1
|
Li X, Ding J, Wang J, He J, Sheng W. Ginsenoside Rb1 combined with Lycium barbarum polysaccharide alleviate the Tripterygium wilfordii polyglycoside-induced oligoasthenozoospermia in mice by inhibiting ZnT3-mediated oxidative stress response. J Trace Elem Med Biol 2025; 89:127646. [PMID: 40233591 DOI: 10.1016/j.jtemb.2025.127646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/24/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND Oligoasthenozoospermia (OAS) is one of the main causes of male infertility. Studies have shown that ginsenoside Rb1 (GRb1) and Lycium barbarum polysaccharide (LBP) have great potential in treating OAS. This study aims to investigate the effects of combined GRb1 and LBP treatment on OAS and the underlying molecular mechanisms. METHODS The Tripterygium wilfordii polyglycoside (GTW)-induced mouse model and H2O2-induced cell model were intervened with GRb1 and LBP. HE staining and Johnson score were used to evaluate the degree of testicular injury. Then, sperm quality was evaluated, and the levels of sperm-related hormones were measured. The regulatory effect of GRb1 and LBP on oxidative stress in OAS mice and cells was explored. In addition, total zinc content in testicular tissues and GC-2 cells was measured, and the mRNA and protein expression levels of zinc transporter 3 (ZnT3) were detected. RESULTS In the OAS model of mice treated with GRb1 and LBP, the coefficient of testis and epididymis were increased, and the degree of damage and sperm quality were significantly improved. Serum levels of T, LH, and FSH were increased in mice. Moreover, inhibition of ZnT3 signaling increased total intracellular zinc content in GC-2 cells. Overexpression of ZnT3 reversed the inhibitory effects of the combination of GRb1 and LBP on oxidative stress and the therapeutic effects in OAS mice. CONCLUSION The combined treatment of GRb1 and LBP could inhibit oxidative stress response by down-regulating ZnT3 signaling, thereby improving OAS mice. This provided a new strategy for the drug treatment of OAS.
Collapse
Affiliation(s)
- Xianrui Li
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Jin Ding
- Department of Andrology Clinic, Shenzhen Bao'an Chinese Medicine Hospital, The Seventh Clinical College of Guangzhou University of Chinese Medicine, Shenzhen, 518000, China
| | - Jingshang Wang
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Junqin He
- Department of Traditional Chinese Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing 100026, China
| | - Wen Sheng
- School of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China.
| |
Collapse
|
2
|
Chemek M, Kadi A, Al-Mahdawi FKI, Potoroko I. Zinc as a Possible Critical Element to Prevent Harmful Effects of COVID-19 on Testicular Function: a Narrative Review. Reprod Sci 2024; 31:3673-3687. [PMID: 38987405 DOI: 10.1007/s43032-024-01638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
Research into innovative non-pharmacological therapeutic routes via the utilization of natural elements like zinc (Zn) has been motivated by the discovery of new severe acute respiratory syndrome-related coronavirus 2 (SARS-COV2) variants and the ineffectiveness of certain vaccination treatments during COVID-19 pandemic. In addition, research on SARS-COV-2's viral cellular entry and infection mechanism has shown that it may seriously harm reproductive system cells and impair testicular function in young men and adolescents, which may lead to male infertility over time. In this context, we conducted a narrative review to give an overview of the data pertaining to Zn's critical role in testicular tissue, the therapeutic use of such micronutrients to enhance male fertility, as well as in the potential mitigation of COVID-19, with the ultimate goal of elucidating the hypothesis of the potential use of Zn supplements to prevent the possible harmful effects of SARS-COV2 infection on testis physiological function, and subsequently, on male fertility.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia.
| | - Ammar Kadi
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| | | | - Irina Potoroko
- Department of food and biotechnology, South Ural State University, Chelyabinsk, 454080, Russia
| |
Collapse
|
3
|
Liu J, Zuo X, Bi J, Li H, Li Y, Ma J, Wang S. Palliative Effect of Combined Application of Zinc and Selenium on Reproductive Injury Induced by Tripterygium Glycosides in Male Rats. Biol Trace Elem Res 2024; 202:5081-5093. [PMID: 38190060 DOI: 10.1007/s12011-023-04054-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The long-term use of tripterygium glycosides (TG) can lead to male reproductive damage. Research indicates that zinc and selenium exhibit a synergistic effect in the male reproductive system, with the combined preparation demonstrating superior therapeutic effects compared to individual preparations. The purpose of this study was to explore the specific mechanism by which zinc and selenium mitigate reproductive toxicity induced by TG in male rats. Rats were randomly assigned to three groups: control group (C group), model group (M group, receiving TG at 30 mg/kg/day), and model + zinc + selenium group (ZS group). The ZS group was also given TG gavage for the first 4 weeks. Starting from the fifth week until the conclusion of the eighth week, the ZS group received an additional protective treatment of 10 mg/kg/day Zn and 0.1 mg/kg/day Se 4 h after TG administration. Following euthanasia, blood samples, rat testis, and epididymis tissues were collected for further experiments. Combined zinc-selenium treatment corrects the imbalance of zinc-selenium homeostasis in testicular tissue induced by TG. This is achieved by upregulating the expression of metal transcription factor (MTF1) and zinc transporters ZIP8 and ZIP14 and downregulating the expression of ZnT10. Improvement of zinc and selenium homeostasis enhanced the expression of zinc-containing enzymes (ADH, LDH, and ALP) and selenoproteins (GPx1 and SELENOP) in the testis. At the same time, zinc and selenium mitigate TG-induced reproductive damage by promoting the activity of antioxidant enzymes and upregulating the expression of proteins associated with the oxidative stress pathway, including Nrf2, Keap1, HO-1, PI3K, and p-AKT.
Collapse
Affiliation(s)
- Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang, 050017, China
| | - Xin Zuo
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jiajie Bi
- Graduate School of Chengde Medical University, Chengde, 067000, China
| | - Huanhuan Li
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Yuanjing Li
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China
| | - Shusong Wang
- Department of College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.
- Graduate School of Chengde Medical University, Chengde, 067000, China.
- Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, Shijiazhuang, 050071, China.
| |
Collapse
|
4
|
Zeng X, Wang Z, Yu L, Wang L, Liu Y, Chen Y, Wang C. Zinc Supplementation Reduces Testicular Cell Apoptosis in Mice and Improves Spermatogenic Dysfunction Caused by Marginal Zinc Deficiency. Biol Trace Elem Res 2024; 202:1656-1668. [PMID: 37515670 DOI: 10.1007/s12011-023-03789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Zinc (Zn) is an important trace element in the human body and plays an important role in growth, development, and male reproductive functions. Marginal zinc deficiency (MZD) is common in the human population and can cause spermatogenic dysfunction in males. Therefore, the aim of this study was to investigate methods to improve spermatogenic dysfunction caused by MZD and to further explore its mechanism of action. A total of 75 4-week-old male SPF ICR mice were randomly divided into five groups (control, MZD, MZD + ZnY2, MZD + ZnY4, and MZD + ZnY8, 15 mice per group). The dietary Zn content was 30 mg/kg in the control group and 10 mg/kg in the other groups. From low to high, the Zn supplementation doses administered to the three groups were 2, 4, and 8 mg/kg·bw. After 35 days, the zinc content, sperm quality, activity of spermatogenic enzymes, oxidative stress level, and apoptosis level of the testes in mice were determined. The results showed that MZD decreased the level of Zn in the serum, sperm quality, and activity of spermatogenic enzymes in mice. After Zn supplementation, the Zn level in the serum increased, sperm quality was significantly improved, and spermatogenic enzyme activity was restored. In addition, MZD reduced the content of antioxidants (copper-zinc superoxide dismutase (Cu-Zn SOD), metallothionein (MT), and glutathione (GSH) and promoted malondialdehyde (MDA) production. The apoptosis index of the testis also increased significantly in the MZD group. After Zn supplementation, the level of oxidative stress decreased, and the apoptosis index in the testis was reduced. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) showed that the expression of B-cell lymphoma-2 (Bcl-2) mRNA and Bcl-2/BCL2-associated X (Bax) in the control group decreased in testicular cells, and their expression was restored after Zn supplementation. The results of this study indicated that Zn supplementation can reduce the level of oxidative stress and increase the ability of testicular cells to resist apoptosis, thereby improving spermatogenic dysfunction caused by MZD in mice.
Collapse
Affiliation(s)
- Xiangchao Zeng
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Ziqiong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lu Yu
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Lei Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yueling Liu
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Yuxin Chen
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China
| | - Chunhong Wang
- Department of Toxicology, School of Public Health, Wuhan University, Wuhan, 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
5
|
Cui YH, Ma L, Hai DM, Chi YN, Dong WJ, Lan XB, Wei W, Tian MM, Peng XD, Yu JQ, Liu N. Asperosaponin VI protects against spermatogenic dysfunction in mice by regulating testicular cell proliferation and sex hormone disruption. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117463. [PMID: 37981113 DOI: 10.1016/j.jep.2023.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Studies have found that the causes of male infertility are complex, and spermatogenic dysfunction accounts for 30%-65% of male infertility causes, which is the main cause of male infertility. Asperosaponin VI (ASVI) is a saponin extracted from the traditional Chinese herb Dipsacus asperoides C.Y.Cheng & T.M.Ai. However, the precise protective impact and underlying mechanism of ASVI in the therapy of spermatogenic dysfunction remain unknown. AIM OF THE STUDY To investigate the impact of ASVI on the spermatogenic dysfunction induced by cytoxan (CTX) in mice, as well as explore any potential mechanisms. MATERIALS AND METHODS Potential ASVI targets were screened using the Pharmapper and Uniprot databases, while genes related to spermatogenic dysfunction were collected from the GeneCards database. The String and Cytoscape databases were then used for PPI analysis for the common targets of ASVI and spermatogenic dysfunction. Meanwhile, the Metascape database was used for KEGG and GO analysis. In vivo experiments, spermatogenic dysfunction was induced in male mice by intraperitoneal administration of CTX (80 mg/kg). To demonstrate the possible protective effects of ASVI on reproductive organs, CTX-induced spermatogenic dysfunction mice with different dosages of ASVI (0.8, 4, 20 mg/kg per day) treatment were collected and gonad weight was detected. The testis and epididymis were detected again by H&E. To assess the impact of ASVI on fertility in male mice, we analyzed sperm quality, serum hormones, sexual behavior, and fertility. The mechanism was investigated using WB, IF, IHC, and Co-IP technology. RESULTS The ASVI exhibited interactions with 239 associated targets. Furthermore, 1555 targets associated with spermatogenic dysfunction were predicted, and further PPI analysis identified 6 key targets. Among them, the EGFR gene exhibited the highest degree of connection and was at the core of the network. Based on the GO and KEGG enrichment analysis, ASVI may affect spermatogenic dysfunction through the EGFR pathway. In vivo experiments, ASVI significantly improved CTX-induced damage to male fertility and reproductive organs, increasing sperm quality. At the same time, ASVI can resist CTX-induced testicular cell damage by increasing p-EGFR, p-ERK, PCNA, and p-Rb in the testis and by promoting the interaction of CyclinD1 with CDK4. In addition, ASVI can also regulate sex hormone disorders and protect male fertility. CONCLUSIONS ASVI improves CTX-induced spermatogenesis dysfunction by activating the EGFR signaling pathway and regulating sex hormone homeostasis, which may be a new potential protective agent for male spermatogenic dysfunction.
Collapse
Affiliation(s)
- Yan-Hong Cui
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Lin Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Dong-Mei Hai
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Yan-Nan Chi
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wen-Jing Dong
- Ningxia Pharmaceutical Inspection and Research Institute, Yinchuan, 750004, China
| | - Xiao-Bing Lan
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Miao-Miao Tian
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Dong Peng
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Jian-Qiang Yu
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Ning Liu
- Department of Pharmacology, School of Pharmacy, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Zhao Y, Wu J, Li X, Chen Q, Hong Z, Zheng L, Huang S, Mo P, Li C, Wang R, Guo Q, Zhang S, Chen J. Protective effect of Huangqi-Guizhi-Wuwutang against cyclophosphamide-induced spermatogenesis dysfunction in mice by promoting steroid hormone biosynthesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117260. [PMID: 37813291 DOI: 10.1016/j.jep.2023.117260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The primary adverse effect of cyclophosphamide (CTX) chemotherapy to cancer in male patients of reproductive age is a significant impairment of reproductive function. Huangqi-Guizhi-Wuwutang (HGW), a classical traditional Chinese medicine formula, is designed to exert a salutary effect on qi and promote blood circulation, thereby eliminating blood stasis and promoting spermatogenesis, and it has been recorded as a treatment for oligospermia. However, its potential in mitigating the adverse impact of CTX on male spermatogenesis remains unexplored. AIM OF THE STUDY The present investigation aims to elucidate the potential protective effects and underlying mechanisms of HGW against CTX - induced spermatogenic dysfunction in mice. MATERIAL AND METHODS C57BL/6J mice that received intraperitoneal injections of CTX were employed to induce dysfunction in spermatogenesis. Pharmacological experimentation was conducted to evaluate the potential effect of HGW in mitigating spermatogenic toxicity induced by CTX. Additionally, mRNA sequencing was utilized to identify genes exhibiting differential expression between the untreated and HGW treated groups, thereby elucidating the comprehensive underlying mechanisms involved. The most significantly enriched potential pathways were identified and subsequently validated in vivo. RESULTS The administration of HGW significantly increased the testicular index, epididymal index, sperm concentration and sperm motility in mice with spermatogenesis dysfunction. Furthermore, HGW effectively ameliorated the observed tissue damage in pathological sections of the testes, elevated serum levels of inhibin B (INH-B) and testosterone (T), while reduced levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) compared to the Model group. An analysis on the genes associated with HGW treatment for CTX-induced oligospermia revealed a significantly enhanced functional enrichment in steroid hormone biosynthesis signaling pathways. Experimental results demonstrated that HGW significantly enhanced cellular activity and T levels in TM3 cell injury model using phosphoramide mustard (PM, the active ingredient of CTX invivo) and upregulates protein expression of key enzymes involved in hormonal steroid synthesis within testicular tissues, including 3β-hydroxysteroid dehydrogenase (3β-HSD), steroidogenic acute regulatory protein (StAR), cytochrome P450 family 17 subfamily A member 1 (CYP17A1) and sytochrome P450 family 11 subfamily A member 1 (CYP11A1). CONCLUSION Our data has demonstrated the effectiveness of HGW in improving CTX-induced spermatogenic dysfunction by enhancing hormonal steroid synthesis in a model system, indicating the potential chemoprotective effects of HGW against CTX-induced spermatotoxicity.
Collapse
Affiliation(s)
- Yuan Zhao
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| | - Jinru Wu
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Xiangbin Li
- Shenzhen Hospital of Beijing University of Chinese Medicine (Longgang), Shenzhen, 518172, China
| | - Qiugu Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Zhiming Hong
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Lin Zheng
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Shiying Huang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Pingli Mo
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Changhui Li
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Rui Wang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Qiuyan Guo
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shangbin Zhang
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China
| | - Jianping Chen
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, 518033, China.
| |
Collapse
|
7
|
Adedara IA, Ileola-Gold AV, Adelaja UA, Njoku CA, Ikeji CN, Owoeye O, Farombi EO. Exogenous taurine administration abates reproductive dysfunction in male rats exposed to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY 2024; 39:61-74. [PMID: 37638810 DOI: 10.1002/tox.23945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/18/2023] [Accepted: 08/13/2023] [Indexed: 08/29/2023]
Abstract
The broad contemporary applications of silver nanoparticles (AgNPs) have been associated with various toxicities including reproductive toxicity. Taurine is well acknowledged for its potent pharmacological role in numerous disease models and chemically-mediated toxicity. We investigated the effect of taurine on AgNPs-induced reproductive toxicity in male rats. The animals were intraperitoneally injected with AgNPs (200 μg/kg) alone or co-administered with taurine at 50 and 100 mg/kg for 21 successive days. Exogenous taurine administration significantly abated AgNPs-induced oxidative injury by decreasing the levels of oxidative stress indices while boosting antioxidant enzymes activities and glutathione level in the hypothalamus, testes and epididymis of exposed animals. Taurine administration alleviated AgNPs-induced inflammatory response and caspase-3 activity, an apoptotic biomarker. Moreover, taurine significantly improved spermiogram, reproductive hormones and the marker enzymes of testicular function in AgNPs-treated animals. The ameliorative effect of taurine on pathological lesions induced by AgNPs in the exposed animals was substantiated by histopathological data. This study provides the first mechanistic evidence that taurine supplementation affords therapeutic effect against reproductive dysfunction associated with AgNPs exposure in male rats.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ayomitan V Ileola-Gold
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uthman A Adelaja
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Chiwueze A Njoku
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
Babalola AA, Adelowo AR, Da-Silva OF, Ikeji CN, Owoeye O, Rocha JBT, Adedara IA, Farombi EO. Attenuation of doxorubicin-induced hypothalamic-pituitary-testicular axis dysfunction by diphenyl diselenide involves suppression of hormonal deficits, oxido-inflammatory stress and caspase 3 activity in rats. J Trace Elem Med Biol 2023; 79:127254. [PMID: 37379681 DOI: 10.1016/j.jtemb.2023.127254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Doxorubicin (DOX) is one of the popular anti-cancer drugs in the world and several literatures have implicated it in various toxicities especially cardiotoxicity and reproductive toxicity. Diphenyl diselenide (DPDS) is well acknowledged for its compelling pharmacological effects in numerous disease models and chemically-mediated toxicity. This study was carried out to investigate the effect of DPDS on DOX-induced changes in the reproductive indices of male Wistar rats. METHODS Rats were intraperitoneally injected with 7.5 mg/kg body weight of DOX alone once followed by treatment with DPDS at 5 and 10 mg/kg for seven successive days. Excised hypothalamus, testes and epididymis were processed for biochemical and histological analyses. RESULTS DPDS treatment significantly (p < 0.05) abated DOX-induced oxidative damage by decreasing the levels of oxidative stress indices such as hydrogen peroxide, reactive oxygen and nitrogen species, and lipid peroxidation with a respective improvement in the level of glutathione in the hypothalamic, testicular and epididymal tissues of DOX-treated rats. The activities of antioxidant enzymes such as catalase, superoxide dismutase, glutathione S-transferase and glutathione peroxidase were upregulated in the DPDS co-treated group. DPDS co-treatment alleviates the burden of DOX-induced inflammation by significant reductions in myeloperoxidase activity, levels of nitric oxide and tumor necrosis factor alpha with concomitant decline in the activity of caspase-3, an apoptotic biomarker. Consequently, significant improvement in the spermiogram, levels of reproductive hormones (follicle stimulating hormone, luteinizing hormone, prolactin, serum testosterone and intra-testicular testosterone) levels in the DPDS co-treatment group in comparison to DOX alone-treated group were observed. Histology results of the testes and epididymis showed that DPDS significantly alleviated pathological lesions induced by DOX in the animals. CONCLUSION DPDS may modulate reproductive toxicity associated with DOX therapy in male cancer patients.
Collapse
Affiliation(s)
- Adesina A Babalola
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adedoyin R Adelowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olatunde Owoeye
- Department of Anatomy, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
9
|
Araj SK, Szeleszczuk Ł. A Review on Cyclodextrins/Estrogens Inclusion Complexes. Int J Mol Sci 2023; 24:ijms24108780. [PMID: 37240133 DOI: 10.3390/ijms24108780] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
This review focuses on the methods of preparation and biological, physiochemical, and theoretical analysis of the inclusion complexes formed between estrogens and cyclodextrins (CDs). Because estrogens have a low polarity, they can interact with some cyclodextrins' hydrophobic cavities to create inclusion complexes, if their geometric properties are compatible. For the last forty years, estrogen-CD complexes have been widely applied in several fields for various objectives. For example, CDs have been used as estrogen solubilizers and absorption boosters in pharmaceutical formulations, as well as in chromatographic and electrophoretic procedures for their separation and quantification. Other applications include the removal of the endocrine disruptors from environmental materials, the preparation of the samples for mass spectrometric analysis, or solid-phase extractions based on complex formation with CDs. The aim of this review is to gather the most important outcomes from the works related to this topic, presenting the results of synthesis, in silico, in vitro, and in vivo analysis.
Collapse
Affiliation(s)
- Szymon Kamil Araj
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland
| |
Collapse
|
10
|
Te L, Liu J, Ma J, Wang S. Correlation between serum zinc and testosterone: A systematic review. J Trace Elem Med Biol 2023; 76:127124. [PMID: 36577241 DOI: 10.1016/j.jtemb.2022.127124] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Zinc is a vital trace element for normal function of the living system. In male, zinc is involved in various biological processes, an important function of which is as a balancer of hormones such as testosterone. For this purpose, studies related to the influence of zinc on serum testosterone were selected and summarized, including the effect of dietary zinc deficiency and zinc supplementation on testosterone concentrations. After preliminary searching of papers on databases, 38 papers including 8 clinical and 30 animal studies were included in this review. We concluded that zinc deficiency reduces testosterone levels and zinc supplementation improves testosterone levels. Furthermore, the effect degree of zinc on serum testosterone may vary depending on basal zinc and testosterone levels, zinc dosage form, elementary zinc dose, and duration. In conclusion, serum zinc was positively correlated with total testosterone, and moderate supplementation plays an important role in improving androgen.
Collapse
Affiliation(s)
- Liger Te
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Junsheng Liu
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Ma
- Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China
| | - Shusong Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Reproductive Medicine, Hebei Institute of Reproductive Health Science and Technology, Shijiazhuang 050071, China.
| |
Collapse
|