1
|
Massie PL, Garcia M, Decker A, Liu R, MazloumiBakhshayesh M, Kulkarni D, Justus MP, Gallardo J, Abrums A, Markle K, Pace C, Campen M, Clark RM. Essential and Non-Essential Metals and Metalloids and Their Role in Atherosclerosis. Cardiovasc Toxicol 2025:10.1007/s12012-025-09998-y. [PMID: 40251456 DOI: 10.1007/s12012-025-09998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Peripheral arterial disease (PAD) is becoming more prevalent in the aging developed world and can have significant functional impacts on patients. There is a recent recognition that environmental toxicants such as circulating metals and metalloids may contribute to the pathogenesis of atherosclerotic disease, but the mechanisms are complex. While the broad toxic biologic effects of metals in human systems have been extensively reviewed, the role of non-essential exposure and essential metal aberrancy in PAD specifically is less frequently discussed. This review of the literature describes current scientific knowledge regarding the individual roles several major metals and metalloids play in atherogenesis and highlights areas where a dearth of data exist. The roles of lead (Pb), arsenic (As), cadmium (Cd), iron (Fe), copper (Cu), selenium (Se) are included. Contemporary outcomes of therapeutic trials aimed at chelation therapy of circulating metals to impact cardiovascular outcomes are also discussed. This review highlights the supported notion of differential metal presence within peripheral plaques themselves, although distinguishing their roles within these plaques requires further illumination.
Collapse
Affiliation(s)
- Pierce L Massie
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Marcus Garcia
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Aerlin Decker
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Rui Liu
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Milad MazloumiBakhshayesh
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Deepali Kulkarni
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew P Justus
- Department of Biomedical Engineering, School of Engineering, University of New Mexico, Albuquerque, USA
| | - Jorge Gallardo
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Avalon Abrums
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Kristin Markle
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Carolyn Pace
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA
| | - Matthew Campen
- Department of Pharmaceutical Sciences, University of New Mexico College of Pharmacy, Albuquerque, USA
| | - Ross M Clark
- Department of Surgery, University of New Mexico School of Medicine, MSC10-5610, Albuquerque, NM, 87131, USA.
- Department of Cell Biology and Physiology, University of New Mexico School of Medicine, Albuquerque, USA.
| |
Collapse
|
2
|
Yang L, Xie L, Li M, Miao Y, Yang J, Chen S, Ma X, Xie P. Potential relationship between cuproptosis and sepsis-acquired weakness: an intermediate role for mitochondria. Front Physiol 2025; 16:1520669. [PMID: 40182687 PMCID: PMC11965645 DOI: 10.3389/fphys.2025.1520669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Skeletal muscle atrophy due to critical illness is a common phenomenon in the intensive care unit (ICU) and is referred to as ICU-acquired weakness (ICU-AW). The occurrence of ICU-AW in patients with sepsis is known as sepsis-acquired weakness (SAW). Furthermore, it is well known that maintaining normal muscle function closely relates to mitochondrial homeostasis. Once mitochondrial function is impaired, both muscle quality and function are affected. Copper plays a key role in mitochondrial homeostasis as a transition metal that regulates the function and stability of various enzymes. Copper is also involved in oxidation-reduction reactions, and intracellular copper overload causes oxidative stress and induces cell death. Previous studies have shown that excess intracellular copper induces cell death by targeting lipid-acylated proteins that regulate the mitochondrial tricarboxylic acid (TCA) cycle, which differs from the known canonical mechanisms of regulated cell death. Furthermore, inhibitors of cell death, such as apoptosis, necroptosis, pyroptosis and ferroptosis, are not effective in preventing copper-induced cell death. This new form of cell death has been termed "Cuproptosis"; however, the mechanism by which copper-induced cell death is involved in SAW remains unclear. In this paper, we review the possible relationship between cuproptosis and SAW. Cuproptosis may be involved in regulating the pathological mechanisms of SAW through mitochondria-related signaling pathways, mitochondria-related ferroptosis mechanisms, and mitochondria-related genes, and to provide new ideas for further investigations into the mechanism of SAW.
Collapse
Affiliation(s)
- Luying Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Leiyu Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Min Li
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Jun Yang
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Shaolin Chen
- Department of Nursing of Affiliated Hospital, Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Peng Xie
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People’s Hospital of Zunyi), Zunyi Medical University, Zunyi, China
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
El-Ashmawy NE, Khedr EG, Abo-Saif MA, Hamouda SM. Cuproptosis regulation by long noncoding RNAs: Mechanistic insights and clinical implications in cancer. Arch Biochem Biophys 2025; 765:110324. [PMID: 39900259 DOI: 10.1016/j.abb.2025.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Although survival rates have been improved in recent years, the prognosis of many cancer types remains inadequate, mostly owing to treatment resistance. Moreover, there is a continued need for exploring novel and reliable tumor markers to achieve accurate diagnosis. Understanding the molecular complexity of cancer allows for the development of more effective and personalized treatments and facilitates the discovery of biomarkers that surpass traditional ones and assist in cancer diagnosis and monitoring disease progression and response to treatment. Recent studies exploring the complexity of cancer biology have identified a new form of cell death, known as cuproptosis, which is driven by the accumulation of copper and subsequent stress induced by dysregulation of copper homeostasis. Increased copper level enables cancer cells to maintain their accelerated growth rates and metastatic potential, yet these cells can evade cuproptosis. Long noncoding RNAs (lncRNAs) have been recognized for their pivotal role in different hallmarks of cancer, including resistance to cell death. They have been found to be implicated in controlling copper balance and cuproptosis. Besides, lncRNAs associated with cuproptosis pathway have demonstrated their potential as diagnostic and prognostic cancer biomarkers as well as indicators of treatment response. Our review aims to summarize recent studies focusing on the intricate relationship between lncRNAs and cuproptosis and explore the mechanisms by which lncRNAs can modulate copper homeostasis and regulate cuproptosis pathway. We also highlight recent discoveries concerning the role of cuproptosis-related lncRNAs in diagnosis, prognosis, and therapy of different types of cancer. By elucidating the significance of cuproptosis-related lncRNAs, this review provides insights into how these lncRNAs can be used to develop new therapeutic strategies to improve treatment outcomes.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El-Sherouk, Cairo, Postal Code: 11837, Egypt.
| | - Eman G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Mariam A Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| | - Sara M Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Al-Geish Street, El-Gharbia, Tanta, Postal Code: 31527, Egypt.
| |
Collapse
|
4
|
Shao X, Ou Y, Chen T, Deng B, Zhang J, Chen J. Trace Elements and Risk of Immune-Mediated Skin Disease: A Systematic Review and Meta-analysis. Nutr Rev 2025:nuaf015. [PMID: 40036807 DOI: 10.1093/nutrit/nuaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
CONTEXT Evidence regarding the relationship between serum trace element levels and immune-mediated inflammatory skin diseases (IMSDs) is inconsistent. OBJECTIVE In this systematic review and meta-analysis we aimed to evaluate the association between selected serum trace element levels (zinc [Zn], copper [Cu], iron [Fe], selenium [Se], and calcium [Ca]) and IMSDs (psoriasis, vitiligo, atopic dermatitis [AD], alopecia areata [AA], hidradenitis suppurativa, and bullous diseases). DATA SOURCES We conducted a comprehensive search on the PubMed, EMBASE, Scopus, China National Knowledge Infrastructure, and Web of Science databases from the database inception date to May 2, 2024. Studies measuring serum, plasma, or whole-blood levels of Zn, Cu, Fe, Se, or Ca in patients with IMSD compared to those in healthy controls were included. DATA EXTRACTION This study followed the guidelines of the Meta-analysis of Observational Studies in Epidemiology and the Preferred Reporting Items for Systematic Review and Meta-analyses guidelines. Two authors (X.Y.S. and Y.O.) independently reviewed the titles and abstracts of the identified studies using a standardized collection form. DATA ANALYSIS The primary outcome was the standardized mean difference with a 95% CI in serum trace element levels (Zn, Cu, Fe, Se, and Ca) between patients with IMSDs and healthy controls. Overall, 113 studies involving 7014 patients with IMSD were included in the meta-analysis. Compared with those in the healthy control group, serum Zn levels decreased in patients with vitiligo, psoriasis, and AA; serum Cu levels increased in patients with psoriasis, AD, and AA; serum Se and Fe levels decreased in patients with psoriasis and AD. CONCLUSION Serum trace element levels showed more significant changes in patients with IMSDs than in healthy controls. These findings suggest that alterations in trace element levels may be associated with the occurrence, development, and prognosis of IMSDs.
Collapse
Affiliation(s)
- Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yi Ou
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Tingqiao Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Binbin Deng
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jingbo Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
5
|
Abad-González ÁL, Veses S, Argente Pla M, Civera M, García-Malpartida K, Sánchez C, Artero A, Palmas F, Perelló E, Salom C, Yun Wu Xiong N, Joaquim C. Medical Nutrition Therapy and Physical Exercise for Acute and Chronic Hyperglycemic Patients with Sarcopenia. Nutrients 2025; 17:499. [PMID: 39940355 PMCID: PMC11820730 DOI: 10.3390/nu17030499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
A wide range of factors contribute to the overlap of hyperglycemia-acute or chronic-and sarcopenia, as well as their associated adverse consequences, which can lead to impaired physical function, reduced quality of life, and increased mortality risk. These factors include malnutrition (both overnutrition and undernutrition) and low levels of physical activity. Hyperglycemia and sarcopenia are interconnected through a vicious cycle of events that mutually reinforce and worsen each other. To explore this association, our review compiles evidence on: (i) the impact of hyperglycemia on motor and muscle function, with a focus on the mechanisms underlying biochemical changes in the muscles of individuals with or at risk of diabetes and sarcopenia; (ii) the importance of the clinical assessment and control of sarcopenia under hyperglycemic conditions; and (iii) the potential benefits of medical nutrition therapy and increased physical activity as muscle-targeted treatments for this population. Based on the reviewed evidence, we conclude that a regular intake of key functional nutrients, together with structured and supervised resistance and/or aerobic physical activity, can help maintain euglycemia and improve muscle status in all patients with hyperglycemia and sarcopenia.
Collapse
Affiliation(s)
- Ángel Luis Abad-González
- Endocrinology and Nutrition Department, Hospital General Universitario Dr. Balmis, 03010 Alicante, Spain;
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Silvia Veses
- Endocrinology and Nutrition Department, Hospital Universitario Doctor Peset, 46017 Valencia, Spain; (S.V.); (K.G.-M.); (C.S.)
| | - María Argente Pla
- Endocrinology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Miguel Civera
- Endocrinology and Nutrition Department, University Clinical Hospital, Valencia, INCLIVA Biomedical Research Institute, 46010 Valencia, Spain;
| | - Katherine García-Malpartida
- Endocrinology and Nutrition Department, Hospital Universitario Doctor Peset, 46017 Valencia, Spain; (S.V.); (K.G.-M.); (C.S.)
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Calle Grecia 31, 12006 Castellón, Spain
| | - Carlos Sánchez
- Endocrinology and Nutrition Department, Consorcio Hospital General Universitario de Valencia, Departamento de Medicina, University of Valencia, 46016 Valencia, Spain; (C.S.); (A.A.)
| | - Ana Artero
- Endocrinology and Nutrition Department, Consorcio Hospital General Universitario de Valencia, Departamento de Medicina, University of Valencia, 46016 Valencia, Spain; (C.S.); (A.A.)
| | - Fiorella Palmas
- Endocrinology Department, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain;
| | - Eva Perelló
- Endocrinology Department, Hospital Universitario San Juan de Alicante, 03550 Alicante, Spain;
| | - Christian Salom
- Endocrinology and Nutrition Department, Hospital Universitario Doctor Peset, 46017 Valencia, Spain; (S.V.); (K.G.-M.); (C.S.)
| | - Ning Yun Wu Xiong
- Endocrinology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Clara Joaquim
- Endocrinology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain
| |
Collapse
|
6
|
Zeng D, Chen B, Wang H, Xu S, Liu S, Yu Z, Pan X, Tang X, Qin Y. The mediating role of inflammatory biomarkers in the association between serum copper and sarcopenia. Sci Rep 2025; 15:1673. [PMID: 39799188 PMCID: PMC11724950 DOI: 10.1038/s41598-024-84011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia. Conversely, higher serum Se/Cu (OR 0.45, 95% CI 0.23-0.89, P = 0.023) and Zn/Cu (OR 0.49, 95% CI 0.27-0.90, P = 0.024) were associated with a decreased risk of sarcopenia. The RCS curve indicated a non-linear, roughly inverted L-shaped relationship between serum Cu and sarcopenia risk (P non-linear < 0.001). Additionally, Se/Cu (P non-linear = 0.179) and Zn/Cu (P non-linear = 0.786) showed negative linear associations with sarcopenia risk. Furthermore, white blood cell (WBC) count, neutrophil count, and systemic inflammation index (SII) were identified as significant mediators in the relationship between serum Cu and the risk of sarcopenia, with mediation proportions of 6.34%, 6.20%, and 4.37%, respectively (all P < 0.05). Therefore, balancing essential trace metals is crucial for maintaining muscle health.
Collapse
Affiliation(s)
- Dapeng Zeng
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Bo Chen
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Hao Wang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shenghao Xu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shibo Liu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Zehao Yu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiangjun Pan
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiongfeng Tang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| | - Yanguo Qin
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
Liu Z, Gan Y, Shen Z, Cai S, Wang X, Li Y, Li X, Fu H, Chen J, Li N. Role of copper homeostasis and cuproptosis in heart failure pathogenesis: implications for therapeutic strategies. Front Pharmacol 2025; 15:1527901. [PMID: 39850564 PMCID: PMC11754225 DOI: 10.3389/fphar.2024.1527901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025] Open
Abstract
Copper is an essential micronutrient involved in various physiological processes in various cell types. Consequently, dysregulation of copper homeostasis-either excessive or deficient-can lead to pathological changes, such as heart failure (HF). Recently, a new type of copper-dependent cell death known as cuproptosis has drawn increasing attention to the impact of copper dyshomeostasis on HF. Notably, copper dyshomeostasis was associated with the occurrence of HF. Hence, this review aimed to investigate the biological processes involved in copper uptake, transport, excretion, and storage at both the cellular and systemic levels in terms of cuproptosis and HF, along with the underlying mechanisms of action. Additionally, the role of cuproptosis and its related mitochondrial dysfunction in HF pathogenesis was analyzed. Finally, we reviewed the therapeutic potential of current drugs that target copper metabolism for treating HF. Overall, the conclusions of this review revealed the therapeutic potential of copper-based therapies that target cuproptosis for the development of strategies for the treatment of HF.
Collapse
Affiliation(s)
- Zhichao Liu
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yongkang Gan
- Department of Vascular Surgery, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhen Shen
- Department of Clinical Laboratory, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Siqi Cai
- College of Art, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Xizhen Wang
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Yong Li
- Experimental Center for Medical Research, Shandong Second Medical University, Weifang, Shandong, China
| | - Xiaofeng Li
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huanjie Fu
- Department of Cardiovascular, Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinhong Chen
- School of Rehabilitation Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Guo H, Jing L, Xia C, Zhu Y, Xie Y, Ma X, Fang J, Wang Z, Zuo Z. Copper Promotes LPS-Induced Inflammation via the NF-кB Pathway in Bovine Macrophages. Biol Trace Elem Res 2024; 202:5479-5488. [PMID: 38376728 DOI: 10.1007/s12011-024-04107-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 μmol) or CuSO4 (25 μmol or 50 μmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1β, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.
Collapse
Affiliation(s)
- Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China.
| | - Lin Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chenglong Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China
| | - Yue Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiaoping Ma
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China
| | - Zhisheng Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611134, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
9
|
Abadin X, de Dios C, Zubillaga M, Ivars E, Puigròs M, Marí M, Morales A, Vizuete M, Vitorica J, Trullas R, Colell A, Roca-Agujetas V. Neuroinflammation in Age-Related Neurodegenerative Diseases: Role of Mitochondrial Oxidative Stress. Antioxidants (Basel) 2024; 13:1440. [PMID: 39765769 PMCID: PMC11672511 DOI: 10.3390/antiox13121440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
A shared hallmark of age-related neurodegenerative diseases is the chronic activation of innate immune cells, which actively contributes to the neurodegenerative process. In Alzheimer's disease, this inflammatory milieu exacerbates both amyloid and tau pathology. A similar abnormal inflammatory response has been reported in Parkinson's disease, with elevated levels of cytokines and other inflammatory intermediates derived from activated glial cells, which promote the progressive loss of nigral dopaminergic neurons. Understanding the causes that support this aberrant inflammatory response has become a topic of growing interest and research in neurodegeneration, with high translational potential. It has been postulated that the phenotypic shift of immune cells towards a proinflammatory state combined with the presence of immunogenic cell death fuels a vicious cycle in which mitochondrial dysfunction plays a central role. Mitochondria and mitochondria-generated reactive oxygen species are downstream effectors of different inflammatory signaling pathways, including inflammasomes. Dysfunctional mitochondria are also recognized as important producers of damage-associated molecular patterns, which can amplify the immune response. Here, we review the major findings highlighting the role of mitochondria as a checkpoint of neuroinflammation and immunogenic cell deaths in neurodegenerative diseases. The knowledge of these processes may help to find new druggable targets to modulate the inflammatory response.
Collapse
Affiliation(s)
- Xenia Abadin
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Cristina de Dios
- High Technology Unit, Vall d’Hebron Research Institute, 08035 Barcelona, Spain;
| | - Marlene Zubillaga
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Elia Ivars
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Margalida Puigròs
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Marisa Vizuete
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Javier Vitorica
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| | - Ramon Trullas
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Anna Colell
- Department of Cell Death and Proliferation, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (X.A.); (M.Z.); (E.I.); (M.P.); (M.M.); (A.M.); (R.T.)
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
| | - Vicente Roca-Agujetas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28029 Madrid, Spain; (M.V.); (J.V.)
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad de Sevilla, Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC, 41013 Sevilla, Spain
| |
Collapse
|
10
|
Astaneh ME, Fereydouni N. Advancing diabetic wound care: The role of copper-containing hydrogels. Heliyon 2024; 10:e38481. [PMID: 39640763 PMCID: PMC11619988 DOI: 10.1016/j.heliyon.2024.e38481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024] Open
Abstract
Diabetic wounds pose a significant challenge in healthcare due to their complex nature and the difficulties they present in treatment and healing. Impaired healing processes in individuals with diabetes can lead to complications and prolonged recovery times. However, recent advancements in wound healing provide reasons for optimism. Researchers are actively developing innovative strategies and therapies specifically tailored to address the unique challenges of diabetic wounds. One focus area is biomimetic hydrogel scaffolds that mimic the natural extracellular matrix, promoting angiogenesis, collagen deposition, and the healing process while also reducing infection risk. Copper nanoparticles and copper compounds incorporated into hydrogels release copper ions with antimicrobial, anti-inflammatory, and angiogenic properties. Copper reduces infection risk, modulates inflammatory response, and promotes tissue regeneration through cell adhesion, proliferation, and differentiation. Utilizing copper nanoparticles has transformative potential for expediting diabetic wound healing and improving patient outcomes while enhancing overall well-being by preventing severe complications associated with untreated wounds. It is crucial to write a review highlighting the importance of investigating the use of copper nanoparticles and compounds in diabetic wound healing and tissue engineering. These groundbreaking strategies hold the potential to transform the treatment of diabetic wounds, accelerating the healing process and enhancing patient outcomes.
Collapse
Affiliation(s)
- Mohammad Ebrahim Astaneh
- Department of Anatomical Sciences, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
11
|
Lv X, Zhao L, Song Y, Chen W, Tuo Q. Deciphering the Role of Copper Homeostasis in Atherosclerosis: From Molecular Mechanisms to Therapeutic Targets. Int J Mol Sci 2024; 25:11462. [PMID: 39519014 PMCID: PMC11546650 DOI: 10.3390/ijms252111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death globally, with atherosclerosis (AS) playing a central role in its pathogenesis as a chronic inflammatory condition. Copper, an essential trace element in the human body, participates in various biological processes and plays a significant role in the cardiovascular system. Maintaining normal copper homeostasis is crucial for cardiovascular health, and dysregulation of copper balance is closely associated with the development of CVD. When copper homeostasis is disrupted, it can induce cell death, which has been proposed to be a novel form of "cuproptosis", distinct from traditional programmed cell death. This new form of cell death is closely linked to the occurrence and progression of AS. This article elaborately describes the physiological mechanisms of copper homeostasis and explores its interactions with signaling pathways related to AS. Additionally, we focus on the process and mechanism of cell death induced by imbalances in copper homeostasis and summarize the relationship between copper homeostasis-related genes and AS. We also emphasize potential therapeutic approaches, such as copper balance regulators and nanotechnology interventions, to adjust copper levels in the body, providing new ideas and strategies for the prevention and treatment of CVD.
Collapse
Affiliation(s)
- Xuzhen Lv
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Liyan Zhao
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Yuting Song
- College of Integrative Chinese and Western Medicine, School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, China;
| | - Wen Chen
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| | - Qinhui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China;
- Key Laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha 410208, China; (L.Z.); (W.C.)
| |
Collapse
|
12
|
Wang J, Lv C, Wei X, Li F. Molecular mechanisms and therapeutic strategies for ferroptosis and cuproptosis in ischemic stroke. Brain Behav Immun Health 2024; 40:100837. [PMID: 39228970 PMCID: PMC11369453 DOI: 10.1016/j.bbih.2024.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 09/05/2024] Open
Abstract
Ischemic stroke, as one of the most severe and prevalent neurological disorders, poses a significant threat to the health and quality of life of affected individuals. Stemming from the obstruction of blood flow, ischemic stroke, leads to cerebral tissue hypoxia and ischemia, instigating a cascade of pathophysiological changes that markedly exacerbate neuronal damage and may even culminate in cell death. In recent years, emerging research has increasingly focused on novel cell death mechanisms such as ferroptosis and cuproptosis. Mounting evidence underscores the independent roles of ferroptosis and cuproptosis in ischemic stroke. This review aims to elucidate potential cross-regulatory mechanisms between ferroptosis and cuproptosis, exploring their regulatory roles in ischemic stroke. The objective is to provide targeted therapeutic intervention strategies.
Collapse
Affiliation(s)
- Jing Wang
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
- Bengbu Medical College, Anhui, China
| | - Cunming Lv
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Xinyu Wei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved By State Administration of Traditional Chinese Medicine, Medical College, China Three Gorges University, Yichang, China
| | - Feng Li
- Department of neurology, Lu 'an Municipal People's Hospital, Anhui, China
| |
Collapse
|
13
|
Chen J, Sun Q, Wang Y, Yin W. Revealing the key role of cuproptosis in osteoporosis via the bioinformatic analysis and experimental validation of cuproptosis-related genes. Mamm Genome 2024; 35:414-431. [PMID: 38904833 DOI: 10.1007/s00335-024-10049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The incidence of osteoporosis has rapidly increased owing to the ageing population. Cuproptosis, a novel mechanism that regulates cell death, may be a new therapeutic approach. However, the relevance of cuproptosis in the immune microenvironment and osteoporosis immunotherapy is still unknown. We intersected the differentially expressed genes from osteoporotic samples with 75 cuproptosis-related genes to identify 16 significantly expressed cuproptosis genes. We further explored the connection between the cuproptosis pattern, immune microenvironment, and immunotherapy. The weighted gene co-expression network analysis algorithm was used to identify cuproptosis phenotype-associated genes, and we used quantitative real-time PCR and immunohistochemistry in mouse femur tissues to verify hub gene (MAP2K2, FDX1, COX19, VEGFA, CDKN2A, and NFE2L2) expression. Six hub genes and 59 cuproptosis phenotype-associated genes involved in immunisation were identified among the osteoporosis and control groups, and the majority of these 59 genes were enriched in the inflammatory response, as well as in signal transducers, Janus kinase, and transcription pathway activators. In addition, two different clusters of cuproptosis were found, and immune infiltration analysis showed that gene Cluster 1 had a greater immune score and immune infiltration level. Further analysis revealed that three key genes (COX19, MAP2K2, and FDX1) were highly correlated with immune cell infiltration, and external experiments validated the association of these three genes with the prognosis of osteoporosis. We used the three key mRNAs COX19, MAP2K2, and FDX1 as a classification model that may systematically elucidate the complex connection between cuproptosis and the immune microenvironment of osteoporosis. New insights into osteoporosis pathogenesis and immunotherapy prospects may be gained from this study.
Collapse
Affiliation(s)
- Jianxing Chen
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Qifeng Sun
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Yi Wang
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China
| | - Wenzhe Yin
- Department of Joint Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150000, China.
| |
Collapse
|
14
|
Ross MO, Xie Y, Owyang RC, Ye C, Zbihley ONP, Lyu R, Wu T, Wang P, Karginova O, Olopade OI, Zhao M, He C. PTPN2 copper-sensing relays copper level fluctuations into EGFR/CREB activation and associated CTR1 transcriptional repression. Nat Commun 2024; 15:6947. [PMID: 39138174 PMCID: PMC11322707 DOI: 10.1038/s41467-024-50524-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/10/2024] [Indexed: 08/15/2024] Open
Abstract
Fluxes in human copper levels recently garnered attention for roles in cellular signaling, including affecting levels of the signaling molecule cyclic adenosine monophosphate. We herein apply an unbiased temporal evaluation of the signaling and whole genome transcriptional activities modulated by copper level fluctuations to identify potential copper sensor proteins responsible for driving these activities. We find that fluctuations in physiologically relevant copper levels modulate EGFR signal transduction and activation of the transcription factor CREB. Both intracellular and extracellular assays support Cu1+ inhibition of the EGFR phosphatase PTPN2 (and potentially PTPN1)-via ligation to the PTPN2 active site cysteine side chain-as the underlying mechanism. We additionally show i) copper supplementation drives weak transcriptional repression of the copper importer CTR1 and ii) CREB activity is inversely correlated with CTR1 expression. In summary, our study reveals PTPN2 as a physiological copper sensor and defines a regulatory mechanism linking feedback control of copper stimulated EGFR/CREB signaling and CTR1 expression.
Collapse
Affiliation(s)
- Matthew O Ross
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| | - Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ryan C Owyang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olivia N P Zbihley
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ruitu Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Tong Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Pingluan Wang
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Olga Karginova
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Olufunmilayo I Olopade
- Department of Medicine, Center for Clinical Cancer Genetics and Global Health, University of Chicago, Chicago, IL, USA
| | - Minglei Zhao
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA.
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
15
|
Yang Y, Chen K, Li H, Tong X. Association between cardiovascular health and pelvic inflammatory disease: Analyses of the NHANES 2015 to 2018. Medicine (Baltimore) 2024; 103:e38981. [PMID: 39029077 PMCID: PMC11398824 DOI: 10.1097/md.0000000000038981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
While the link between female reproductive function and cardiovascular health (CVH) is well-established, the association between pelvic inflammatory disease (PID) and CVH remains largely unexplored. This study, therefore, sets out to fill this gap in knowledge by investigating the potential relationship between PID and CVH. To ensure the reliability and validity of our findings, data for this cross-sectional study were meticulously collected from the 2015-2018 National Health and Nutrition Examination Survey (NHANES). After applying stringent exclusion criteria, a total of 2442 women were included in the study. The Life Essential 8 (LE8) scoring system, a robust tool developed by the American Heart Association (AHA), was employed to assess the CVH. Logistic regression with multiple variables and smooth curve fitting were utilized to analyze the association. Subgroup and interaction analyses were performed to determine the strength of this association across different demographic groups. The study included 2442 women, with an average CVH score of 66.29 ± 16.27. After accounting for all covariates, each unit increase in CVH score was associated with 2% lower odds of PID prevalence (OR = 0.98, 95% CI: 0.97-0.99). Notably, participants with high CVH had a striking 71% lower odds of PID prevalence compared to those with low CVH. Stratified analyses further revealed a consistent inverse association between CVH score and PID across various subgroups, underscoring the robustness of our findings. The research has uncovered a significant inverse association between CVH and PID. This suggests that improving the CVH level could be a promising strategy for reducing the odds of PID.
Collapse
Affiliation(s)
- Yang Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | | | | | | |
Collapse
|
16
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
17
|
Song W, Yue Y, Zhang Q, Wang X. Copper homeostasis dysregulation in respiratory diseases: a review of current knowledge. Front Physiol 2024; 15:1243629. [PMID: 38883186 PMCID: PMC11176810 DOI: 10.3389/fphys.2024.1243629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/22/2024] [Indexed: 06/18/2024] Open
Abstract
Cu is an essential micronutrient for various physiological processes in almost all human cell types. Given the critical role of Cu in a wide range of cellular processes, the local concentrations of Cu and the cellular distribution of Cu transporter proteins in the lung are essential for maintaining a steady-state internal environment. Dysfunctional Cu metabolism or regulatory pathways can lead to an imbalance in Cu homeostasis in the lungs, affecting both acute and chronic pathological processes. Recent studies have identified a new form of Cu-dependent cell death called cuproptosis, which has generated renewed interest in the role of Cu homeostasis in diseases. Cuproptosis differs from other known cell death pathways. This occurs through the direct binding of Cu ions to lipoylated components of the tricarboxylic acid cycle during mitochondrial respiration, leading to the aggregation of lipoylated proteins and the subsequent downregulation of Fe-S cluster proteins, which causes toxic stress to the proteins and ultimately leads to cell death. Here, we discuss the impact of dysregulated Cu homeostasis on the pathogenesis of various respiratory diseases, including asthma, chronic obstructive pulmonary disease, idiopathic interstitial fibrosis, and lung cancer. We also discuss the therapeutic potential of targeting Cu. This study highlights the intricate interplay between copper, cellular processes, and respiratory health. Copper, while essential, must be carefully regulated to maintain the delicate balance between necessity and toxicity in living organisms. This review highlights the need to further investigate the precise mechanisms of copper interactions with infections and immune inflammation in the context of respiratory diseases and explore the potential of therapeutic strategies for copper, cuproptosis, and other related effects.
Collapse
Affiliation(s)
- Wei Song
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyi Yue
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xueqing Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Chen W, Ge P, Deng M, Liu X, Lu Z, Yan Z, Chen M, Wang J. Toxicological responses of A549 and HCE-T cells exposed to fine particulate matter at the air-liquid interface. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27375-27387. [PMID: 38512571 PMCID: PMC11052810 DOI: 10.1007/s11356-024-32944-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024]
Abstract
Fine particulate matter (PM2.5) can enter the human body in various ways and have adverse effects on human health. Human lungs and eyes are exposed to the air for a long time and are the first to be exposed to PM2.5. The "liquid immersion exposure method" has some limitations that prevent it from fully reflecting the toxic effects of particulate matter on the human body. In this study, the collected PM2.5 samples were chemically analyzed. An air-liquid interface (ALI) model with a high correlation to the in vivo environment was established based on human lung epithelial cells (A549) and immortalized human corneal epithelial cells (HCE-T). The VITROCELL Cloud 12 system was used to distribute PM2.5 on the cells evenly. After exposure for 6 h and 24 h, cell viability, apoptosis rate, reactive oxygen species (ROS) level, expression of inflammatory factors, and deoxyribonucleic acid (DNA) damage were measured. The results demonstrated significant dose- and time-dependent effects of PM2.5 on cell viability, cell apoptosis, ROS generation, and DNA damage at the ALI, while the inflammatory factors showed dose-dependent effects only. It should be noted that even short exposure to low doses of PM2.5 can cause cell DNA double-strand breaks and increased expression of γ-H2AX, indicating significant genotoxicity of PM2.5. Increased abundance of ROS in cells plays a crucial role in the cytotoxicity induced by PM2.5 exposure These findings emphasize the significant cellular damage and genotoxicity that may result from short-term exposure to low levels of PM2.5.
Collapse
Affiliation(s)
- Wankang Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Minjun Deng
- Ningxia Meteorological Service Center, Yinchuan, 750002, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenyu Lu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhansheng Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Junfeng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
19
|
Hu Y, Du Y, Qiu Z, Bai P, Bai Z, Zhu C, Wang J, Liang T, Da M. Construction of a Cuproptosis-Related Gene Signature for Predicting Prognosis in Gastric Cancer. Biochem Genet 2024; 62:40-58. [PMID: 37243753 DOI: 10.1007/s10528-023-10406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
This study aimed to develop and validate a cuproptosis-related gene signature for the prognosis of gastric cancer. The data in TCGA GC TPM format from UCSC were extracted for analysis, and GC samples were randomly divided into training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes co-expressed with 19 Cuproptosis genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Then, a six-gene signature was identified in the training cohort and verified among all cohorts using Cox regression analyses and Kaplan-Meier plots, demonstrating its independent prognostic significance for gastric cancer. In addition, ROC analysis confirmed the significant predictive potential of this signature for the prognosis of gastric cancer. Functional enrichment analysis was mainly related to cell-matrix function. Therefore, a new cuproptosis-related six-gene signature (ACLY, FGD6, SERPINE1, SPATA13, RANGAP1, and ADGRE5) was constructed for the prognosis of gastric cancer, allowing for tailored prediction of outcome and the formulation of novel therapeutics for gastric cancer patients.
Collapse
Affiliation(s)
- Yongli Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Yan Du
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Zhisheng Qiu
- Department of Oncology Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Pengwei Bai
- Clinical Medicine College, Ningxia Medical University, Yinchuan, China
| | - Zhaozhao Bai
- Clinical Medicine College, Ningxia Medical University, Yinchuan, China
| | - Chenglou Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Junhong Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Tong Liang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Mingxu Da
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China.
- Department of Oncology Surgery, Gansu Provincial Hospital, Lanzhou, China.
| |
Collapse
|
20
|
Li K, Wu J, Zhou Q, Zhao J, Li Y, Yang M, Yang Y, Hu Y, Xu J, Zhao M, Xu Q. The mediating role of accelerated biological aging in the association between blood metals and cognitive function. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132779. [PMID: 37879277 DOI: 10.1016/j.jhazmat.2023.132779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/28/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Aging is a key risk factor in cognitive diseases. Recently, metal exposures were found associated with both biological aging and cognitive function. Here, we aim to evaluate the associations of blood metals with cognitive function and the mediated effect of biological aging. Fourteen metals were detected and biological age was calculated through Klemera and Doubal method among 514 adults in Beijing, China. The generalized linear models indicated that the copper (Cu), molybdenum (Mo), and strontium (Sr) were positively associated with biological aging [βCu (95% CI): 12.76 (9.26, 16.27); βMo (95% CI): 1.50 (0.15, 2.85)], and βSr (95% CI): 1.86 (0.68, 3.03)], while vanadium (V) was inversely related to biological aging [βV (95% CI): -0.76 (-1.48, -0.05)]. Subsequently, Cu, lead (Pb), selenium (Se), and biological aging were associated with cognitive function and further mediation analyses confirmed that biological aging partially mediated (33.98%, P = 0.019) the association of Cu and cognitive function. Additionally, we constructed a lifestyle index that implied the modifiable healthy lifestyle could slow aging to attenuate the detrimental effect of metals on cognition. Our findings provide insights into the potential pathways linking multiple metals exposure to aging and cognition and underscore the importance of adopting healthy lifestyles.
Collapse
Affiliation(s)
- Kai Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| | - Quan Zhou
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jiaxin Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yanbing Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yisen Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yaoyu Hu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
21
|
Yang S, Li Y, Zhou L, Wang X, Liu L, Wu M. Copper homeostasis and cuproptosis in atherosclerosis: metabolism, mechanisms and potential therapeutic strategies. Cell Death Discov 2024; 10:25. [PMID: 38218941 PMCID: PMC10787750 DOI: 10.1038/s41420-023-01796-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
Copper is an essential micronutrient that plays a pivotal role in numerous physiological processes in virtually all cell types. Nevertheless, the dysregulation of copper homeostasis, whether towards excess or deficiency, can lead to pathological alterations, such as atherosclerosis. With the advent of the concept of copper-induced cell death, termed cuproptosis, researchers have increasingly focused on the potential role of copper dyshomeostasis in atherosclerosis. In this review, we provide a broad overview of cellular and systemic copper metabolism. We then summarize the evidence linking copper dyshomeostasis to atherosclerosis and elucidate the potential mechanisms underlying atherosclerosis development in terms of both copper excess and copper deficiency. Furthermore, we discuss the evidence for and mechanisms of cuproptosis, discuss its interactions with other modes of cell death, and highlight the role of cuproptosis-related mitochondrial dysfunction in atherosclerosis. Finally, we explore the therapeutic strategy of targeting this novel form of cell death, aiming to provide some insights for the management of atherosclerosis.
Collapse
Affiliation(s)
- Shengjie Yang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yujuan Li
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Lijun Zhou
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xinyue Wang
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Longtao Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Min Wu
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
22
|
Hu P, Zhang S, Li H, Yan X, Zhang X, Zhang Q. Association between dietary trace minerals and pelvic inflammatory disease: data from the 2015-2018 National Health and Nutrition Examination Surveys. Front Nutr 2023; 10:1273509. [PMID: 38089925 PMCID: PMC10715429 DOI: 10.3389/fnut.2023.1273509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 03/31/2025] Open
Abstract
OBJECTIVE Pelvic inflammatory disease (PID) is a prevalent gynecological disorder. Dietary trace minerals play an important role in combating many chronic diseases including PID. However, it is unknown whether dietary trace minerals and PID are related. This study aimed to examine the relationship between dietary trace minerals (copper, iron, selenium, and zinc) and PID. METHODS Data of women participants from the National Health and Nutrition Examination Survey (NHANES) 2015-2018 were enrolled in this cross-sectional investigation. Univariate and multivariate linear regression analyses of the relationship between dietary trace minerals and PID were performed, and restricted cubic spline (RCS) analyses were applied to visualize those relationships. RESULTS In total, 2,694 women between the ages of 20 and 59 years participated in the two NHANES cycles. In the univariate analyses, a significant negative relationship was identified between PID and dietary copper intake [odds ratio (OR) = 0.40, 95% confidence interval (CI): 0.24-0.67, p < 0.01] but not with iron (OR = 0.96, 95% CI: 0.90-1.03, p = 0.25), selenium (OR = 1.0, 95% CI: 0.99-1.0, p = 0.23), and zinc (OR = 0.94, 95% CI: 0.86-1.03, p = 0.17) intake. Following the adjustment for age and race (model 1), a robust correlation was found between dietary copper intake and PID (OR = 0.23, 95% CI = 0.09-0.61, p < 0.01), as indicated by the fully adjusted model 2 (OR = 0.29, 95% CI = 0.09-0.90, p = 0.03). Simultaneously, a significant trend was found between copper intake and PID across the quintile subgroups (p for trends <0.05), suggesting a robust relationship. Furthermore, the RCS analysis demonstrated a linear correlation between PID and dietary copper intake (overall p < 0.01, non-linear p = 0.09). CONCLUSION Decreased dietary copper intakes are linked to PID. However, additional research is needed to fully investigate this relationship due to the constraints of the study design.
Collapse
Affiliation(s)
- Panwei Hu
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Siming Zhang
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Li
- Department of Obstetrics and Gynecology, Shanghai Fengxian District Traditional Chinese Medicine Hospital, Shanghai, China
| | - Xiaotong Yan
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaole Zhang
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Department of Obstetrics and Gynecology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Mishra M, Raghav A, Tripathi P, Rao YK, Singh DD. Evaluation of Micronutrients and Pro-Inflammatory Cytokines Levels in Nutritionally Deprived Children-A Tertiary Care Hospital-Based Study. Nutrients 2023; 15:4865. [PMID: 38068727 PMCID: PMC10707871 DOI: 10.3390/nu15234865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Severe acute malnutrition (SAM) is a significant public health problem in developing countries, including India, where a significant proportion of children suffer from malnutrition. OBJECTIVE This research aims to investigate the factors contributing to severe acute malnutrition (SAM). Additionally, the study seeks to explore the relationship between micronutrient levels and pro-inflammatory cytokines in SAM children with and without clinical complications. Furthermore, the effectiveness of antibiotic treatment in SAM children without complications is evaluated. METHODS The study involved three groups comprising 66 subjects each: a healthy control group, SAM children with complications, and SAM children without complications. Blood samples were collected, and various analyses were conducted, including biochemical, hematological, micronutrient, and pro-inflammatory marker quantification. The data were analyzed using SPSS version 22.0. RESULTS The results indicate that the levels of IL-6, CRP, and TNF-α were significantly higher in the SAM group with complications compared to both the control group and the SAM group without complications. Zinc and copper levels were significantly lower in both SAM groups compared to the control group, and a negative correlation was observed between zinc levels and inflammatory markers. The study also assessed the efficacy of antibiotic treatment in SAM children without complications by comparing their weight, height, weight-for-height, and weight-for-age at baseline and after a 15-day follow-up period. Significant improvements in these parameters were observed in both the group receiving antibiotic treatment and the group not receiving antibiotic treatment. CONCLUSION The findings suggest that a combination of antibiotic treatment and nutritional support can lead to significant clinical improvements in SAM children without complications. This study has important implications for the management and treatment of SAM in India and other developing countries.
Collapse
Affiliation(s)
- Malvika Mishra
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| | - Alok Raghav
- Department of Anatomy and Cell Biology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea;
| | - Prashant Tripathi
- Department of Biochemistry, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur 208002, India;
| | - Yashwant Kumar Rao
- Department of Pediatrics, Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur 208002, India;
| | - Desh Deepak Singh
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India;
| |
Collapse
|
24
|
Zheng W, Wu D, Zhang Y, Luo Y, Yang L, Xu X, Luo F. Multifunctional modifications of polyetheretherketone implants for bone repair: A comprehensive review. BIOMATERIALS ADVANCES 2023; 154:213607. [PMID: 37651963 DOI: 10.1016/j.bioadv.2023.213607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Polyetheretherketone (PEEK) has emerged as a highly promising orthopedic implantation material due to its elastic modulus which is comparable to that of natural bone. This polymer exhibits impressive properties for bone implantation such as corrosion resistance, fatigue resistance, self-lubrication and chemical stability. Significantly, compared to metal-based implants, PEEK implants have mechanical properties that are closer to natural bone, which can mitigate the "stress shielding" effect in bone implantation. Nevertheless, PEEK is incapable of inducing osteogenesis due to its bio-inert molecular structure, thereby hindering the osseointegration process. To optimize the clinical application of PEEK, researchers have been working on promoting its bioactivity and endowing this polymer with beneficial properties, such as antibacterial, anti-inflammatory, anti-tumor, and angiogenesis-promoting capabilities. Considering the significant growth of research on PEEK implants over the past 5 years, this review aims to present a timely update on PEEK's modification methods. By highlighting the latest advancements in PEEK modification, we hope to provide guidance and inspiration for researchers in developing the next generation bone implants and optimizing their clinical applications.
Collapse
Affiliation(s)
- Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dongxu Wu
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiangrui Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
25
|
Han J. Copper trafficking systems in cells: insights into coordination chemistry and toxicity. Dalton Trans 2023; 52:15277-15296. [PMID: 37702384 DOI: 10.1039/d3dt02166a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Transition metal ions, such as copper, are indispensable components in the biological system. Copper ions which primarily exist in two major oxidation states Cu(I) and Cu(II) play crucial roles in various cellular processes including antioxidant defense, biosynthesis of neurotransmitters, and energy metabolism, owing to their inherent redox activity. The disturbance in copper homeostasis can contribute to the development of copper metabolism disorders, cancer, and neurodegenerative diseases, highlighting the significance of understanding the copper trafficking system in cellular environments. This review aims to offer a comprehensive overview of copper homeostatic machinery, with an emphasis on the coordination chemistry of copper transporters and trafficking proteins. While copper chaperones and the corresponding metalloenzymes are thoroughly discussed, we also explore the potential existence of low-molecular-mass metal complexes within cellular systems. Furthermore, we summarize the toxicity mechanisms originating from copper deficiency or accumulation, which include the dysregulation of oxidative stress, signaling pathways, signal transduction, and amyloidosis. This perspective review delves into the current knowledge regarding the intricate aspects of the copper trafficking system, providing valuable insights into potential treatment strategies from the standpoint of bioinorganic chemistry.
Collapse
Affiliation(s)
- Jiyeon Han
- Department of Applied Chemistry, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
26
|
Wu J, Yao J, Jia S, Yao X, Shao J, Cao W, Ma S, Yao X, Li H. A cuproptosis-related lncRNA signature for predicting prognosis and immune response in hepatocellular carcinoma. Heliyon 2023; 9:e19352. [PMID: 37810122 PMCID: PMC10558351 DOI: 10.1016/j.heliyon.2023.e19352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/09/2023] [Accepted: 08/20/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) has a high incidence and poor prognosis. Cuproptosis is a novel type of cell death, which differs from previously reported types of cell death such as apoptosis, autophagy, proptosis, ferroptosis, necroptosis, etc. Long non-coding RNAs (lncRNAs) play multiple roles in HCC. Methods We downloaded information from The Cancer Genome Atlas (TCGA) database, and obtained cuproptosis-related genes from published studies. The cuproptosis-related lncRNAs were obtained by correlation analysis, and subsequently used to construct a prognostic cuproptosis-related lncRNA signature. Analyses of overall survival (OS), progression-free survival (PFS), receiver operating characteristic (ROC) curve with the area under the curve (AUC) values and the index of concordance (c-index) curve were used to evaluate the signature. The tumor microenvironment (TME) was analyzed by ESTIMATE algorithm. The immune cell data was downloaded from the Tumor Immune Estimation Resource (TIMER) 2.0 database. Immune-related pathways were analyzed by single-sample gene set enrichment analysis (ssGSEA) algorithm. Immunophenoscore (IPS) scores from The Cancer Immunome (TCIA) database were used to evaluate immunotherapy response. The "pRRophetic" was employed to screen drugs for high-risk patients. The candidate lncRNA expression levels were detected by Real Time Quantitative PCR. Results We constructed a cuproptosis-related lncRNA signature containing seven lncRNAs: AC125437.1, PCED1B-AS1, PICSAR, AP001372.2, AC027097.1, LINC00479, and SLC6A1-AS1. This signature had excellent accuracy, and was independent of the stratification of clinicopathological features. Further study showed that high-risk tumors under this signature had higher TMB, fewer TME components and higher tumor purity. The tumors with high risk were not enriched in immune cell infiltration or immune process pathways, and high-risk patients had a poor response to immunotherapy. Moreover, 29 drugs such as sorafenib, dasatinib and paclitaxel were screened for high-risk HCC patients to improve their prognosis. The expression levels of the candidate lncRNAs in HCC tissue were significantly increased (except PCED1B-AS1). Conclusions Our prognostic cuproptosis-related lncRNA signature was accurate and effective for predicting the prognosis of HCC. The immunotherapy was unsuitable for high-risk HCC patients with this signature.
Collapse
Affiliation(s)
- Jingyi Wu
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Jianzuo Yao
- Department of Hepatobiliary and Pancreatic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, PR China
| | - Shu Jia
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Xiaokun Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Jingping Shao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Weijuan Cao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Shuwei Ma
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Xiaomin Yao
- Faculty of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, 315100, PR China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Li Huili Hospital Affiliated to Ningbo University, Ningbo, 315040, PR China
| |
Collapse
|
27
|
Chen J, Song W, Zhang W. The emerging role of copper in depression. Front Neurosci 2023; 17:1230404. [PMID: 37609453 PMCID: PMC10440608 DOI: 10.3389/fnins.2023.1230404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Copper (Cu) is an essential trace element in the brain and serves as an important cofactor for numerous enzymes involved in a wide range of biochemical processes including neurobehavioral, mitochondrial respiration, and antioxidant effects. Recent studies have demonstrated that copper dyshomeostasis is tightly associated with the development of depression by inducing oxidative stress and inflammatory responses. However, these findings have remained controversial so far. Cumulative studies have shown a positive association, while some other studies showed no association and even a negative association between serum/plasma copper level and depression. Based on these conflicted results, the association was speculated to be due to the clinical features of the population, stages of the disease, severity of copper excess, and types of specimens detected in these studies. In addition, there was an inverse association between dietary copper intake and depression. Furthermore, increasing copper intake could influence dietary zinc and iron intake to prevent and treat depression. Thus, copper supplementation may be a good measure to manage depression. This review provided a deeper understanding of the potential applicability of copper in the prevention and treatment of depression.
Collapse
Affiliation(s)
| | | | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center for Tumor Precision Medicine and Comprehensive Evaluation, Henan Provincial Key Laboratory of Anticancer Drug Research, Zhengzhou, China
| |
Collapse
|
28
|
Yu S, Tang L, Zhang Q, Li W, Yao S, Cai Y, Cheng H. A cuproptosis-related lncRNA signature for predicting prognosis and immunotherapy response of lung adenocarcinoma. Hereditas 2023; 160:31. [PMID: 37482612 PMCID: PMC10364405 DOI: 10.1186/s41065-023-00293-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Copper-induced cell death (cuproptosis) is a new regulatory cell death mechanism. Long noncoding RNAs (lncRNAs) are related to tumor immunity and metastasis. However, the correlation of cuproptosis-related lncRNAs with the immunotherapy response and prognosis of lung adenocarcinoma (LUAD) patients is not clear. METHODS We obtained the clinical characteristics and transcriptome data from TCGA-LUAD dataset (containing 539 LUAD and 59 paracancerous tissues). By utilizing LASSO-penalized Cox regression analysis, we identified a prognostic signature composed of cuproptosis-related lncRNAs. This signature was then utilized to segregate patients into two different risk categories based on their respective risk scores. The identification of differentially expressed genes (DEGs) between high- and low-risk groups was carried out using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. We evaluated the immunotherapy response by analyzing tumor mutational burden (TMB), immunocyte infiltration and Tumor Immune Dysfunction and Exclusion (TIDE) web application. The "pRRophetic" R package was utilized to conduct further screening of potential therapeutic drugs for their sensitivity. RESULTS We ultimately identified a prognostic risk signature that includes six cuproptosis-related lncRNAs (AP003778.1, AC011611.2, CRNDE, AL162632.3, LY86-AS1, and AC090948.1). Compared with clinical characteristics, the signature was significantly correlated with prognosis following the control of confounding variables (HR = 2.287, 95% CI = 1.648-3.174, p ˂ 0.001), and correctly predicted 1-, 2-, and 3-year overall survival (OS) rates (AUC value = 0.725, 0.715, and 0.662, respectively) in LUAD patients. In terms of prognosis, patients categorized as low risk exhibited more positive results in comparison to those in the high-risk group. The enrichment analysis showed that the two groups had different immune signaling pathways. Immunotherapy may offer a more appropriate treatment option for high-risk patients due to their higher TMB and lower TIDE scores. The higher risk score may demonstrate increased sensitivity to bexarotene, cisplatin, epothilone B, and vinorelbine. CONCLUSIONS Based on cuproptosis-related lncRNAs, we constructed and validated a novel risk signature that may be used to predict immunotherapy efficacy and prognosis in LUAD patients.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
- Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Qianqian Zhang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Yinlian Cai
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui, 230601, China
| | - Huaidong Cheng
- Shenzhen Clinical Medical School, Southern Medical University, Shenzhen, Guangdong, China.
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| |
Collapse
|
29
|
Huang D, Lai S, Zhong S, Jia Y. Association between serum copper, zinc, and selenium concentrations and depressive symptoms in the US adult population, NHANES (2011-2016). BMC Psychiatry 2023; 23:498. [PMID: 37434135 DOI: 10.1186/s12888-023-04953-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Evidence suggests that alterations in serum trace element concentrations are closely associated with mental illness. However, studies on the relationship between serum copper, zinc, and selenium concentrations and depressive symptoms are limited and with controversial results. We aimed to investigate the association between serum concentrations of these trace elements and depressive symptoms in US adults. METHODS Data from the National Health and Nutrition Examination Survey (NHANES) (2011-2016) were used in this cross-sectional study. The Patient Health Questionnaire-9 Items (PHQ-9) was employed to assess depressive symptoms. Multiple logistic regression was performed to determine the relationship between the serum concentrations of copper, zinc, and selenium and depressive symptoms. RESULTS A total of 4552 adults were included. Subjects with depressive symptoms had higher serum copper concentrations (123.88 ± 1.87) than those without depressive symptoms (116.99 ± 0.86) (p < 0.001). In Model 2, weighted logistic regression analysis showed that the second (Q2) quartile of zinc concentrations (odds ratio [OR] = 1.534, 95% confident interval [CI]: 1.018 to 2.313) were significantly associated with an increased risk of depressive symptoms. Subgroup analysis revealed that the third (Q3) and fourth (Q4) quartiles of copper concentrations (Q3: OR = 2.699, 95% CI: 1.285 to 5.667; Q4: OR = 2.490, 95% CI: 1.026 to 6.046) were also positively associated with depressive symptoms in obese individuals after controlling for all confounders. However, no significant relationship between serum selenium concentrations and depressive symptoms was observed. CONCLUSIONS Obese US adults with high serum copper concentrations, as well as US adults in general with low serum zinc concentrations, were susceptible to depressive symptoms. Nevertheless, the causal mechanisms underlying these relationships need to be further explored.
Collapse
Affiliation(s)
- Dong Huang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
30
|
Njenga LW, Mbugua SN, Odhiambo RA, Onani MO. Addressing the gaps in homeostatic mechanisms of copper and copper dithiocarbamate complexes in cancer therapy: a shift from classical platinum-drug mechanisms. Dalton Trans 2023; 52:5823-5847. [PMID: 37021641 DOI: 10.1039/d3dt00366c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The platinum drug, cisplatin, is considered as among the most successful medications in cancer treatment. However, due to its inherent toxicity and resistance limitations, research into other metal-based non-platinum anticancer medications with diverse mechanisms of action remains an active field. In this regard, copper complexes feature among non-platinum compounds which have shown promising potential as effective anticancer drugs. Moreover, the interesting discovery that cancer cells can alter their copper homeostatic processes to develop resistance to platinum-based treatments leads to suggestions that some copper compounds can indeed re-sensitize cancer cells to these drugs. In this work, we review copper and copper complexes bearing dithiocarbamate ligands which have shown promising results as anticancer agents. Dithiocarbamate ligands act as effective ionophores to convey the complexes of interest into cells thereby influencing the metal homeostatic balance and inducing apoptosis through various mechanisms. We focus on copper homeostasis in mammalian cells and on our current understanding of copper dysregulation in cancer and recent therapeutic breakthroughs using copper coordination complexes as anticancer drugs. We also discuss the molecular foundation of the mechanisms underlying their anticancer action. The opportunities that exist in research for these compounds and their potential as anticancer agents, especially when coupled with ligands such as dithiocarbamates, are also reviewed.
Collapse
Affiliation(s)
- Lydia W Njenga
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Simon N Mbugua
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya
| | - Ruth A Odhiambo
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - Martin O Onani
- Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Belville, 7535, South Africa
| |
Collapse
|
31
|
Lim YY, Zaidi AMA, Miskon A. Combining Copper and Zinc into a Biosensor for Anti-Chemoresistance and Achieving Osteosarcoma Therapeutic Efficacy. Molecules 2023; 28:2920. [PMID: 37049685 PMCID: PMC10096333 DOI: 10.3390/molecules28072920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/14/2023] Open
Abstract
Due to its built-up chemoresistance after prolonged usage, the demand for replacing platinum in metal-based drugs (MBD) is rising. The first MBD approved by the FDA for cancer therapy was cisplatin in 1978. Even after nearly four and a half decades of trials, there has been no significant improvement in osteosarcoma (OS) therapy. In fact, many MBD have been developed, but the chemoresistance problem raised by platinum remains unresolved. This motivates us to elucidate the possibilities of the copper and zinc (CuZn) combination to replace platinum in MBD. Thus, the anti-chemoresistance properties of CuZn and their physiological functions for OS therapy are highlighted. Herein, we summarise their chelators, main organic solvents, and ligand functions in their structures that are involved in anti-chemoresistance properties. Through this review, it is rational to discuss their ligands' roles as biosensors in drug delivery systems. Hereafter, an in-depth understanding of their redox and photoactive function relationships is provided. The disadvantage is that the other functions of biosensors cannot be elaborated on here. As a result, this review is being developed, which is expected to intensify OS drugs with higher cure rates. Nonetheless, this advancement intends to solve the major chemoresistance obstacle towards clinical efficacy.
Collapse
Affiliation(s)
- Yan Yik Lim
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Ahmad Mujahid Ahmad Zaidi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| | - Azizi Miskon
- Faculty of Engineering, National Defence University of Malaysia, Sungai Besi Camp, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
32
|
A Novel Cuproptosis-Associated Gene Signature to Predict Prognosis in Patients with Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3419401. [PMID: 36714025 PMCID: PMC9876676 DOI: 10.1155/2023/3419401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 01/19/2023]
Abstract
Background Pancreatic cancer (PAAD) is a malignant tumor with a poor prognosis and lacks sensitive biomarkers for diagnosis and targeted therapy. Cuproptosis, a recently proposed form of cell death based on cellular copper ion concentration, plays a key role in cancer biology. This study is aimed at constructing a risk model for predicting the prognosis of PAAD patients based on cuproptosis-related genes. Methods Pancreatic-related data from UCSC-TCGA and UCSC-GTEx databases were extracted for analysis, and TCGA-PAAD samples were randomly divided into the training and validation groups. Pearson correlation analysis was used to obtain cuproptosis-related genes coexpressed with 19 copper death genes. Univariate Cox and Lasso regression analyses were used to obtain cuproptosis-related prognostic genes. Multivariate Cox regression analysis was used to construct the final prognostic risk model. The risk score curve, Kaplan-Meier survival curves, and ROC curve were used to evaluate the predictive ability of the Cox risk model. Finally, the functional annotation of the risk model was obtained through enrichment analysis. Results The Cox risk model has an eight prognostic cuproptosis-related gene signature. Kaplan-Meier survival curves demonstrated that the high-risk group had a shorter survival time. The ROC curve of the risk score was well created to predict one-, three-, and five-year survival rates, and AUC of the risk score was higher than other clinical characteristics. Cox regression analysis revealed that the risk score has an independent prognostic value for PAAD. GSEA reveals specific tumor pathways associated with the risk model (Myc targets v1, mTORC1 signaling, and E2F targets). Conclusions We constructed a prognostic model containing eight cuproptosis-related genes (AKR1B10, KLHL29, PROM2, PIP5K1C, KIF18B, AMIGO2, MRPL3, and PI4KB) that can accurately predict the prognosis of PAAD patients. The results will provide new perspectives for individualized outcome prediction and new therapy development for PAAD patients.
Collapse
|
33
|
Sun X, Deng Y, Ma Y, Shao M, Ni M, Zhang T, Wang X, Xu S, Chen Y, Xu S, Pan F. Common mineral nutrients in ankylosing spondylitis: A 2‐sample Mendelian randomization study. Int J Rheum Dis 2022; 25:1129-1136. [DOI: 10.1111/1756-185x.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| | - Shengqian Xu
- Department of Rheumatism and Immunity the First Affiliated Hospital of Anhui Medical University Hefei China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health Anhui Medical University Hefei China
- The Key Laboratory of Major Autoimmune Diseases Anhui Medical University Hefei China
| |
Collapse
|