1
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Shan W, Ge H, Chen B, Huang L, Zhu S, Zhou Y. Upregulation of miR-499a-5p Decreases Cerebral Ischemia/Reperfusion Injury by Targeting PDCD4. Cell Mol Neurobiol 2022; 42:2157-2170. [PMID: 33837492 PMCID: PMC11421641 DOI: 10.1007/s10571-021-01085-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
MiR-499a-5p was significantly downregulated in degenerative tissues and correlated with apoptosis. Nonetheless, the biological function of miR-499a-5p in acute ischemic stroke has been still unclear. In this study, we found that the plasma levels of miR-499a-5p were significantly downregulated in 64 ischemic stroke patients and negatively correlated with the National Institutes of Health Stroke Scale score. Then, we constructed cerebral ischemia/reperfusion (I/R) injury in rats after middle cerebral artery occlusion and subsequent reperfusion and oxygen-glucose deprivation and reoxygenation (OGD/R)-treated SH-SY5Y cell model. Transfection with miR-499a-5p mimic was accomplished by intracerebroventricular injection in the in vivo I/R injury model. We further found that miR-499a-5p overexpression decreased infarct volumes and cell apoptosis in the in vivo I/R stroke model using TTC and TUNEL staining. PDCD4 was a direct target of miR-499a-5p by luciferase report assay and Western blotting. Knockdown of PDCD4 reduced the infarct damage and cortical neuron apoptosis caused by I/R injury. MiR-499a-5p exerted neuroprotective roles mainly through inhibiting PDCD4-mediated apoptosis by CCK-8 assay, LDH release assay, and flow cytometry analysis. These findings suggest that miR-499a-5p might represent a novel target that regulates brain injury by inhibiting PDCD4-mediating apoptosis.
Collapse
Affiliation(s)
- Weifeng Shan
- Department of Anesthesiology, The People's Hospital of Lishui, Lishui, Zhejiang, China
| | - Huifeng Ge
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Bingquan Chen
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Linger Huang
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Shaojun Zhu
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China
| | - Yanfeng Zhou
- Department of Anesthesiology, The 1st Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, 310003, Zhejiang, China.
| |
Collapse
|
3
|
Alsahly MB, Zakari MO, Koch LG, Britton S, Katwa LC, Fisher-Wellman K, Lust RM. Augmented Cardiac Mitochondrial Capacity in High Capacity Aerobic Running "Disease-Resistant" Phenotype at Rest Is Lost Following Ischemia Reperfusion. Front Cardiovasc Med 2021; 8:752640. [PMID: 34805308 PMCID: PMC8595288 DOI: 10.3389/fcvm.2021.752640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: Regular active exercise is considered therapeutic for cardiovascular disease, in part by increasing mitochondrial respiratory capacity, but a significant amount of exercise capacity is determined genetically. Animal models, demonstrating either high capacity aerobic running (HCR) or low capacity aerobic running (LCR) phenotypes, have been developed to study the intrinsic contribution, with HCR rats subsequently characterized as "disease resistant" and the LCRs as "disease prone." Enhanced cardioprotection in HCRs has been variable and mutifactoral, but likely includes a metabolic component. These studies were conducted to determine the influence of intrinsic aerobic phenotype on cardiac mitochondrial function before and after ischemia and reperfusion. Methods: A total of 34 HCR and LCR rats were obtained from the parent colony at the University of Toledo, housed under sedentary conditions, and fed normal chow. LCR and HCR animals were randomly assigned to either control or ischemia-reperfusion (IR). On each study day, one HCR/LCR pair was anesthetized, and hearts were rapidly excised. In IR animals, the hearts were immediately flushed with iced hyperkalemic, hyperosmotic, cardioplegia solution, and subjected to global hypothermic ischemic arrest (80 min). Following the arrest, the hearts underwent warm reperfusion (120 min) using a Langendorff perfusion system. Following reperfusion, the heart was weighed and the left ventricle (LV) was isolated. A midventricular ring was obtained to estimate infarction size [triphenyltetrazolium chloride (TTC)] and part of the remaining tissue (~150 mg) was transferred to a homogenation buffer on ice. Isolated mitochondria (MITO) samples were prepared and used to determine respiratory capacity under different metabolic conditions. In control animals, MITO were obtained and prepared similarly immediately following anesthesia and heart removal, but without IR. Results: In the control rats, both resting and maximally stimulated respiratory rates were higher (32 and 40%, respectively; p < 0.05) in HCR mitochondria compared to LCR. After IR, resting MITO respiratory rates were decreased to about 10% of control in both strains, and the augmented capacity in HCRs was absent. Maximally stimulated rates also were decreased more than 50% from control and were no longer different between phenotypes. Ca++ retention capacity and infarct size were not significantly different between HCR and LCR (49.2 ± 5.6 vs. 53.7 ± 4.9%), nor was average coronary flow during reperfusion or arrhythmogenesis. There was a significant loss of mitochondria following IR, which was coupled with decreased function in the remaining mitochondria in both strains. Conclusion: Cardiac mitochondrial capacity from HCR was significantly higher than LCR in the controls under each condition. After IR insult, the cardiac mitochondrial respiratory rates were similar between phenotypes, as was Ca++ retention capacity, infarct size, and arrhythmogenicity, despite the increased mitochondrial capacity in the HCRs before ischemia. Relatively, the loss of respiratory capacity was actually greater in HCR than LCR. These data could suggest limits in the extent to which the HCR phenotype might be "protective" against acute tissue stressors. The extent to which any of these deficits could be "rescued" by adding an active exercise component to the intrinsic phenotype is unknown.
Collapse
Affiliation(s)
- Musaad B. Alsahly
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- East Carolina Diabetes and Obesity Center, East Carolina University, Greenville, NC, United States
| | - Madaniah O. Zakari
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Lauren G. Koch
- Department of Physiology, College of Medicine, Taibah University, Medina, Saudi Arabia
| | - Steven Britton
- Department of Physiology and Pharmacology, University of Toledo, Toledo, OH, United States
| | - Laxmansa C. Katwa
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Kelsey Fisher-Wellman
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Robert M. Lust
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
- Departments of Anesthesiology and Molecular and Integrative Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
4
|
Yang L, Xie P, Wu J, Yu J, Li X, Ma H, Yu T, Wang H, Ye J, Wang J, Zheng H. Deferoxamine Treatment Combined With Sevoflurane Postconditioning Attenuates Myocardial Ischemia-Reperfusion Injury by Restoring HIF-1/BNIP3-Mediated Mitochondrial Autophagy in GK Rats. Front Pharmacol 2020; 11:6. [PMID: 32140105 PMCID: PMC7042377 DOI: 10.3389/fphar.2020.00006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial autophagy is involved in myocardial protection of sevoflurane postconditioning (SPostC) and in diabetic state this protective effect is weakened due to impaired HIF-1 signaling pathway. Previous studies have proved that deferoxamine (DFO) could activate impaired HIF-1α in diabetic state to restore the cardioprotective of sevoflurane, while the specific mechanism is unclear. This study aims to investigate whether HIF-1/BNIP3-mediated mitochondrial autophagy is involved in the restoration of sevoflurane postconditioning cardioprotection in diabetic state. Ischemia/reperfusion (I/R) model was established by ligating the anterior descending coronary artery and sevoflurane was administered at the first 15 min of reperfusion. Myocardial infarct size, mitochondrial ultrastructure and autophagosome, ATP content, mitochondrial membrane potential, ROS production, HIF-1α, BNIP3, LC3B-II, Beclin-1, P62, LAMP2 protein expression were detected 2 h after reperfusion, and cardiac function was evaluated by ultrasound at 24 h after reperfusion. Our results showed that with DFO treatment, SPostC up-regulated the expression of HIF-1α and BNIP3, thus reduced the expression of key autophagy proteins LC3B-II, Beclin-1, p62, and increased the expression of LAMP2. Furthermore, it reduced the accumulation of autophagosomes and ROS production, increased the content of ATP, and stabilized the membrane potential. Finally, the myocardial infarction size was reduced and cardiac function was improved. Taken together, DFO treatment combined with SPostC could alleviate myocardial ischemia reperfusion injury in diabetic rats by restoring and promoting HIF-1/BNIP3-mediated mitochondrial autophagy.
Collapse
Affiliation(s)
- Long Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Peng Xie
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jin Yu
- Department of Anesthesiology, Chongqing Health Center for Women and Children, Chongqing, China
| | - Xin Li
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Haiping Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Haiying Wang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Department of Anesthesiology, Zunyi Medical College, Zunyi, China
| | - Jianrong Ye
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong Zheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
5
|
Wu CH, Lin CL, Wang SE, Lu CW. Effects of imidacloprid, a neonicotinoid insecticide, on the echolocation system of insectivorous bats. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:94-101. [PMID: 31973875 DOI: 10.1016/j.pestbp.2019.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Imidacloprid, a widely used neonicotinoid insecticide, has led to a decline in the honey bee population worldwide. An invertebrate insect prey with neonicotinoid toxicity can adversely affect insectivores, such as echolocating bats. The aim of the current study was to examined whether imidacloprid toxicity may interfere echolocation system such as vocal, auditory, orientation, and spatial memory systems in the insectivorous bat. By comparing the ultrasound spectrum, auditory brainstem-evoked potential, and flight trajectory, we found that imidacloprid toxicity may interfere functions in vocal, auditory, orientation, and spatial memory system of insectivorous bats (Hipposideros armiger terasensis). As suggested from immunohistochemistry and western blots evidences, we found that insectivorous bats after suffering imidacloprid toxicity may decrease vocal-related FOXP2 expressions in the superior colliculus, auditory-related prestin expressions in the cochlea, and the auditory-related otoferlin expressions in the cochlea and the inferior colliculus, and cause inflammation and mitochondrial dysfunction-related apoptosis in the hippocampal CA1 and medial entorhinal cortex. These results may provide a reasonable explanation about imidacloprid-induced interference of echolocation system in insectivorous bats.
Collapse
Affiliation(s)
- Chung-Hsin Wu
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| | - Ching-Lung Lin
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Sheue-Er Wang
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chen-Wen Lu
- School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
6
|
Zambelli F, Mastropasqua F, Picardi E, D'Erchia AM, Pesole G, Pavesi G. RNentropy: an entropy-based tool for the detection of significant variation of gene expression across multiple RNA-Seq experiments. Nucleic Acids Res 2019; 46:e46. [PMID: 29390085 PMCID: PMC5934672 DOI: 10.1093/nar/gky055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/19/2018] [Indexed: 12/28/2022] Open
Abstract
RNA sequencing (RNA-Seq) has become the experimental standard in transcriptome studies. While most of the bioinformatic pipelines for the analysis of RNA-Seq data and the identification of significant changes in transcript abundance are based on the comparison of two conditions, it is common practice to perform several experiments in parallel (e.g. from different individuals, developmental stages, tissues), for the identification of genes showing a significant variation of expression across all the conditions studied. In this work we present RNentropy, a methodology based on information theory devised for this task, which given expression estimates from any number of RNA-Seq samples and conditions identifies genes or transcripts with a significant variation of expression across all the conditions studied, together with the samples in which they are over- or under-expressed. To show the capabilities offered by our methodology, we applied it to different RNA-Seq datasets: 48 biological replicates of two different yeast conditions; samples extracted from six human tissues of three individuals; seven different mouse brain cell types; human liver samples from six individuals. Results, and their comparison to different state of the art bioinformatic methods, show that RNentropy can provide a quick and in depth analysis of significant changes in gene expression profiles over any number of conditions.
Collapse
Affiliation(s)
- Federico Zambelli
- Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy
| | - Francesca Mastropasqua
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Ernesto Picardi
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70126 Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Anna Maria D'Erchia
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70126 Bari, Italy
| | - Graziano Pesole
- Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy.,Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università di Bari, Via Orabona 4, 70126 Bari, Italy.,Consorzio Interuniversitario Biotecnologie (CIB) and Istituto Nazionale Biostrutture e Biosistemi (INBB), Bari, Italy
| | - Giulio Pavesi
- Dipartimento di Bioscienze, Università di Milano, via Celoria 26, 20133 Milan, Italy.,Istituto di Biomembrane, Bioenergetica e Biotecnologie Molecolari, Consiglio Nazionale delle Ricerche, Via Amendola 165/A, 70126 Bari, Italy
| |
Collapse
|
7
|
Smenes BT, Bækkerud FH, Slagsvold KH, Hassel E, Wohlwend M, Pinho M, Høydal M, Wisløff U, Rognmo Ø, Wahba A. Acute exercise is not cardioprotective and may induce apoptotic signalling in heart surgery: a randomized controlled trial. Interact Cardiovasc Thorac Surg 2019; 27:95-101. [PMID: 29447379 DOI: 10.1093/icvts/ivx439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 12/21/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES During open-heart surgery, the myocardium experiences ischaemia-reperfusion injury. A single bout of moderate, 30-min exercise induces preconditioning and protects the heart from ischaemia-reperfusion injury in rats, but this has never been investigated in humans. We aimed to investigate whether 1 bout of moderate exercise 24 h prior to surgery protects against mitochondrial and cardiac damage. METHODS Patients scheduled for elective coronary artery bypass were eligible for this pilot study. Twenty were included and randomized to the treadmill exercise group (the EX group, n = 10) 24 h preoperatively or to standard presurgical procedures (control n = 10). Right atrial (RA) and left ventricular (LV) biopsies were collected immediately before and as long as possible after aortic cross-clamping to assess the primary outcome of mitochondrial respiration by respirometry, in addition to reactive oxygen species production by fluorometry and apoptotic transcripts. Cardiac troponin T and creatine kinase myocardial brain were measured in plasma at arrival, before surgery and 6 and 24 h postoperatively. RESULTS Mitochondrial respiration was lower in the EX group after surgery in the LV (Complex I -22%, P < 0.05 and maximal -23%, P < 0.05) and the right atrium (Complex I -25%, P < 0.05). Transcript level of the apoptosis-related marker caspase 3 was increased 1.5-fold in the LV prior to surgery in the EX group when compared with the control group, P < 0.05. Cardiac troponin T was 45% higher in the EX group than in the control group 6 h postoperatively (P = 0.03), although not significant when corrected for aortic cross-clamping time. CONCLUSIONS Results indicate that exercise did not precondition the heart against surgery-related damage. Exercise may render the myocardium and mitochondria more vulnerable to perioperative damage. Clinical trials registration number NCT00218985 (https://clinicaltrials.gov/ct2/show/NCT00218985).
Collapse
Affiliation(s)
- Benedikte T Smenes
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik H Bækkerud
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Katrine H Slagsvold
- Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| | - Erlend Hassel
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Thoracic and Occupational Medicine, St. Olav's University Hospital, Trondheim, Norway
| | - Martin Wohlwend
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maria Pinho
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten Høydal
- Group of Molecular and Cellular Cardiology, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement and Nutrition Sciences, University of Queensland, Australia
| | - Øivind Rognmo
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander Wahba
- Department of Circulation and Medical Imaging, K.G. Jebsen Center of Exercise in Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Cardiothoracic Surgery, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
8
|
Effects of levocarnitine on cardiac function, urinary albumin, hs-CRP, BNP, and troponin in patients with coronary heart disease and heart failure. Hellenic J Cardiol 2018; 61:99-102. [PMID: 30195728 DOI: 10.1016/j.hjc.2018.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To investigate the effects of levocarnitine on cardiac function, urinary albumin (ALB), high-sensitivity C-reactive protein (hs-CRP), brain natriuretic peptide (BNP), and troponin in patients with coronary heart disease (CHD) and heart failure (HF). METHODS In total, 246 patients with CHD-caused HF were selected and randomly divided into Group A and Group B. A fully automatic biochemical analyzer was used to measure the levels of ALB, hs-CRP, BNP, and troponin in both groups of patients, and the expression levels of LVDD and LVEF were detected by cardiac color ultrasonography. Patients in Group B were intravenously injected with 3.0 g of levocarnitine, once per day. After 14 days, changes in levels of ALB, hs-CRP, BNP, troponin, LVDD, and LVEF in Group A patients were detected. RESULTS The effective cure rates of patients in both groups were 65.8% and 81.3%, respectively, and there was a statistically significant difference between the two groups (p < 0.05). After administration of levocarnitine, all indicators showed decreasing trends, but the LVEF level increased. Among them, patients treated with levocarnitine showed the most evident decrease in LVEF. Decrease in BNP was the largest (p < 0.05). Additionally, there was no statistical difference in incidence rate between the two groups (5.8% vs. 2.5%, p = 0.222). CONCLUSION Levocarnitine can effectively improve ALB, hs-CRP, BNP, troponin, and LVDD levels to improve cardiac function rating and thus improve cardiac function.
Collapse
|
9
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315:H1341-H1352. [PMID: 30095969 DOI: 10.1152/ajpheart.00028.2018] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction plays a central role in myocardial ischemia-reperfusion (I/R) injury. Increased reactive oxygen species production, impaired electron transport chain activity, aberrant mitochondrial dynamics, Ca2+ overload, and opening of the mitochondrial permeability transition pore have been proposed as major contributory factors to mitochondrial dysfunction during myocardial I/R injury. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a pivotal role in multiple mitochondrial bioenergetic processes, including respiration and energy conversion, in mitochondrial morphology and dynamics as well as in several steps of the apoptotic process. Changes in CL levels, species composition, and degree of oxidation may have deleterious consequences for mitochondrial function with important implications in a variety of pathophysiological conditions, including myocardial I/R injury. In this review, we focus on the role played by CL alterations in mitochondrial dysfunction in myocardial I/R injury. Pharmacological strategies to prevent myocardial injury during I/R targeting mitochondrial CL are also examined.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | | | - Francesca Maria Ruggiero
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council , Bari , Italy
| |
Collapse
|
10
|
Morshed A, Dutta P. Hypoxic behavior in cells under controlled microfluidic environment. Biochim Biophys Acta Gen Subj 2017; 1861:759-771. [PMID: 28111315 DOI: 10.1016/j.bbagen.2017.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/15/2017] [Accepted: 01/18/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Depleted oxygen levels, known as hypoxia, causes considerable changes in the cellular metabolism. Hypoxia-inducible factors (HIF) act as the major protagonist in orchestrating manifold hypoxic responses by escaping cellular degradation mechanisms. These complex and dynamic intracellular responses are significantly dependent on the extracellular environment. In this study, we present a detailed model of a hypoxic cellular microenvironment in a microfluidic setting involving HIF hydroxylation. METHODS We have modeled the induction of hypoxia in a microfluidic chip by an unsteady permeation of oxygen from the microchannel through a porous polydimethylsiloxane channel wall. Extracellular and intracellular interactions were modeled with two different mathematical descriptions. Intracellular space is directly coupled to the extracellular environment through uptake and consumption of oxygen and ascorbate similar to cells in vivo. RESULTS Our results indicate a sharp switch in HIF hydroxylation behavior with changing prolyl hydroxylase levels from 0.1 to 4.0μM. Furthermore, we studied the effects of extracellular ascorbate concentration, using a new model, to predict its accumulation inside the cell over a relevant physiological range. In different hypoxic conditions, the cellular environment showed a significant dependence on oxygen levels in resulting intracellular response. CONCLUSIONS Change in hydroxylation behavior and nutrient supplementation can have significant potential in designing novel therapeutic interventions in cancer and ischemia/reperfusion injuries. GENERAL SIGNIFICANCE The hybrid mathematical model can effectively predict intracellular behavior due to external influences providing valuable directions in designing future experiments.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, United States.
| |
Collapse
|
11
|
MicroRNA: a connecting road between apoptosis and cholesterol metabolism. Tumour Biol 2016; 37:8529-54. [PMID: 27105614 DOI: 10.1007/s13277-016-4988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 12/15/2022] Open
Abstract
Resistance to apoptosis leads to tumorigenesis and failure of anti-cancer therapy. Recent studies also highlight abrogated lipid/cholesterol metabolism as one of the root causes of cancer that can lead to metastatic transformations. Cancer cells are dependent on tremendous supply of cellular cholesterol for the formation of new membranes and continuation of cell signaling. Cholesterol homeostasis network tightly regulates this metabolic need of cancer cells on cholesterol and other lipids. Genetic landscape is also shared between apoptosis and cholesterol metabolism. MicroRNAs (miRNAs) are the new fine tuners of signaling pathways and cellular processes and are known for their ability to post-transcriptionally repress gene expression in a targeted manner. This review summarizes the current knowledge about the cross talk between apoptosis and cholesterol metabolism via miRNAs. In addition, we also emphasize herein recent therapeutic modulations of specific miRNAs and their promising potential for the treatment of deadly diseases including cancer and cholesterol related pathologies. Understanding of the impact of miRNA-based regulation of apoptosis and metabolic processes is still at its dawn and needs further research for the development of future miRNA-based therapies. As both these physiological processes affect cellular homeostasis, we believe that this comprehensive summary of miRNAs modulating both apoptosis and cholesterol metabolism will open uncharted territory for scientific exploration and will provide the foundation for discovering novel drug targets for cancer and metabolic diseases.
Collapse
|
12
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Cardiolipin alterations and mitochondrial dysfunction in heart ischemia/reperfusion injury. ACTA ACUST UNITED AC 2015. [DOI: 10.2217/clp.15.31] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Lin CL, Wang SE, Hsu CH, Sheu SJ, Wu CH. Oral treatment with herbal formula B307 alleviates cardiac failure in aging R6/2 mice with Huntington's disease via suppressing oxidative stress, inflammation, and apoptosis. Clin Interv Aging 2015; 10:1173-87. [PMID: 26229452 PMCID: PMC4516205 DOI: 10.2147/cia.s86493] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cardiac failure is often observed in aging patients with Huntington’s disease (HD). However, conventional pharmacological treatments for cardiac failure in HD patients have rarely been studied. Chinese herbal medicines, especially combined herbal formulas, have been widely used to treat cardiac dysfunctions over the centuries. Thus, we assess whether oral treatment with herbal formula B307 can alleviate cardiac failure in transgenic mice with HD. After oral B307 or vehicle treatment for 2 weeks, cardiac function and cardiomyocytes in 12-week-old male R6/2 HD mice and their wild-type littermate controls (WT) were examined and then compared via echocardiography, immunohistochemistry, and Western blotting. We found that cardiac performance in aging R6/2 HD mice had significantly deteriorated in comparison with their WT (P<0.01). Cardiac expressions of superoxide dismutase 2 (SOD2) and B-cell lymphoma 2 (Bcl-2) in aging R6/2 HD mice were significantly lower than their WT (P<0.01), but cardiac expressions of tumor necrosis factor alpha (TNF-α), neurotrophin-3 (3-NT), 4-hydroxynonenal (4-HNE), Bcl-2-associated X protein (Bax), calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly higher than their WT (P<0.05). Furthermore, we found that cardiac performance in aging R6/2 HD mice had significantly improved under oral B307 treatment (P<0.05). Cardiac expressions of SOD2 and Bcl-2 of aging R6/2 HD mice were significantly higher under oral B307 treatment (P<0.01), but cardiac expressions of TNF-α, 3-NT, 4-HNE, Bax, calpain, caspase 12, caspase 9, and caspase 3 of aging R6/2 HD mice were significantly reduced under oral B307 treatment (P<0.05). Oral B307 treatment may briefly alleviate cardiac failure in aging HD R6/2 mice via suppressing cardiac oxidative stress, inflammation, and apoptosis. We suggested that the herbal formula B307 may be further developed as a potential health supplement for ameliorating cardiac failure associated with aging.
Collapse
Affiliation(s)
- Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Sheue-Er Wang
- Department of Pathological Inspection, Soeurs de Saint Paul de Chartres Medical Corporate Body, Taoyuan City, Taiwan
| | - Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
14
|
Lien CY, Chuang TY, Hsu CH, Lin CL, Wang SE, Sheu SJ, Chien CT, Wu CH. Oral treatment with the herbal formula B307 alleviates cardiac toxicity in doxorubicin-treated mice via suppressing oxidative stress, inflammation, and apoptosis. Onco Targets Ther 2015; 8:1193-210. [PMID: 26060405 PMCID: PMC4454207 DOI: 10.2147/ott.s82936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This study aimed to investigate whether the herbal formula B307 could alleviate doxorubicin (DOX)-induced acute cardiotoxicity. If so, we further unraveled possible molecular mechanisms of cardiac protection under treatment with the herbal formula B307. METHODS Before the animal experiment, we examined relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307. To test whether oral treatment with the herbal formula B307 could alleviate cardiotoxicity, equal volumes of B307 (50 mg/kg) or saline (sham treatment) were administered to 20-week-old male mice once daily for 14 consecutive days. Then, DOX (10 mg/kg; ip) was administered to male mice under B307 and sham treatments at 22-23 weeks of age. Cardiac functions in these mice were assessed via echocardiography at 23-24 weeks of age. Then, expressions of oxidative stress, inflammation, and apoptosis-related proteins were examined in the heart tissue by immunohistochemistry and Western blotting at 24-25 weeks of age. Apart from this, mortality rate and body weight were measured during the experiment. RESULTS In vitro, the relative viabilities of Huh7 cancer cells under treatment with the herbal formula B307 had shown no obvious change at doses of 10-160 ng/mL. Furthermore, the relative viabilities of Huh7 cancer cells were significantly reduced under DOX treatment but showed no significant change under DOX only and DOX plus B307 treatment. In vivo, the mortality rate, body weight, and cardiac function of DOX-treated mice were obviously improved under oral treatment with the herbal formula B307. Furthermore, cardiac expressions of endothelial nitric oxide synthase, superoxide dismutase 2, and B-cell lymphoma 2 were significantly enhanced, but tumor necrosis factor alpha, NFKB1 (p50 and its precursor, p105), neurotrophin-3, Bcl-2-associated X protein, calpain, caspase 12, caspase 9, and caspase 3 were significantly suppressed in DOX-treated mice under oral treatment with the herbal formula B307. CONCLUSION Our results revealed that oral treatment with the herbal formula B307 may provide cardioprotection in DOX-treated mice via suppressing oxidative stress, inflammation, and apoptosis in heart tissue. We believe that the herbal formula B307 may be developed as a potential alternative treatment for cancer patients under DOX treatment.
Collapse
Affiliation(s)
- Chia-Ying Lien
- Department of Athletics, National Taiwan University, Taipei, Taiwan
| | - Tai-Yuan Chuang
- Department of Athletics, National Taiwan University, Taipei, Taiwan
| | - Chih-Hsiang Hsu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Lung Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Sheue-Er Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
15
|
Wang Z, Wang Y, Ye J, Lu X, Cheng Y, Xiang L, Chen L, Feng W, Shi H, Yu X, Lin L, Zhang H, Xiao J, Li X. bFGF attenuates endoplasmic reticulum stress and mitochondrial injury on myocardial ischaemia/reperfusion via activation of PI3K/Akt/ERK1/2 pathway. J Cell Mol Med 2014; 19:595-607. [PMID: 25533999 PMCID: PMC4369816 DOI: 10.1111/jcmm.12346] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 05/14/2014] [Indexed: 12/11/2022] Open
Abstract
Extensive research focused on finding effective strategies to prevent or improve recovery from myocardial ischaemia/reperfusion (I/R) injury. Basic fibroblast growth factor (bFGF) has been shown to have therapeutic potential in some heart disorders, including ischaemic injury. In this study, we demonstrate that bFGF administration can inhibit the endoplasmic reticulum (ER) stress and mitochondrial dysfunction induced in the heart in a mouse model of I/R injury. In vitro, bFGF exerts a protective effect by inhibiting the ER stress response and mitochondrial dysfunction proteins that are induced by tert-Butyl hydroperoxide (TBHP) treatment. Both of these in vivo and in vitro effects are related to the activation of two downstream signalling pathways, PI3K/Akt and ERK1/2. Inhibition of these PI3K/Akt and ERK1/2 pathways by specific inhibitors, LY294002 and PD98059, partially reduces the protective effect of bFGF. Taken together, our results indicate that the cardioprotective role of bFGF involves the suppression of ER stress and mitochondrial dysfunction in ischaemic oxidative damage models and oxidative stress-induced H9C2 cell injury; furthermore, these effects underlie the activation of the PI3K/Akt and ERK1/2 signalling pathways.
Collapse
Affiliation(s)
- Zhouguang Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Jilin University, Changchun, China; School of Pharmacy, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Epoxyeicosatrienoic acids and cardioprotection: the road to translation. J Mol Cell Cardiol 2014; 74:199-208. [PMID: 24893205 DOI: 10.1016/j.yjmcc.2014.05.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/30/2014] [Accepted: 05/16/2014] [Indexed: 01/10/2023]
Abstract
Cardiovascular disease, including acute myocardial infarction (AMI), is the leading cause of morbidity and mortality globally, despite well-established treatments. The discovery and development of novel therapeutics that prevent the progression of devastating consequences following AMI are thus important in reducing the global burden of this devastating disease. Scientific evidence for the protective effects of epoxyeicosatrienoic acids (EETs) in the cardiovascular system is rapidly emerging and suggests that promoting the effects of these cytochrome P450-derived epoxyeicosanoids is a potentially viable clinical therapeutic strategy. Through a translational lens, this review will provide insight into the potential clinical utility of this therapeutic strategy for AMI by 1) outlining the known cardioprotective effects of EETs and underlying mechanisms demonstrated in preclinical models of AMI with a particular focus on myocardial ischemia-reperfusion injury, 2) describing studies in human cohorts that demonstrate a relationship between EETs and associated pathways with coronary artery disease risk, and 3) discussing preclinical and clinical areas that require further investigation in order to increase the probability of successfully translating this rapidly emerging body of evidence into a clinically applicable therapeutic strategy for AMI.
Collapse
|
17
|
Somaweera H, Ibragimov A, Pappas D. Generation of a chemical gradient across an array of 256 cell cultures in a single chip. Analyst 2014; 138:5566-71. [PMID: 23939026 DOI: 10.1039/c3an00946g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A microfluidic diffusion diluter to create stable chemical gradients across an array of cell cultures was demonstrated. The device enabled concentration based studies to be conducted at 256 different concentrations across individual, low shear cell cultures. A gradient of staurosporine on cells stained with Mitotracker Deep Red (MTDR) showed a concentration-based effect on cell apoptosis across the cell culture array.
Collapse
Affiliation(s)
- Himali Somaweera
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| | | | | |
Collapse
|
18
|
Iyer D, Ray RD, Pappas D. High temporal resolution fluorescence measurements of a mitochondrial dye for detection of early stage apoptosis. Analyst 2013; 138:4892-7. [PMID: 23831722 DOI: 10.1039/c3an01142a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In the present study, early stage apoptosis is explored with high temporal resolution. In addition to monitoring early apoptosis induction in single cells by ultrasensitive confocal fluorescence microscopy (UCFM), the mitochondrial protein release kinetics was explored. The current study shows development and optimization of a novel, rapid apoptosis assay to explore the earliest changes in cells by the intrinsic apoptosis pathway. We show that early apoptotic changes in the mitochondria begin nearly simultaneously with the addition of an apoptosis-inducing drug, such as staurosporine. With a temporal resolution of five minutes, this non-invasive analytical technique can elucidate the earliest apoptotic events in living cells. Moreover, our results show that the mitochondrial inter-membrane proteins are not involved in the extrinsic pathway of Ramos cells mediated by an anti-CD95 antibody. Additional techniques such as light microscopy and flow cytometry were employed to confirm the results obtained by ultrasensitive confocal fluorescence microscopy. The results of this study help to understand the earliest mechanisms of apoptosis induction in cells, enabling new methods of drug testing and dose-response analyses.
Collapse
Affiliation(s)
- Divya Iyer
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | |
Collapse
|
19
|
Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 2013; 8:863-84. [PMID: 23176689 DOI: 10.2217/fca.12.58] [Citation(s) in RCA: 237] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia-reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia-reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.
Collapse
Affiliation(s)
- Keith A Webster
- Department of Molecular & Cellular Pharmacology, University of Miami Medical Center, FL 33101, USA.
| |
Collapse
|
20
|
Pim-1 preserves mitochondrial morphology by inhibiting dynamin-related protein 1 translocation. Proc Natl Acad Sci U S A 2013; 110:5969-74. [PMID: 23530233 DOI: 10.1073/pnas.1213294110] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial morphological dynamics affect the outcome of ischemic heart damage and pathogenesis. Recently, mitochondrial fission protein dynamin-related protein 1 (Drp1) has been identified as a mediator of mitochondrial morphological changes and cell death during cardiac ischemic injury. In this study, we report a unique relationship between Pim-1 activity and Drp1 regulation of mitochondrial morphology in cardiomyocytes challenged by ischemic stress. Transgenic hearts overexpressing cardiac Pim-1 display reduction of total Drp1 protein levels, increased phosphorylation of Drp1-(S637), and inhibition of Drp1 localization to the mitochondria. Consistent with these findings, adenoviral-induced Pim-1 neonatal rat cardiomyocytes (NRCMs) retain a reticular mitochondrial phenotype after simulated ischemia (sI) and decreased Drp1 mitochondrial sequestration. Interestingly, adenovirus Pim-dominant negative NRCMs show increased expression of Bcl-2 homology 3 (BH3)-only protein p53 up-regulated modulator of apoptosis (PUMA), which has been previously shown to induce Drp1 accumulation at mitochondria and increase sensitivity to apoptotic stimuli. Overexpression of the p53 up-regulated modulator of apoptosis-dominant negative adenovirus attenuates localization of Drp1 to mitochondria in adenovirus Pim-dominant negative NRCMs promotes reticular mitochondrial morphology and inhibits cell death during sI. Therefore, Pim-1 activity prevents Drp1 compartmentalization to the mitochondria and preserves reticular mitochondrial morphology in response to sI.
Collapse
|
21
|
Abstract
Since the initial description of apoptosis, a number of different forms of cell death have been described. In this review we will focus on classic caspase-dependent apoptosis and its variations that contribute to diseases. Over fifty years of research have clarified molecular mechanisms involved in apoptotic signaling as well and shown that alterations of these pathways lead to human diseases. Indeed both reduced and increased apoptosis can result in pathology. More recently these findings have led to the development of therapeutic approaches based on regulation of apoptosis, some of which are in clinical trials or have entered medical practice.
Collapse
Affiliation(s)
- Bartolo Favaloro
- Dipartimento di Scienze Biomediche, Universita' "G. d'Annunzio" Chieti-Pescara, Italy
| | | | | | | | | |
Collapse
|
22
|
Calcineurin B subunit acts as a potential agent for preventing cardiac ischemia/reperfusion injury. Mol Cell Biochem 2012; 370:163-71. [DOI: 10.1007/s11010-012-1407-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 07/25/2012] [Indexed: 12/11/2022]
|
23
|
Ho JHC, Hong CY. Cardiovascular protection of magnolol: cell-type specificity and dose-related effects. J Biomed Sci 2012; 19:70. [PMID: 22849814 PMCID: PMC3418199 DOI: 10.1186/1423-0127-19-70] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/26/2012] [Indexed: 12/17/2022] Open
Abstract
Magnolia officinalis has been widely used in traditional Chinese medicine. Magnolol, an active component isolated from Magnolia officinalis, is known to be a cardiovascular protector since 1994. The multiplex mechanisms of magnolol on cardiovascular protection depends on cell types and dosages, and will be reviewed and discussed in this article. Magnolol under low and moderate dosage possesses the ability to protect heart from ischemic/reperfusion injury, reduces atherosclerotic change, protects endothelial cell against apoptosis and inhibits neutrophil-endothelial adhesion. The moderate to high concentration of magnolol mainly acts on smooth muscle cells and platelets. Magnolol induces apoptosis in vascular smooth muscle cells at moderate concentration and inhibits proliferation at moderate and high concentration. High concentration of magnolol also abrogates platelet activation, aggregation and thrombus formation. Magnolol also serves as an smooth muscle relaxant only upon the high concentration. Oral intake of magnolol to reach the therapeutic level for cardiovascular protection is applicable, thus makes magnolol an agent of great potential for preventing cardiovascular diseases in high-risk patients.
Collapse
Affiliation(s)
- Jennifer Hui-Chun Ho
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | | |
Collapse
|
24
|
Chiu JH, Cheng YF, Wang JY, Hsu CF. Remote pharmacological preconditioning on median nerve territory increases Hsp32 expression and attenuates ischemia-reperfusion injury in rat heart. Life Sci 2012; 90:629-36. [PMID: 22369754 DOI: 10.1016/j.lfs.2012.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 01/03/2012] [Accepted: 02/02/2012] [Indexed: 11/26/2022]
Abstract
AIMS The aim of this study was to test the hypothesis that remote pharmacological preconditioning (RPP) induced myocardial heat shock protein (Hsp) 32 expression and attenuated the ischemia-reperfusion (I/R) injury of the heart in rats. MAIN METHODS Animals were injected at the left median nerve territory with chloralose and urethane mixture. At different time intervals, myocardial Hsp32 gene expression was analyzed. Primary heart cultures were used to investigate the direct effect of drug mixture on Hsp32 expression. KEY FINDINGS The results showed that Hsp32 was time- and dose-dependently increased by in vivo drug mixture treatment, but not in primary cultures. RPP significantly decreased the duration of arrhythmia and incidence of stony heart in rats with subsequent I/R injury. SIGNIFICANCE We conclude that RPP on the left median nerve territory induced Hsp32 gene expression in the heart and attenuates myocardial damage functionally after subsequent I/R injury.
Collapse
Affiliation(s)
- Jen-Hwey Chiu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taiwan, ROC.
| | | | | | | |
Collapse
|
25
|
Dong M, Martinez MM, Mayer MF, Pappas D. Single molecule fluorescence correlation spectroscopy of single apoptotic cells using a red-fluorescent caspase probe. Analyst 2012; 137:2997-3003. [PMID: 22314869 DOI: 10.1039/c2an16173g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The detection of single molecules in single cells has enabled biochemical analyses to be conducted with high sensitivity and high temporal resolution. In this work, detection of apoptosis was studied by single molecule fluorescence correlation spectroscopy (FCS) in single living cells. Caspase activity was assayed using a new red fluorogenic probe that avoids the spectral overlap of green fluorescent probes and cell autofluorescence. This new probe, 2SBPO-Casp, was synthesized by coupling a water-soluble Nile Blue derivative (2SBPO) to an aspartic acid residue. Upon apoptosis induction and caspase activation, free 2SBPO dye is shown to accumulate inside the cell after probe cleavage. In previous work in our lab, single molecule fluorescence in single apoptotic cells was detected 45 min after induction using a rhodamine 110-based probe. However, significant statistical analysis was needed to exclude false positives. The use of 2SBPO-Casp overcomes the autofluorescence problem and offers a steady fluorescence signal. In our single molecule FCS measurements, Ramos cells were determined apoptotic on the basis of their correlation coefficient value (R(2)). Cells that contain an R(2) ≥ 0.65 were identified as highly correlated and therefore determined to be apoptotic. Single apoptotic cells identified in this manner were found as early as 30 min after induction and the number of apoptotic cells reached a peak value at the 3rd hour, which is consistent with other techniques. Using single molecule techniques and a new apoptosis probe, the temporal dynamics were elucidated with better sensitivity and resolution than in previous studies.
Collapse
Affiliation(s)
- Meicong Dong
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | | | |
Collapse
|
26
|
Hernández G, Lal H, Fidalgo M, Guerrero A, Zalvide J, Force T, Pombo CM. A novel cardioprotective p38-MAPK/mTOR pathway. Exp Cell Res 2011; 317:2938-49. [PMID: 22001647 DOI: 10.1016/j.yexcr.2011.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 10/17/2022]
Abstract
Despite intensive study, the mechanisms regulating activation of mTOR and the consequences of that activation in the ischemic heart remain unclear. This is particularly true for the setting of ischemia/reperfusion (I/R) injury. In a mouse model of I/R injury, we observed robust mTOR activation, and its inhibition by rapamycin increased injury. Consistent with the in-vivo findings, mTOR activation was also protective in isolated cardiomyocytes exposed to two models of I/R. Moreover, we identify a novel oxidant stress-activated pathway regulating mTOR that is critically dependent on p38-MAPK and Akt. This novel p38-regulated pathway signals downstream through REDD1, Tsc2, and 14-3-3 proteins to activate mTOR and is independent of AMPK. The protective role of p38/Akt and mTOR following oxidant stress is a general phenomenon since we observed it in a wide variety of cell types. Thus we have identified a novel protective pathway in the cardiomyocyte involving p38-mediated mTOR activation. Furthermore, the p38-dependent protective pathway might be able to be selectively modulated to enhance cardio-protection while not interfering with the inhibition of the better-known detrimental p38-dependent pathways.
Collapse
Affiliation(s)
- Gonzalo Hernández
- Department of Physiology, School of Medicine, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| | | | | | | | | | | | | |
Collapse
|
27
|
Khanal G, Chung K, Solis-Wever X, Johnson B, Pappas D. Ischemia/reperfusion injury of primary porcine cardiomyocytes in a low-shear microfluidic culture and analysis device. Analyst 2011; 136:3519-26. [PMID: 21271001 PMCID: PMC3099142 DOI: 10.1039/c0an00845a] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ischemia/reperfusion (I/R) injury was induced in primary porcine cardiomyocytes in a low-shear microfluidic culture chip. The chip was capable of sustaining the cardiomyocyte culture and inducing I/R injury by subjecting the cells to periods of hypoxia lasting 3-4 hours followed by normoxia. Mitochondrial membrane potential was assayed using MitoTracker Red to follow mitochondrial depolarization, the earliest stage of apoptosis. Cell adhesion and morphology were also determined simultaneously with fluorescence measurements. Changes in membrane potential were observed earlier than previously reported, with mitochondria becoming depolarized as early as 2 hours into the ischemia period. The cells with depolarized mitochondria were deemed apoptotic. Out of 38-61 cells per time frame, the fraction of apoptotic cells was found to be similar to control samples (3%) at two hours of ischemia, which increased up to 22% at the end of the ischemia period as compared to 0% in the control samples. Morphological analysis of cells showed that 4 hours of ischemia followed by reperfusion produced blebbing cells within 2 hours of restoring oxygen to the chip. This approach is a versatile method for cardiomyocyte stress, and in future work additional analytical probes can be incorporated for a multi-analyte assay of cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Grishma Khanal
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Kiyong Chung
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX 79409
| | - Ximena Solis-Wever
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| | - Bradley Johnson
- Department of Animal and Food Science, Texas Tech University, Lubbock, TX 79409
| | - Dimitri Pappas
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409
| |
Collapse
|
28
|
Shao ZH, Wojcik KR, Qin Y, Li CQ, Hoek TLV, Hamann KJ. Blockade of Caspase-2 Activity Inhibits Ischemia/Reperfusion-Induced Mitochondrial Reactive Oxygen Burst and Cell Death in Cardiomyocytes. J Cell Death 2011. [DOI: 10.4137/jcd.s6723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We previously showed that initiator caspases-2 and −8 are prominently activated in ischemia/reperfusion (I/R)-induced injury in cardiomyocytes, but while blockade of caspase-2 activity enhanced cell survival, blockade of caspase-8 activity did not protect cardiomyocytes. Because apoptotic death in these cells is characterized by a burst of reactive oxygen species (ROS) at reperfusion and their survival by inhibition of this burst, we examined the effects of blocking caspase-2 and caspase-8 activities on ROS production. Caspase-2 inhibition blocked the reperfusion-induced ROS burst, while inhibition of caspase-8 did not. We also examined effects of caspase inhibition on mitochondrial membrane potential (ΔΨm) and mitochondrial function and found that blocking caspase-2, but not caspase-8, allowed recovery of ΔΨm and mitochondrial functionality. Furthermore, knockdown of caspase-2 by small-interfering (si)RNA confirmed caspase-2 participation in cytochrome c release, which correlates with loss of ΔΨm and cell death in these cardiomyocytes.
Collapse
Affiliation(s)
- Zuo-Hui Shao
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | | - Yimin Qin
- Sections of Pulmonary and Critical Care Medicine
| | - Chang-Qing Li
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | - Terry L. Vanden Hoek
- Emergency Medicine, Department of Medicine and The emergency resuscitation Center, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
29
|
Vainshtein A, Kazak L, Hood DA. Effects of endurance training on apoptotic susceptibility in striated muscle. J Appl Physiol (1985) 2011; 110:1638-45. [PMID: 21474699 DOI: 10.1152/japplphysiol.00020.2011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increase in the production of reactive oxygen species occurs with muscle disuse, ischemic cardiomyopathy, and conditions that arise with senescence. The resulting oxidative stress is associated with apoptosis-related myopathies. Recent research has suggested that chronic exercise is protective against mitochondrially mediated programmed cell death. To further investigate this, we compared soleus (Sol) and cardiac muscles of voluntary wheel-trained (T; 10 wk) and untrained (C) animals. Training produced a 52% increase in muscle cytochrome c oxidase (COX) activity. Sol and left ventricle (LV) strips were isolated and incubated in vitro with H2O2 for 4 h. Strips were then fractionated into cytosolic and mitochondrial fractions. Whole muscle apoptosis-inducing factor (AIF) and Bax/Bcl-2 levels were reduced in both the Sol and LV from T animals. H2O2 treatment induced increases in JNK phosphorylation, cofilin-2 localization to the mitochondria, as well as cytosolic AIF in both Sol and LV of T and C animals, respectively. Mitochondrial Bax and cytosolic cytochrome c were augmented under oxidative stress in the LV only. The H2O2-induced increases in P-JNK, mitochondrial Bax, and cytosolic AIF were ablated in the LV of T animals. These data suggest that short-term oxidative stress can induce apoptotic signaling in striated muscles in vitro. In addition, training can attenuate oxidative stress-induced apoptotic signaling in a tissue-specific manner, with an effect that is most prominent in cardiac muscle.
Collapse
Affiliation(s)
- Anna Vainshtein
- School of Kinesiology and Health Science, York Univ., Toronto, Ontario M3J 1P3, Canada
| | | | | |
Collapse
|
30
|
Petrosillo G, Di Venosa N, Moro N, Colantuono G, Paradies V, Tiravanti E, Federici A, Ruggiero FM, Paradies G. In vivo hyperoxic preconditioning protects against rat-heart ischemia/reperfusion injury by inhibiting mitochondrial permeability transition pore opening and cytochrome c release. Free Radic Biol Med 2011; 50:477-83. [PMID: 21130864 DOI: 10.1016/j.freeradbiomed.2010.11.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 11/22/2010] [Accepted: 11/24/2010] [Indexed: 12/24/2022]
Abstract
In vivo hyperoxic preconditioning (PC) has been shown to protect against ischemia/reperfusion (I/R) myocardial damage. Mitochondrial permeability transition pore (MPTP) opening is an important event in cardiomyocyte cell death occurring during I/R and therefore a possible target for cardioprotection. We tested the hypothesis that in vivo hyperoxic PC, obtained by mechanical ventilation of animals, could protect heart against I/R injury by inhibiting MPTP opening and cytochrome c release from mitochondria. Mechanically ventilated rats were first exposed to a short period of hyperoxia and isolated hearts were subsequently subjected to I/R in a Langendorff apparatus. Hyperoxic PC significantly improved the functional recovery of hearts on reperfusion, reduced the infarct size, and decreased necrotic damage as shown by the reduced release of lactate dehydrogenase. Mitochondria from hyperoxic PC hearts were less sensitive than mitochondria from reperfused heart to MPTP opening. In addition, hyperoxic PC prevented mitochondrial NAD(+) depletion, an indicator of MPTP opening, and cytochrome c release as well as cardiolipin oxidation/depletion associated with I/R. Together, these results demonstrate that hyperoxic PC protects against heart I/R injury by inhibiting MPTP opening and cytochrome c release. Thus, in vivo hyperoxic PC may represent a useful strategy for the treatment of cardiac I/R injury and could have potential applications in clinical practice.
Collapse
Affiliation(s)
- G Petrosillo
- Department of Biochemistry and Molecular Biology and CNR Institute of Biomembranes and Bioenergetics, University of Bari, 70126 Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Chronic formoterol administration reduces cardiac mitochondrial protein synthesis and oxidative capacity in mice. Int J Cardiol 2010; 146:270-2. [PMID: 21095020 DOI: 10.1016/j.ijcard.2010.10.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 10/23/2010] [Indexed: 02/04/2023]
|