1
|
Chen T, Han T, Miao Y, Yan L, Liu Z, Dong H, Cheng T, Liu Y, Yang Y, Fei S, Cheng G, Shi G. Cadmium exposure induced spleen inflammation by activating the MAPK/NF-κB/ NLRP3 signaling pathway and the intervention effect of astilbin. Vet Immunol Immunopathol 2025; 281:110889. [PMID: 39904122 DOI: 10.1016/j.vetimm.2025.110889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Accepted: 01/26/2025] [Indexed: 02/06/2025]
Abstract
Cadmium (Cd) is an environmental pollutant with strong immunotoxicity effects. Despite this, the mechanisms by which Cd causes spleen damage in chickens are not well understood. Astilbin (ASB) is a dihydroflavone glycoside with anti-inflammatory and anti-oxidation properties. In the present study, a chicken spleen injury model induced by cadmium exposure (90d) was established to explore the specific mechanisms of Cd-induced spleen injury. If and how ASB ameliorates the damage was also explored. A total of 60 chickens were randomly divided into four groups: Con, Cd, ASB, and Cd+ASB groups. The pathological changes in the spleen were observed by H&E staining. Cd-induced oxidative stress, inflammation, and the involvement of the MAPK/NF-κB/NLRP3 in ameliorating spleen damage were also analyzed by Western blotting, qRT-PCR, and immunohistochemistry. Our results showed that Cd exposure for 90 days damaged the spleen, which mainly manifested as eosinophil infiltration, an increase in MDA content, a decrease in the CAT, GSH, SOD, and T-AOC, and activation of MAPK/NF-κB/NLRP3 signaling pathway. The overall outcome of these events was the induction of oxidative stress and inflammation in the spleen of the chickens. Interestingly, ASB treatment ameliorated Cd-induced damages. In conclusion, the present study revealed the specific mechanism of Cd-induced spleen damage using a chicken model. But ASB ameliorates Cd-induced cadmium poisoning.
Collapse
Affiliation(s)
- Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610042, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu 610041, China.
| | - Tianyu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin 150029, China.
| | - Liangchun Yan
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610042, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China.
| | - Zhijun Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Han Dong
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610042, China.
| | - Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610042, China.
| | - Yiding Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Shanshan Fei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| | - Guoqiang Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610042, China.
| | - Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Daniele-Silva A, Lucas Tenório CJ, Roberto da Costa Rodrigues J, Torres-Rêgo M, Cavalcanti FF, de Sousa Ferreira S, Pontes da Silva D, Assunção Ferreira MR, de Freitas Fernandes-Pedrosa M, Lira Soares LA. Anti-inflammatory and antiophidic effects of extract of Hymenaea eriogyne benth and structure-activity relationship prediction of the major markers in silico. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118619. [PMID: 39053713 DOI: 10.1016/j.jep.2024.118619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hymenaea eriogyne Benth (Fabaceae) is popularly known as "Jatobá". Despite its use in folk medicine to treat inflammatory disorders, there are no descriptions that show its anti-inflammatory potential. AIM OF THE STUDY In this sense, this study aimed to evaluate the anti-inflammatory and antivenom action of bark and leaves extract of H. eriogyne. MATERIALS AND METHODS The in vivo anti-inflammatory activity was conducted by carrageenan-induced paw edema and zymosan-induced air pouch models, evaluating the edematogenic effect, leukocyte migration, protein concentration, levels of pro-inflammatory cytokines, malondialdehyde (MDA) and myeloperoxidase (MPO) activity. The antivenom potential was investigated in vitro on the enzymatic action (proteolytic, phospholipase and hyaluronidase) of Bothrops brazili and B. leucurus venom, as well as in vivo on the paw edema model induced by B. leucurus. Furthermore, the influence of its markers (astilbin and rutin) on MPO activity was investigated in silico. For molecular docking, AutodockVina, Biovia Discovery Studio, and Chimera 1.16 software were used. RESULTS The extracts and bark and leaves of H. eriogyne revealed a high anti-inflammatory effect, with a reduction in all inflammatory parameters evaluated. The bark extract showed superior results when compared to the leaf extract, suggesting the influence of the astilbin concentration, higher in the bark, on the anti-inflammatory action. In addition, only the H. eriogyne bark extract was able to reduce MDA, indicating an associated antioxidant effect. Regarding the in vitro antivenom action, the extracts (bark and leaves) revealed the ability to inhibit the proteolytic, phospholipase and hyaluronidase action of both bothropic venom, with a greater effect against B. leucurus venom. In vivo, extracts from the bark and leaves of H. eriogyne (50-200 mg/kg) showed antiedematogenic activity, reducing the release of MPO and pro-inflammatory cytokines, indicating the presence of bioactive components useful in controlling the inflammatory process induced by the venom. In the in silico assays, astilbin and rutin showed reversible interactions of 9 possible positions and orientations towards MPO, with affinities of -9.5 and -10.4 kcal/mol and interactions with Phe407, Gln91, His95 and Arg239, important active pockets of MPO. Rutin demonstrated more effective types of interactions with MPO. CONCLUSION This approach reveals for the first time the anti-inflammatory action of H. eriogyne bark and leaf extracts in vivo, as well as its antiophidic potential. Moreover, the distinct effect of pharmacogens as antioxidant agents and distinct effect of astilbin and rutin under MPO sheds light on the different anti-inflammatory mechanisms of bioactive compounds present in H. eriogyne extracts, with high potential for the prospection of new pharmacological agents.
Collapse
Affiliation(s)
- Alessandra Daniele-Silva
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | - Camylla Janiele Lucas Tenório
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil; Graduate Program of Therapeutic Innovation, Center for Biosciences, Federal University of Pernambuco, Brazil
| | | | - Manoela Torres-Rêgo
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande Do Norte, Brazil
| | - Felipe França Cavalcanti
- Graduate Program of Chemistry, Chemistry Institute, Federal University of Rio Grande Do Norte, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Federal University of Rio Grande Do Norte, Brazil
| | | | | | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, Brazil.
| |
Collapse
|
3
|
Hao R, Li F, Sun-Waterhouse D, Li D. The roles of MicroRNAs in cadmium toxicity and in the protection offered by plant food-derived dietary phenolic bioactive substances against cadmium-induced toxicity. Food Chem 2024; 460:140483. [PMID: 39032304 DOI: 10.1016/j.foodchem.2024.140483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Cadmium, a harmful food contaminant, poses severe health risks. There are ongoing efforts to reduce cadmium pollution and alleviate its toxicity, including plant-based dietary intervention. This review hypothesizes that microRNAs (miRNAs), as regulatory eukaryotic transcripts, play crucial roles in modulating cadmium-induced organ damage, and plant food-derived bioactive compounds provide protective effects via miRNA-mediated mechanisms. The review reveals that there are interplays between certain miRNAs and plant food-derived dietary bioactive substances when these bioactives, especially phenolics, counteract cadmium toxicity through regulating physiologic and pathologic events (including oxidative stress, apoptosis, autophagy and inflammation). The review discusses common miRNA-associated physiologic/pathologic events and signal pathways shared by the cadmium toxicity and dietary intervention processes. This paper identifies the existing knowledge gaps and potential future work (e.g. joint actions between miRNAs and other noncoding RNAs in the fights against cadmium). The insights provided by this review can improve food safety strategies and public health outcomes.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Nutrition and Human Health in Universities of Shandong, Taian 271018, People's Republic of China.
| |
Collapse
|
4
|
Shi G, Tai T, Miao Y, Yan L, Han T, Dong H, Liu Z, Cheng T, Liu Y, Yang Y, Fei S, Pang B, Chen T. The antagonism mechanism of astilbin against cadmium-induced injury in chicken lungs via Treg/Th1 balance signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116364. [PMID: 38657461 DOI: 10.1016/j.ecoenv.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
The purpose of this study was to investigate the effect of Treg/Th1 imbalance in cadmium-induced lung injury and the potential protective effect of astilbin against cadmium-induced lung injury in chicken. Cadmium exposure significantly decreased T-AOC and GSH-Px levels and SOD activity in the chicken lung tissues. In contrast, it significantly increased the MDA and NO levels. These results indicate that cadmium triggers oxidative stress in lungs. Histopathological analysis revealed that cadmium exposure further induced infiltration of lymphocytes in the chicken lungs, indicating that cadmium causes pulmonary damage. Further analysis revealed that cadmium decreased the expression of IL-4 and IL-10 but increased those of IL-17, Foxp3, TNF-α, and TGF-β, indicating that the exposure of cadmium induced the imbalance of Treg/Th1. Moreover, cadmium adversely affected chicken lung function by activating the NF-kB pathway and inducing expression of genes downstream to these pathways (COX-2, iNOS), associated with inflammatory injury in the lung tissue. Astilbin reduced cadmium-induced oxidative stress and inflammation in the lungs by increasing antioxidant enzyme activities and restoring Treg/Th1 balance. In conclusion, our results suggest that astilbin treatment alleviated the effects of cadmium-mediated lung injury in chickens by restoring the Treg/Th1 balance.
Collapse
Affiliation(s)
- Guangliang Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiange Tai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yusong Miao
- Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, China
| | - Liangchun Yan
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Tianyu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Han Dong
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Zhaoyang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tingting Cheng
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yiding Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Shanshan Fei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Pang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China
| | - Tiezhu Chen
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China; Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Chengdu 610041, China.
| |
Collapse
|
5
|
Fan W, Yuan Z, Li M, Zhang Y, Nan F. Decreased oocyte quality in patients with endometriosis is closely related to abnormal granulosa cells. Front Endocrinol (Lausanne) 2023; 14:1226687. [PMID: 37664845 PMCID: PMC10469306 DOI: 10.3389/fendo.2023.1226687] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Infertility and menstrual abnormalities in endometriosis patients are frequently caused by aberrant follicular growth or a reduced ovarian reserve. Endometriosis typically does not directly harm the oocyte, but rather inhibits the function of granulosa cells, resulting in a decrease in oocyte quality. Granulosa cells, as oocyte nanny cells, can regulate meiosis, provide the most basic resources required for oocyte development, and influence ovulation. Endometriosis affects oocyte development and quality by causing granulosa cells apoptosis, inflammation, oxidative stress, steroid synthesis obstacle, and aberrant mitochondrial energy metabolism. These aberrant states frequently interact with one another, however there is currently relatively little research in this field to understand the mechanism of linkage between abnormal states.
Collapse
Affiliation(s)
- Weisen Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zheng Yuan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Muzhen Li
- College of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yingjie Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fengjuan Nan
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Shi X, Xu T, Cui W, Qi X, Xu S. Combined negative effects of microplastics and plasticizer DEHP: The increased release of Nets delays wound healing in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160861. [PMID: 36526177 DOI: 10.1016/j.scitotenv.2022.160861] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 05/12/2023]
Abstract
Environmental harmful pollutants microplastics (MPs) and di (2-ethyl) hexyl phthalate (DEHP) are widely residual in the environment, which may cause lesion to multiple apparatus by inducing oxidative stress, threatening the health of human and animals. Neutrophil extracellular traps (Nets) are involved in skin wound healing. Most studies focused on the individual effects of different poisons on animals and ecosystems, but there are few studies on the accumulation and interaction of multiple poisons. The purpose of this study is to explore the effect of DEHP and MPs co-exposure on skin wound healing and the formation of Nets. For this purpose, we detected this hypothesis by replicating the DEHP and MPs-exposed skin wound model in mice, as well as the co-culture system of neutrophil and fibroblast. The results displayed that MPs and DEHP exposure delayed skin healing, which was more pronounced in the combined exposure group. In vitro and in vivo experiments confirmed that compared with the DEHP or MPs group, the DEHP+MPs group had more significant oxidative stress, increased Nets release and inflammatory factors, and inhibited the Wnt/β-catenin pathway and fibrosis-related factors. N-acetylcysteine (NAC) attenuated these phenomena. Through the co-culture system, we confirmed that the overproduction of Nets induced fibroblasts to exacerbate inflammatory responses and inhibit Wnt pathway and fibrosis. Overall, DEHP and MPs can produce synergistic toxic injury in mice skin wounds, and the excessive activation of ROS/Nets can aggravate inflammatory and inhibit fibrosis, resulting in delayed wound healing.
Collapse
Affiliation(s)
- Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Wei Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
7
|
Moroni-González D, Sarmiento-Ortega VE, Diaz A, Brambila E, Treviño S. Pancreas-Liver-Adipose Axis: Target of Environmental Cadmium Exposure Linked to Metabolic Diseases. TOXICS 2023; 11:223. [PMID: 36976988 PMCID: PMC10059892 DOI: 10.3390/toxics11030223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Cadmium has been well recognized as a critical toxic agent in acute and chronic poisoning cases in occupational and nonoccupational settings and environmental exposure situations. Cadmium is released into the environment after natural and anthropogenic activities, particularly in contaminated and industrial areas, causing food pollution. In the body, cadmium has no biological activity, but it accumulates primarily in the liver and kidney, which are considered the main targets of its toxicity, through oxidative stress and inflammation. However, in the last few years, this metal has been linked to metabolic diseases. The pancreas-liver-adipose axis is largely affected by cadmium accumulation. Therefore, this review aims to collect bibliographic information that establishes the basis for understanding the molecular and cellular mechanisms linked to cadmium with carbohydrate, lipids, and endocrine impairments that contribute to developing insulin resistance, metabolic syndrome, prediabetes, and diabetes.
Collapse
Affiliation(s)
- Diana Moroni-González
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Victor Enrique Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, 22 South. FCQ9, Ciudad Universitaria, Puebla 72560, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, Meritorious Autonomous University of Puebla, Ciudad Universitaria, Puebla 72560, Mexico
| |
Collapse
|