1
|
Murphy AR, Asif H, Cingoz H, Gourronc FA, Ankrum JA, Klingelhutz AJ, Kim JJ. The Impact of High Adiposity on Endometrial Progesterone Response and Metallothionein Regulation. J Clin Endocrinol Metab 2024; 109:2920-2936. [PMID: 38597153 PMCID: PMC11479696 DOI: 10.1210/clinem/dgae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
CONTEXT Obesity is a disease with deleterious effects on the female reproductive tract, including the endometrium. OBJECTIVE We sought to understand the effects of excess adipose on the benign endometrium. METHODS A physiologic in vitro coculture system was developed, consisting of multicellular human endometrial organoids, adipose spheroids, and menstrual cycle hormones. Native human endometrial tissue samples from women with and without obesity were also analyzed. Benign endometrial tissues from premenopausal women ages 33 to 53 undergoing hysterectomy were obtained following written consent at Northwestern University Prentice Women's Hospital, Chicago, Illinois. Gene expression, protein expression, chromatin binding, and expression of DNA damage and oxidative damage markers were measured. RESULTS Under high adiposity conditions, endometrial organoids downregulated endometrial secretory phase genes, suggestive of an altered progesterone response. Progesterone specifically upregulated the metallothionein (MT) gene family in the epithelial cells of endometrial organoids, while high adiposity significantly downregulated the MT genes. Silencing MT genes in endometrial epithelial cells resulted in increased DNA damage, illustrating the protective role of MTs. Native endometrium from women with obesity displayed increased MT expression and oxidative damage in the stroma and not in the epithelium, indicating the cell-specific impact of obesity on MT genes. CONCLUSION Taken together, the in vitro and in vivo systems used here revealed that high adiposity or obesity can alter MT expression by decreasing progesterone response in the epithelial cells and increasing oxidative stress in the stroma.
Collapse
Affiliation(s)
- Alina R Murphy
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Huma Asif
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Harun Cingoz
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Françoise A Gourronc
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - J Julie Kim
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061112. [PMID: 35740009 PMCID: PMC9220138 DOI: 10.3390/antiox11061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
3
|
Cytoprotective Effect of Vitamin D on Doxorubicin-Induced Cardiac Toxicity in Triple Negative Breast Cancer. Int J Mol Sci 2021; 22:ijms22147439. [PMID: 34299059 PMCID: PMC8305038 DOI: 10.3390/ijms22147439] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Doxorubicin (Dox) is a first-line treatment for triple negative breast cancer (TNBC), but its use may be limited by its cardiotoxicity mediated by the production of reactive oxygen species. We evaluated whether vitamin D may prevent Dox-induced cardiotoxicity in a mouse TNBC model. Methods: Female Balb/c mice received rodent chow with vitamin D3 (1500 IU/kg; vehicle) or chow supplemented with additional vitamin D3 (total, 11,500 IU/kg). the mice were inoculated with TNBC tumors and treated with intraperitoneal Dox (6 or 10 mg/kg). Cardiac function was evaluated with transthoracic echocardiography. The cardiac tissue was evaluated with immunohistochemistry and immunoblot for levels of 4-hydroxynonenal, NAD(P)H quinone oxidoreductase (NQO1), C-MYC, and dynamin-related protein 1 (DRP1) phosphorylation. Results: At 15 to 18 days, the mean ejection fraction, stroke volume, and fractional shortening were similar between the mice treated with vitamin D + Dox (10 mg/kg) vs. vehicle but significantly greater in mice treated with vitamin D + Dox (10 mg/kg) vs. Dox (10 mg/kg). Dox (10 mg/kg) increased the cardiac tissue levels of 4-hydroxynonenal, NQO1, C-MYC, and DRP1 phosphorylation at serine 616, but these increases were not observed with vitamin D + Dox (10 mg/kg). A decreased tumor volume was observed with Dox (10 mg/kg) and vitamin D + Dox (10 mg/kg). Conclusions: Vitamin D supplementation decreased Dox-induced cardiotoxicity by decreasing the reactive oxygen species and mitochondrial damage, and did not decrease the anticancer efficacy of Dox against TNBC.
Collapse
|
4
|
Juul-Nielsen C, Shen J, Stenvinkel P, Scholze A. Systematic review of the nuclear factor erythroid 2-related factor 2 (NRF2) system in human chronic kidney disease: alterations, interventions, and relation to morbidity. Nephrol Dial Transplant 2021; 37:904-916. [PMID: 33547785 DOI: 10.1093/ndt/gfab031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND NRF2 and its effectors NAD(P)H:quinoneoxidoreductase 1 (NQO1) and heme oxygenase 1 (HO-1) are of interest in kidney disease. We therefore reviewed studies about their status in patients with chronic kidney disease (CKD). METHODS We undertook systematic searches of PubMed and EMBASE databases. Alterations of NRF2, NQO1 and HO-1 in CKD, their responses to interventions and their relation to clinically relevant parameters were reported. RESULTS We identified 1373 articles, of which 32 studies met the inclusion criteria. NRF2 levels were decreased in the majority of analyses of CKD patients. Half of the analyses showed a similar or increased NQO1 level vs. control, whereas NQO1 was decreased in half of the analyses. Most of the studies reported either an increased or similar HO-1 level in CKD patients compared to controls. For patients with CKD stages 1-4, studies reported positive correlations to markers of kidney disease severity. Also, positive associations of NQO1/HO-1 levels to inflammation and comorbidities were reported. One third of the studies showed discordant changes between gene expression and protein level of NRF2 system components. Two thirds of intervention studies (50% dietary, such as using resistant starch) reported an increase of NRF2, NQO1, or HO-1. CONCLUSIONS In patients with CKD, NRF2 expression was downregulated, while NQO1 and HO-1 showed varying alterations related to inflammation, comorbidities, and severity of kidney damage. Interventions that increased NRF2 system components were described, but their effectiveness and clinical relevance require further clinical studies of high quality. Research on gene expression together with protein analyses is indispensable to understand NRF2 system alterations in CKD.
Collapse
Affiliation(s)
| | - Jianlin Shen
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University
| | - Peter Stenvinkel
- Department of Renal Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, Odense, Denmark.,Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Bafor EE, Uchendu AP, Osayande OE, Omoruyi O, Omogiade UG, Panama EE, Elekofehinti OO, Oragwuncha EL, Momodu A. Ascorbic Acid and Alpha-Tocopherol Contribute to the Therapy of Polycystic Ovarian Syndrome in Mouse Models. Reprod Sci 2020; 28:102-120. [PMID: 32725591 DOI: 10.1007/s43032-020-00273-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects up to 10% of women within reproductive ages and has been a cause of infertility and poor quality of life. Alteration in the oxidant-antioxidant profile occurs in PCOS. This study, therefore, investigates the contribution of ascorbic acid (AA) and alpha-tocopherol(ATE) on different PCOS parameters. The mifepristone and letrozole models were used, and young mature female mice were randomly assigned to groups of six per group. On PCOS induction with either mifepristone or letrozole, mice were administered AA and ATE at doses ranging from 10-1000mg/kg to 0.1-1000 mg/kg in the respective models. Vaginal cytology, body weights, and temperature, as well as blood glucose, testosterone, and insulin levels, were measured. Total antioxidant capacity and malondialdehyde levels were analyzed. Determination of gene expression of some reactive oxygen species and histomorphological analysis on the ovaries and uteri were performed. At the end of the experiments, AA and ATE restored reproductive cycling, with AA being more effective. AA and ATE increased fasting blood glucose but had no significant effect on serum insulin levels. AA decreased testosterone levels, but ATE caused slight increases. AA and ATE both increased total antioxidant capacity and decreased malondialdehyde levels. AA and ATE also slightly upregulated the mRNA expressions of catalase, superoxide dismutase, and heme oxygenase 1 mainly. AA and ATE also decreased ovarian weight and mostly resolved cysts in the ovaries and congestion in the uterus. This study has shown that AA and ATE are beneficial in the therapy of PCOS.
Collapse
Affiliation(s)
- Enitome E Bafor
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria.
| | - Adaeze P Uchendu
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| | - Omorede E Osayande
- Department of Physiology, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin City, Nigeria
| | - Osemelomen Omoruyi
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| | - Uyi G Omogiade
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| | - Evuarherhere E Panama
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| | - Olusola O Elekofehinti
- Bioinformatics and Molecular Biology Unit, Department of Biochemistry, Federal University of Technology, Akure, Nigeria
| | - Ebube L Oragwuncha
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| | - Asanat Momodu
- Department of Pharmacology and Toxicology, University of Benin, Benin City, Edo State, Nigeria
| |
Collapse
|
6
|
Tran KT, Pallesen JS, Solbak SMØ, Narayanan D, Baig A, Zang J, Aguayo-Orozco A, Carmona RMC, Garcia AD, Bach A. A Comparative Assessment Study of Known Small-Molecule Keap1-Nrf2 Protein-Protein Interaction Inhibitors: Chemical Synthesis, Binding Properties, and Cellular Activity. J Med Chem 2019; 62:8028-8052. [PMID: 31411465 DOI: 10.1021/acs.jmedchem.9b00723] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inhibiting the protein-protein interaction (PPI) between the transcription factor Nrf2 and its repressor protein Keap1 has emerged as a promising strategy to target oxidative stress in diseases, including central nervous system (CNS) disorders. Numerous non-covalent small-molecule Keap1-Nrf2 PPI inhibitors have been reported to date, but many feature suboptimal physicochemical properties for permeating the blood-brain barrier, while others contain problematic structural moieties. Here, we present the first side-by-side assessment of all reported Keap1-Nrf2 PPI inhibitor classes using fluorescence polarization, thermal shift assay, and surface plasmon resonance-and further evaluate the compounds in an NQO1 induction cell assay and in counter tests for nonspecific activities. Surprisingly, half of the compounds were inactive or deviated substantially from reported activities, while we confirm the cross-assay activities for others. Through this study, we have identified the most promising Keap1-Nrf2 inhibitors that can serve as pharmacological probes or starting points for developing CNS-active Keap1 inhibitors.
Collapse
Affiliation(s)
- Kim T Tran
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Jakob S Pallesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Sara M Ø Solbak
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Dilip Narayanan
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Amina Baig
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Jie Zang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Alejandro Aguayo-Orozco
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Rosa M C Carmona
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| | - Anthony D Garcia
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark.,École Nationale Supérieure de Chimie de Rennes , 11 Allée de Beaulieu , CS 50837, Rennes Cedex 7 35708 , France
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences , University of Copenhagen , Universitetsparken 2 , DK-2100 Copenhagen , Denmark
| |
Collapse
|
7
|
Atiomo W, Shafiee MN, Chapman C, Metzler VM, Abouzeid J, Latif A, Chadwick A, Kitson S, Sivalingam VN, Stratford IJ, Rutland CS, Persson JL, Ødum N, Fuentes‐Utrilla P, Jeyapalan JN, Heery DM, Crosbie EJ, Mongan NP. Expression of NAD(P)H quinone dehydrogenase 1 (NQO1) is increased in the endometrium of women with endometrial cancer and women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 2017; 87:557-565. [PMID: 28748640 PMCID: PMC5697576 DOI: 10.1111/cen.13436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/11/2017] [Accepted: 07/24/2017] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Women with a prior history of polycystic ovary syndrome (PCOS) have an increased risk of endometrial cancer (EC). AIM To investigate whether the endometrium of women with PCOS possesses gene expression changes similar to those found in EC. DESIGN AND METHODS Patients with EC, PCOS and control women unaffected by either PCOS or EC were recruited into a cross-sectional study at the Nottingham University Hospital, UK. For RNA sequencing, representative individual endometrial biopsies were obtained from women with EC, PCOS and a woman unaffected by PCOS or EC. Expression of a subset of differentially expressed genes identified by RNA sequencing, including NAD(P)H quinone dehydrogenase 1 (NQO1), was validated by quantitative reverse transcriptase PCR validation (n = 76) and in the cancer genome atlas UCEC (uterine corpus endometrioid carcinoma) RNA sequencing data set (n = 381). The expression of NQO1 was validated by immunohistochemistry in EC samples from a separate cohort (n = 91) comprised of consecutive patients who underwent hysterectomy at St Mary's Hospital, Manchester, between 2011 and 2013. A further 6 postmenopausal women with histologically normal endometrium who underwent hysterectomy for genital prolapse were also included. Informed consent and local ethics approval were obtained for the study. RESULTS We show for the first that NQO1 expression is significantly increased in the endometrium of women with PCOS and EC. Immunohistochemistry confirms significantly increased NQO1 protein expression in EC relative to nonmalignant endometrial tissue (P < .0001). CONCLUSIONS The results obtained here support a previously unrecognized molecular link between PCOS and EC involving NQO1.
Collapse
Affiliation(s)
- William Atiomo
- Faculty of Medicine and Health SciencesDivision of Obstetrics and Gynaecology and Child HealthSchool of MedicineQueen's Medical CentreNottingham University HospitalNottinghamUK
| | - Mohamad Nasir Shafiee
- Faculty of Medicine and Health SciencesDivision of Obstetrics and Gynaecology and Child HealthSchool of MedicineQueen's Medical CentreNottingham University HospitalNottinghamUK
- Faculty of MedicineDepartment Obstetrics and GynaecologyUKM Medical CentreCherasKuala LumpurMalaysia
| | - Caroline Chapman
- Faculty of Medicine and Health SciencesDivision of Obstetrics and Gynaecology and Child HealthSchool of MedicineQueen's Medical CentreNottingham University HospitalNottinghamUK
| | - Veronika M. Metzler
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jad Abouzeid
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Ayşe Latif
- Faculty of Biology, Medicine and HealthDivision of Pharmacy and OptometrySchool of Health SciencesUniversity of ManchesterManchesterUK
| | - Amy Chadwick
- Faculty of BiologyDivision of Molecular & Clinical Cancer SciencesMedicine and HealthUniversity of ManchesterManchesterUK
| | - Sarah Kitson
- Faculty of BiologyDivision of Molecular & Clinical Cancer SciencesMedicine and HealthUniversity of ManchesterManchesterUK
- Department of Obstetrics and GynaecologyCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
- Manchester School of PharmacyUniversity of ManchesterManchesterUK
| | - Vanitha N. Sivalingam
- Faculty of BiologyDivision of Molecular & Clinical Cancer SciencesMedicine and HealthUniversity of ManchesterManchesterUK
- Department of Obstetrics and GynaecologyCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
- Manchester School of PharmacyUniversity of ManchesterManchesterUK
| | - Ian J. Stratford
- Faculty of Biology, Medicine and HealthDivision of Pharmacy and OptometrySchool of Health SciencesUniversity of ManchesterManchesterUK
| | - Catrin S. Rutland
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | - Jenny L. Persson
- Clinical Research CenterLund UniversityMalmöSweden
- Department of Molecular BologyUmeå UniversityUmeåSweden
| | - Niels Ødum
- Department of Immunology and MicrobiologyUniversity of CopenhagenKobenhavnDenmark
| | | | - Jennie N. Jeyapalan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
| | | | - Emma J. Crosbie
- Faculty of BiologyDivision of Molecular & Clinical Cancer SciencesMedicine and HealthUniversity of ManchesterManchesterUK
- Department of Obstetrics and GynaecologyCentral Manchester University Hospitals NHS Foundation TrustManchester Academic Health Science CentreManchesterUK
- Manchester School of PharmacyUniversity of ManchesterManchesterUK
| | - Nigel P. Mongan
- Faculty of Medicine and Health SciencesSchool of Veterinary Medicine and ScienceUniversity of NottinghamNottinghamUK
- Department of PharmacologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
8
|
Li W, Li Y, Sun R, Zhou S, Li M, Feng M, Xie Y. Dual character of flavonoids in attenuating and aggravating ischemia-reperfusion-induced myocardial injury. Exp Ther Med 2017; 14:1307-1314. [PMID: 28810591 PMCID: PMC5525640 DOI: 10.3892/etm.2017.4670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
The concept that flavonoids exert cardioprotection against myocardial ischemia-reperfusion (I/R) injury has been acknowledged by a large body of evidence. However, recent studies reported cardiotoxic effects of certain flavonoids, while the underlying mechanisms have remained largely elusive. Flavonoids have been demonstrated to activate aryl hydrocarbon receptor (Ahr), which is implicated in an array of cell signaling processes. The present study examined the cardioprotective roles of quercetin (Qu) and β-naphthoflavone (β-NF) against I/R injury and explored whether the underlying mechanism proceeds via molecular signaling downstream of Ahr. An oxygen glucose deprivation/reoxygenation (OGD/R) model of I/R was established in myocardial H9c2 cells in the absence or presence of Qu or β-NF. Qu as well as β-NF reversed OGD/R-induced overproduction of reactive oxygen species by increasing the anti-oxidative capacity of the cells and protected them from lethal injury, as demonstrated by a decreased cell death rate, lactate hydrogenase leakage and caspase-3 activity as determined by flow cytometry, colorimetric assay and western blot analysis, respectively. Immunocytochemistry, co-immunoprecipitation and western blot assays collectively revealed that Qu and β-NF engendered the translocation of Ahr from the cytoplasm into the cell nucleus, where binding of Ahr with the Ahr nuclear translocator (ARNT) blocked its binding to hypoxia-inducible factor (HIF)-1α, which inhibited the cardioprotection of HIF-1α, including the induction of nitric oxide (NO) and inhibition of vascular endothelial growth factor (VEGF) production. Ahr knockdown recovered the binding of ARNT to HIF-1α and the generation of NO and VEGF. The results of the present study suggested a dual character of Qu and β-NF in the process of myocardial I/R.
Collapse
Affiliation(s)
- Wenqiang Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China.,Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yun Li
- Department of Emergency, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong 250013, P.R. China
| | - Ruifang Sun
- Department of Joint Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Sumei Zhou
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Meifeng Li
- Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Mingchen Feng
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yingguang Xie
- Intensive Care Unit, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
9
|
Zhu Y, Bi F, Li Y, Yin H, Deng N, Pan H, Li D, Xiao B. α- and β-Naphthoflavone synergistically attenuate H 2O 2-induced neuron SH-SY5Y cell damage. Exp Ther Med 2017; 13:1143-1150. [PMID: 28450955 DOI: 10.3892/etm.2017.4045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 11/11/2016] [Indexed: 01/07/2023] Open
Abstract
Previous studies have demonstrated an association between neurological diseases and oxidative stress (OS). Naphthoflavone is a synthetic derivative of naturally occurring flavonoids that serves an important role in the treatment and prevention of OS-related diseases. The current study was designed to apply α- and β-Naphthoflavone individually and in combination to counteract the detrimental effects of OS on neurons in vitro. Neuronal SH-SY5Y cells were subjected to 20 µM H2O2, followed by exposure to 20 µM α-Naphthoflavone and/or 10 µM β-Naphthoflavone. Results indicated that α- and β-Naphthoflavone effectively antagonized the apoptosis-promoting effect of H2O2 on neuronal SH-SY5Y cells, and that β-Naphthoflavone significantly (P<0.05) reversed H2O2-inhibited cell viability. Notably, co-treatment of α- and β-Naphthoflavone reversed the H2O2-induced apoptosis rate elevation and cell viability reduction. Further analysis demonstrated that H2O2 inhibited the activities of antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase, but this was reversed by the co-treatment with α- and β-Naphthoflavone and selectively enhanced by the treatment with α- or β-Naphthoflavone. H2O2-stimulated p38 mitogen-activated protein kinase activation was repressed following treatment with α- and/or β-Naphthoflavone, along with a decreased expression of the apoptosis-related factors and inhibited caspase-3 activation. In conclusion, co-treatment with α- and β-Naphthoflavone minimized H2O2-led neuron damage compared with treatment with α- or β-Naphthoflavone, suggesting a synergetic effect between α- and β-Naphthoflavone. This indicates that utilizing α- and β-Naphthoflavone together in the clinical setting may provide a novel therapeutic for neurological disease.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Fangfang Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yanchun Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Huiming Yin
- Department of Respiration, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Na Deng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Haiquan Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongfang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Jiang S, Yang Y, Li T, Ma Z, Hu W, Deng C, Fan C, Lv J, Sun Y, Yi W. An overview of the mechanisms and novel roles of Nrf2 in cardiovascular diseases. Expert Opin Ther Targets 2016; 20:1413-1424. [PMID: 27756179 DOI: 10.1080/14728222.2016.1250887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic leucine zipper (bZIP) transcription factor of the cap'n'collar (CNC) family that is present in various organs. The cardiovascular system (CVS) is susceptible to a spectrum of diseases that are strongly associated with increased risks of mortality and morbidity, and studies have demonstrated that Nrf2 has a pivotal role in protection against cardiovascular diseases (CVDs). Areas covered: Nrf2 is a basic protective molecule that guards against CVD by attenuating oxidative stress, mitochondrial dysfunction, and inflammation. Initially, we briefly introduce the biological characteristics of Nrf2 and the newly discovered Neh7 domain. Next, we discuss the concrete roles of Nrf2 in the CVS and enumerate some related upstream molecules and downstream targets. Lastly, we expand our focus to the behaviors of Nrf2 in CVDs and discuss potential research directions. Expert opinion: Although certain studies have cast doubt on the positive actions of Nrf2 in the CVS, Nrf2 is a pivotal endogenous molecule for defense against CVD. The review compiled here may serve as a broad and comprehensive reference for the roles of Nrf2 in the CVS, with the aim of facilitating the design of new drugs and clinical therapies for CVDs.
Collapse
Affiliation(s)
- Shuai Jiang
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
- d Department of Aerospace Medicine , The Fourth Military Medical University , Xi'an , China
| | - Yang Yang
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
- c Department of Thoracic and Cardiovascular Surgery , Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , Jiangsu , China
| | - Tian Li
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Zhiqiang Ma
- e Department of Thoracic Surgery, Tangdu Hospital , The Fourth Military Medical University , Xi'an , China
| | - Wei Hu
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Chao Deng
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Chongxi Fan
- e Department of Thoracic Surgery, Tangdu Hospital , The Fourth Military Medical University , Xi'an , China
| | - Jianjun Lv
- b Department of Biomedical Engineering , The Fourth Military Medical University , Xi'an , China
| | - Yang Sun
- f Department of Geriatrics, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| | - Wei Yi
- a Department of Cardiovascular Surgery, Xijing Hospital , The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
11
|
Byrne AM, Ruiz-Lopez AM, Roche SL, Moloney JN, Wyse-Jackson AC, Cotter TG. The synthetic progestin norgestrel modulates Nrf2 signaling and acts as an antioxidant in a model of retinal degeneration. Redox Biol 2016; 10:128-139. [PMID: 27744118 PMCID: PMC5065647 DOI: 10.1016/j.redox.2016.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is one of the most common retinal degenerative conditions affecting people worldwide, and is currently incurable. It is characterized by the progressive loss of photoreceptors, in which the death of rod cells leads to the secondary death of cone cells; the cause of eventual blindness. As rod cells die, retinal-oxygen metabolism becomes perturbed, leading to increased levels of reactive oxygen species (ROS) and thus oxidative stress; a key factor in the secondary death of cones. In this study, norgestrel, an FDA-approved synthetic analog of progesterone, was found to be a powerful neuroprotective antioxidant, preventing light-induced ROS in photoreceptor cells, and subsequent cell death. Norgestrel also prevented light-induced photoreceptor morphological changes that were associated with ROS production, and that are characteristic of RP. Further investigation showed that norgestrel acts via post-translational modulation of the major antioxidant transcription factor Nrf2; bringing about its phosphorylation, subsequent nuclear translocation, and increased levels of its effector protein superoxide dismutase 2 (SOD2). In summary, these results demonstrate significant protection of photoreceptor cells from oxidative stress, and underscore the potential of norgestrel as a therapeutic option for RP.
Collapse
Affiliation(s)
- Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Biosciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
12
|
Pinacidil-postconditioning is equivalent to ischemic postconditioning in defeating cardiac ischemia-reperfusion injury in rat. Eur J Pharmacol 2016; 780:26-32. [DOI: 10.1016/j.ejphar.2016.03.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 11/21/2022]
|
13
|
Morrissy SJ, Sun H, Zhang J, Strom J, Chen QM. Differential Regulation of Bcl-xL Gene Expression by Corticosterone, Progesterone, and Retinoic Acid. J Biochem Mol Toxicol 2016; 30:309-16. [PMID: 26915917 DOI: 10.1002/jbt.21795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/13/2023]
Abstract
Corticosterone (CT), progesterone (PG), and retinoic acid (RA) are capable of inhibiting Doxorubicin (Dox) from inducing apoptosis in rat cardiomyocytes. Mechanistically, CT, PG, and RA induce increases of Bcl-xL protein and mRNA, and activate a 3.2 kb bcl-x gene promoter. CT and RA, but not PG, induced the activity of a 0.9 kb bcl-x promoter, containing sequences for AP-1 and NF-kB binding. RA, but not CT or PG, induced NF-kB activation. CT, but not PG or RA, induced AP-1 activation, and induction of the 0.9 kb bcl-x reporter by CT was inhibited by dominant negative c-Jun TAM-67 or removal of AP-1 binding site. Therefore, although CT, PG, and RA all induce Bcl-xL mRNA and protein, three independent mechanisms are in operation: while CT induces Bcl-xL via AP-1 transcription factor, and RA induces NF-kB activation and bcl-x promoter activity, PG induces Bcl-xL via a mechanism independent of NF-kB or AP-1.
Collapse
Affiliation(s)
- Steve J Morrissy
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Haipeng Sun
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Jack Zhang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Joshua Strom
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA.
| |
Collapse
|
14
|
Lagoa R, Gañán C, López-Sánchez C, García-Martínez V, Gutierrez-Merino C. The decrease of NAD(P)H:quinone oxidoreductase 1 activity and increase of ROS production by NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity. Biomarkers 2014; 19:142-53. [PMID: 24506563 DOI: 10.3109/1354750x.2014.885084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CONTEXT Doxorubicin cardiotoxicity displays a complex and multifactorial progression. OBJECTIVE Identify early biochemical mechanisms leading to a sustained imbalance of cellular bioenergetics. METHODS Measurements of the temporal evolution of selected biochemical markers after treatment of rats with doxorubicin (20 mg/kg body weight). RESULTS Doxorubicin treatment increased lipid oxidation, catalase activity and production of H₂O₂ by Nox-NADPH oxidases, and down-regulated NAD(P)H quinone oxidoreductase-1 prior eliciting changes in reduced glutathione, protein carbonyls and protein nitrotyrosines. Alterations of mitochondrial and myofibrillar bioenergetics biomarkers were detected only after this oxidative imbalance was established. CONCLUSIONS NAD(P)H quinone oxidoreductase-1 activity and increase of hydrogen peroxide production by NADPH oxidases are early biomarkers in doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Ricardo Lagoa
- ESTG-Polytechnic Institute of Leiria , Leiria , Portugal
| | | | | | | | | |
Collapse
|
15
|
Han KH, Kim MK, Kim HS, Chung HH, Song YS. Protective Effect of Progesterone during Pregnancy against Ovarian Cancer. J Cancer Prev 2013; 18:113-122. [PMID: 25337537 PMCID: PMC4189458 DOI: 10.15430/jcp.2013.18.2.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022] Open
Abstract
There have been several epidemiologic studies supporting the protective role of pregnancy, although the mechanism is not clear. High level of progesterone, which is crucial in maintaining pregnancy, has been supposed to be one of the causative factors. Progesterone is produced at the corpus luteum in the early pregnancy and the placenta in the late pregnancy period. In several experimental studies, progesterone was reported to induce apoptosis of ovarian cancer cells through intrinsic and extrinsic pathways. In addition, progesterone has been shown to exert its anticancer effect through genomic and non-genomic action. The objective of this review is to discuss the protective mechanism of pregnancy against ovarian cancer focusing on the steroid hormone, progesterone.
Collapse
Affiliation(s)
- Kyung Hee Han
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Mi-Kyung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Hyun Hoon Chung
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine
- Cancer Research Institute, Seoul National University College of Medicine
- Major in Biomodulation, World Class University, Seoul National University, Seoul, Korea
| |
Collapse
|