Federal University, Parnaíba, Brazil
| | | |
Collapse
|
2
|
Yang Y, Yan C, Li A, Qiu J, Yan W, Dang H. Effects of the plastic additive 2,4-di-tert-butylphenol on intestinal microbiota of zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133987. [PMID: 38461668 DOI: 10.1016/j.jhazmat.2024.133987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 03/06/2024] [Indexed: 03/12/2024]
Abstract
Plastic additives such as the antioxidant 2,4-di-tert-butylphenol (2,4-DTBP) have been widely detected in aquatic environments, over a wide range of concentrations reaching 300 μg/L in surface water, potentially threatening the health of aquatic organisms and ecosystems. However, knowledge of the specific effects of 2,4-DTBP on aquatic vertebrates is still limited. In this study, adult zebrafish were exposed to different concentrations of 2,4-DTBP (0, 0.01, 0.1 and 1.0 mg/L) for 21 days in the laboratory. The amplicon sequencing results indicated that the diversity and composition of the zebrafish gut microbiota were significantly changed by 2,4-DTBP, with a shift in the dominant flora to more pathogenic genera. Exposure to 2,4-DTBP at 0.1 and 1.0 mg/L significantly increased the body weight and length of zebrafish, suggesting a biological stress response. Structural assembly defects were also observed in the intestinal tissues of zebrafish exposed to 2,4-DTBP, including autolysis of intestinal villi, adhesions and epithelial detachment of intestinal villi, as well as inflammation. The transcriptional expression of some genes showed that 2,4-DTBP adversely affected protein digestion and absorption, glucose metabolism and lipid metabolism. These results are consistent with the PICRUSt2 functional prediction analysis of intestinal microbiota of zebrafish exposed to 2,4-DTBP. This study improves our understanding of the effects of 2,4-DTBP on the health of aquatic vertebrates and ecosystems.
Collapse
Affiliation(s)
- Yongmeng Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chen Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Wenhui Yan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hui Dang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int 2023; 169:112749. [PMID: 37254375 DOI: 10.1016/j.foodres.2023.112749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/04/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023]
Abstract
Vitamin C (VC), vitamin E (VE) and β-carotene (βC) are representative dietary antioxidants, which exist in daily diet and can increase the antioxidant capacity of body fluids, cells and tissues. The health benefits of vitamins like VC, VE and βC are widely demonstrated. Given that the strong associations between the gut microbiota and host health or a range of diseases has been extensively reported, it is important to explore the modulatory effects of known vitamins on the gut microbiota. Herein, this article reviews the effects of VC, VE and βC on the gut microbiota. Totally, 19 studies were included, of which eight were related to VC, nine to VE, and six to βC. Overall, VC, VE and βC can provide health benefits to the host by modulating the composition and metabolic activity of the gut microbiota, improving intestinal barrier function and maintaining the normal function of the immune system. Two perspectives are proposed for future studies: i) roles of known antioxidant activity of vitamins in regulating the gut microbiota and its molecular mechanism need to be further studied; ii) causal relationships between the regulatory effects of vitamins on gut microbiota and host health still remains to be further verified.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Lei Meng
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Liang Shen
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Hong-Fang Ji
- Institute of Biomedical Research, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China; School of Life Sciences, Ludong University, Yantai, People's Republic of China.
| |
Collapse
|
4
|
Sporosarcina aquimarina MS4 Regulates the Digestive Enzyme Activities, Body Wall Nutrients, Gut Microbiota, and Metabolites of Apostichopus japonicus. FISHES 2022. [DOI: 10.3390/fishes7030134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sporosarcina aquimarina MS4 is a microecological preparation for overwintering Apostichopus japonicus, which has an immune regulation function, but its role in the nutritional regulation of A. japonicus is not clear. This study aimed to describe the effects of S. aquimarina MS4 on the growth, digestion, and body wall nutrition of A. japonicus through feeding experiments and to discuss the potential mechanism of S. aquimarina MS4 regulating gut function through the detection of gut microbiota and metabolites. After 60 days of culture, the growth performance of A. japonicus fed S. aquimarina MS4 (108 cfu/g) significantly improved, and the content of polysaccharide, leucine, phenylalanine, lysine, and docosahexaenoic acid in the body wall significantly increased. Gut microbiota analysis showed that although Proteobacteria, Verrucomicrobia, Firmicutes, and Bacteroidetes were the predominant phyla in all the sea cucumbers, Haloferula and Rubritalea showed significant difference between the group fed with or without S. aquimarina MS4. Metabolomics analysis showed that differential metabolites in the gut were mainly enriched in amino acid metabolism and lipid metabolism. The association analysis of differential metabolites and microbiota showed that the production of some differential metabolites was significantly related to differential microorganisms, which improved the understanding of the function of microorganisms and their roles in the gut of A. japonicus. This study reveals the life activities such as growth and metabolism of A. japonicus, and it provides support for the functional study of the gut microbiome of A. japonicus.
Collapse
|
5
|
Zhao Z, Jiang J, Zheng J, Pan Y, Dong Y, Chen Z, Gao S, Xiao Y, Jiang P, Wang X, Zhang G, Wang B, Yu D, Fu Z, Guan X, Sun H, Zhou Z. Exploiting the gut microbiota to predict the origins and quality traits of cultured sea cucumbers. Environ Microbiol 2022; 24:3882-3897. [PMID: 35297145 DOI: 10.1111/1462-2920.15972] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/07/2022] [Indexed: 01/09/2023]
Abstract
Nowadays, the true economic and nutritional value of food is underpinned by both origin and quality traits, more often expressed as increased quality benefits derived from the origin source. Gut microbiota contribute to food metabolism and host health, therefore, it may be suitable as a qualifying indicator of origin and quality of economic species. Here, we investigated relationships between the gut microbiota of the sea cucumber (Apostichopus japonicus), a valuable aquaculture species in Asia, with their origins and quality metrics. Based on data from 287 intestinal samples, we generated the first biogeographical patterns for A. japonicus gut microbiota from origins across China. Importantly, A. japonicus origins were predicted using the random forest model that was constructed using 20 key gut bacterial genera, with 97.6% accuracy. Furthermore, quality traits such as saponin, fat and taurine were also successfully predicted by random forest models based on gut microbiota, with approximately 80% consistency between predicted and true values. We showed that substantial variations existed in the gut microbiota and quality variables in A. japonicus across different origins, and we also demonstrated the great potential of gut microbiota to track A. japonicus origins and predict their quality traits.
Collapse
Affiliation(s)
- Zelong Zhao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jingwei Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Jie Zheng
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yongjia Pan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Ying Dong
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhong Chen
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Shan Gao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yao Xiao
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Pingzhe Jiang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xuda Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Gaohua Zhang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Bai Wang
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Di Yu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zhiyu Fu
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Xiaoyan Guan
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Hongjuan Sun
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Zunchun Zhou
- Liaoning Key Lab of Germplasm Improvement and Fine Seed Breeding of Marine Aquatic animals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| |
Collapse
|
6
|
Zeng F, Wu L, Ren X, Xu B, Cui S, Li M, Chen W, Han Y, Ren T. Effects of chronic prometryn exposure on antioxidative status, intestinal morphology, and microbiota in sea cucumber (Apostichopus japonicus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109187. [PMID: 34506993 DOI: 10.1016/j.cbpc.2021.109187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/27/2022]
Abstract
Prometryn is an occasional triazine herbicide used in aquaculture to kill algae. However, deposition of prometryn at the bottom of the pond poses a potential threat to aquatic animals, especially benthos, such as the sea cucumber. This study investigated the toxic effects of prometryn oral exposure on antioxidants, and the intestinal histomorphology and microbiome of sea cucumbers. Results showed that the accumulation of prometryn in the intestine, respiratory tree, and body wall decreased sequentially under the same level. Severe pathological damages were observed in the intestines of sea cucumbers fed with 0.080 and 1.595 g/kg prometryn (measured concentration). Moreover, hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations were significantly increased in prometryn treatment groups compared to the control group (P < 0.05), while the catalase (CAT) activity was significantly decreased (P < 0.05) in the coelomic fluid of treatment groups. At the phylum level, the abundance of Proteobacteria was significantly higher in the 0.080 g/kg treatment group than in the control group. In addition, prometryn exposure reduced the diversity of intestinal microflora in sea cucumbers. In conclusion, these results suggest that prometryn has potential toxicity to sea cucumber. Therefore, the harm of prometryn deposited in the sediment to aquatic animals must be a concern in aquaculture.
Collapse
Affiliation(s)
- Fanshuang Zeng
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Lin Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Xue Ren
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Bingwen Xu
- Dalian Center for Certification and Food and Drug Control, Dalian 116023, China
| | - Shuchang Cui
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Muzi Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Wenbo Chen
- Dalian Modern Agricultural Production Development Service Center, Dalian 116023, China
| | - Yuzhe Han
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Tongjun Ren
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|