1
|
Ruan W, Li J, Choi S, Ma X, Liang Y, Nair R, Yuan X, Mills TW, Eltzschig HK. Targeting myocardial equilibrative nucleoside transporter ENT1 provides cardioprotection by enhancing myeloid Adora2b signaling. JCI Insight 2023; 8:e166011. [PMID: 37288658 PMCID: PMC10393224 DOI: 10.1172/jci.insight.166011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/28/2023] [Indexed: 06/09/2023] Open
Abstract
Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.
Collapse
Affiliation(s)
- Wei Ruan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiwen Li
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
- Department of Cardiac Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Seungwon Choi
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xinxin Ma
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Yafen Liang
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Ragini Nair
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Xiaoyi Yuan
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Tingting W. Mills
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Holger K. Eltzschig
- Department of Anesthesiology, Critical Care and Pain Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
2
|
Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: Down-regulating ferritinophagy/ferroptosis signaling. Biomed Pharmacother 2022; 154:113595. [PMID: 36029539 DOI: 10.1016/j.biopha.2022.113595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
The complex progression of type-2 diabetes (T2DM) results in inconsistent findings on myocardial susceptibility to ischemia-reperfusion (IR). IR injuries in multiple organs interconnect with ferroptosis. Targeting Rev-erbs might limit ferroptosis, with increasing attention turning to the application of circadian medicine against IR injuries. However, whether the Rev-erbs agonist SR9009 could mitigate diabetic IR injury remains unknown. Here, we investigated the susceptibility to IR at onset of T2DM in rats and its potential association between SR9009 and ferritinophagy/ferroptosis signaling. Onset of T2DM model was induced with a high-fat diet and the intraperitoneal injection of a low dose of streptozotocin. Myocardial IR model was established as well. Rats' general characteristics, cardiac function, glycolipid profiles, serum biochemistry, apoptosis index (AI) and morphological histology were observed and analyzed. Western blot and immunofluorescence (IF) were employed to evaluate the expression of ferritinophagy/ferroptosis signaling and its co-localization. Glycolipid profiles and cardiac diastolic function were significantly impaired in diabetic rats. CK-MB, AI levels and ferritinophagy/ferroptosis-related proteins expression decreased towards myocardial IR in diabetic rats compared to non-diabetic rats'. The ferroptosis inducer Erastin up-regulated SOD, MDA, and AI levels, as well as the expression of ferritinophagy/ferroptosis-related proteins in diabetic rats towards IR. Treatment with SR9009 down-regulated the degree of myocardial injury and ferritinophagy/ferroptosis-related proteins expression compared to diabetic rats treated with or without Erastin. Onset of T2DM activated endogenous cardioprotection against the susceptibility to myocardial IR injury, and SR9009 exogenously enhanced this endogenous mechanism and alleviated myocardial IR injury at onset of T2DM by down-regulating ferritinophagy/ferroptosis signaling.
Collapse
|
3
|
Molecular targets of fenofibrate in the cardiovascular-renal axis: A unifying perspective of its pleiotropic benefits. Pharmacol Res 2019; 144:132-141. [PMID: 30970278 DOI: 10.1016/j.phrs.2019.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
|
4
|
Singh L, Kulshrestha R, Singh N, Jaggi AS. Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:225-234. [PMID: 29719445 PMCID: PMC5928336 DOI: 10.4196/kjpp.2018.22.3.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 02/05/2018] [Accepted: 02/27/2018] [Indexed: 01/11/2023]
Abstract
Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of KATP channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.
Collapse
Affiliation(s)
- Lovedeep Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | | | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| |
Collapse
|
5
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
6
|
Malthum S, Polkam N, Allaka TR, Chepuri K, Anireddy JS. Synthesis, characterization and biological evaluation of purine nucleoside analogues. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Kiguti LRA, Borges CS, Mueller A, Silva KP, Polo CM, Rosa JL, Silva PV, Missassi G, Valencise L, Kempinas WG, Pupo AS. Gender-specific impairment of in vitro sinoatrial node chronotropic responses and of myocardial ischemia tolerance in rats exposed prenatally to betamethasone. Toxicol Appl Pharmacol 2017; 334:66-74. [PMID: 28887130 DOI: 10.1016/j.taap.2017.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/01/2017] [Accepted: 09/04/2017] [Indexed: 01/28/2023]
Abstract
Excessive fetal glucocorticoid exposure has been linked to increased susceptibility to hypertension and cardiac diseases in the adult life, a process called fetal programming. The cardiac contribution to the hypertensive phenotype of glucocorticoid-programmed progeny is less known, therefore, we investigated in vitro cardiac functional parameters from rats exposed in utero to betamethasone. Pregnant Wistar rats received vehicle (VEH) or betamethasone (BET, 0.1mg/kg, i.m.) at gestational days 12, 13, 18 and 19. Male and female offspring were killed at post-natal day 30 and the right atrium (RA) was isolated to in vitro evaluation of drug-induced chronotropic responses. Additionally, whole hearts were retrograde-perfused in a Langendorff apparatus and infarct size in response to in vitro ischemia/reperfusion (I/R) protocol was evaluated. Male and female progeny from BET-exposed pregnant rats had reduced birth weight, a hallmark of fetal programming. Male BET-progeny had increased basal RA rate, impaired chronotropic responses to noradrenaline and adenosine, and increased myocardial damage to I/R. Though a 12-fold reduction in the negative chronotropic responses to adenosine, the effects of non-metabolisable adenosine receptor agonists 5'-(N-ethylcarboxamido)adenosine or 2-Chloro-adenosine were not different between VEH- and BET-exposed male rats. BET-exposed female offspring presented no cardiac dysfunction. Prenatal BET exposure engenders male-specific impairment of sinoatrial node function and on myocardial ischemia tolerance resulting, at least in part, from an increased adenosine metabolism in the heart. In light of the importance of adenosine in the cardiac physiology our results suggest a link between reduced adenosinergic signaling and the cardiac dysfunctions observed in glucocorticoid-induced fetal programming.
Collapse
Affiliation(s)
- L R A Kiguti
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil.
| | - C S Borges
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A Mueller
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil; Instituto de Ciências da Saúde, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - K P Silva
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - C M Polo
- Department of Physiology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - J L Rosa
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - P V Silva
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - G Missassi
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - L Valencise
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - W G Kempinas
- Department of Morphology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| | - A S Pupo
- Department of Pharmacology, São Paulo State University (UNESP), Institute of Biosciences, Campus of Botucatu, Distrito de Rubião Junior s/n°, 18618-689 Botucatu, SP, Brazil
| |
Collapse
|
8
|
Mitochondria as a target of cardioprotection in models of preconditioning. J Bioenerg Biomembr 2017; 49:357-368. [PMID: 28730272 DOI: 10.1007/s10863-017-9720-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/14/2017] [Indexed: 12/24/2022]
Abstract
Over the recent years the view on mitochondria in the heart as a cellular powerhouse providing ATP supply needed to sustain contractile function, basal metabolic processes, and ionic homeostasis has changed radically. At present it is known that dysfunctions of these organelles are essential in the development of a large number of diseases, including cardiovascular diseases. Moreover, mitochondria are considered to be a very promising target of endogenous strategies that are essential in the protection of the myocardium from acute ischemia/reperfusion injury. These strategies including ischemic preconditioning, remote ischemic preconditioning as well as the acute phase of streptozotocin-induced diabetes mellitus, provide a similar effect of protection. Alterations observed in the functional and structural properties of heart mitochondria caused by short-term pathological impulses are associated with endogenous cardioprotective processes. It seems that the extent of mitochondrial membrane fluidization could be an active response mechanism to injury with a subtle effect on membrane-associated processes which further affect the environment of the whole organelle, thus inducing metabolic changes in the heart. In this review article, we provide an overview of endogenous protective mechanisms induced by hypoxic, pseudohypoxic and ischemic conditions with special consideration of the role of heart mitochondria in these processes.
Collapse
|
9
|
Balakumar P, WitnessKoe WE, Gan YS, JemayPuah SM, Kuganesswari S, Prajapati SK, Varatharajan R, Jayachristy SA, Sundram K, Bahari MB. Effects of pre and post-treatments with dipyridamole in gentamicin-induced acute nephrotoxicity in the rat. Regul Toxicol Pharmacol 2017; 84:35-44. [DOI: 10.1016/j.yrtph.2016.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/05/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023]
|
10
|
Biasutto L, Azzolini M, Szabò I, Zoratti M. The mitochondrial permeability transition pore in AD 2016: An update. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:2515-30. [PMID: 26902508 DOI: 10.1016/j.bbamcr.2016.02.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
Abstract
Over the past 30years the mitochondrial permeability transition - the permeabilization of the inner mitochondrial membrane due to the opening of a wide pore - has progressed from being considered a curious artifact induced in isolated mitochondria by Ca(2+) and phosphate to a key cell-death-inducing process in several major pathologies. Its relevance is by now universally acknowledged and a pharmacology targeting the phenomenon is being developed. The molecular nature of the pore remains to this day uncertain, but progress has recently been made with the identification of the FOF1 ATP synthase as the probable proteic substrate. Researchers sharing this conviction are however divided into two camps: these believing that only the ATP synthase dimers or oligomers can form the pore, presumably in the contact region between monomers, and those who consider that the ring-forming c subunits in the FO sector actually constitute the walls of the pore. The latest development is the emergence of a new candidate: Spastic Paraplegia 7 (SPG7), a mitochondrial AAA-type membrane protease which forms a 6-stave barrel. This review summarizes recent developments of research on the pathophysiological relevance and on the molecular nature of the mitochondrial permeability transition pore. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Michele Azzolini
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biology, Viale G. Colombo 3, 35121 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy; University of Padova, Department of Biomedical Sciences, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
11
|
Abstract
Remote ischemic preconditioning (RIPC) is an intriguing process whereby transient regional ischemia and reperfusion episodes to remote tissues including skeletal, renal, mesenteric provide protection to the heart against sustained ischemia-reperfusion-induced injury. Clinically, this technique has been used in patients undergoing various surgical interventions including coronary artery bypass graft surgery, abdominal aortic aneurysm repair, percutaneous coronary intervention, and heart valve surgery. The endogenous opioid system is extensively expressed in the brain to modulate pain sensation. Besides the role of opioids in relieving pain, numerous researchers have found their critical involvement in evoking cardioprotective effects. Endogenous opioids including endorphins, enkephalins, and dynorphins are released during RIPC and are critically involved in mediating RIPC-induced cardioprotective effects. It has been suggested that during RIPC, the endogenous opioids may be released into the systemic circulation and may travel via bloodstream that act on the myocardial opioid receptors to induce cardioprotection. The present review describes the potential role of opioids in mediating RIPC-induced cardioprotection.
Collapse
Affiliation(s)
- Puneet Kaur Randhawa
- 1 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, Punjab, India
| | - Amteshwar Singh Jaggi
- 1 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, Punjab, India
| |
Collapse
|
12
|
Garg M, Khanna D, Kalra S, Balakumar P. Chronic oral administration of low-dose combination of fenofibrate and rosuvastatin protects the rat heart against experimentally induced acute myocardial infarction. Fundam Clin Pharmacol 2016; 30:394-405. [DOI: 10.1111/fcp.12204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 03/26/2016] [Accepted: 04/26/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Monika Garg
- Cardiovascular Pharmacology Division; Department of Pharmacology; Rajendra Institute of Technology and Sciences; Sirsa 125 055 Haryana India
| | - Deepa Khanna
- Cardiovascular Pharmacology Division; Department of Pharmacology; Rajendra Institute of Technology and Sciences; Sirsa 125 055 Haryana India
| | - Sanjeev Kalra
- Cardiovascular Pharmacology Division; Department of Pharmacology; Rajendra Institute of Technology and Sciences; Sirsa 125 055 Haryana India
| | - Pitchai Balakumar
- Pharmacology Unit; Faculty of Pharmacy; AIMST University; Semeling 08100 Bedong Kedah DarulAman Malaysia
| |
Collapse
|
13
|
Chen Y, Cai M, Deng J, Tian L, Wang S, Tong L, Dong H, Xiong L. Elevated Expression of Carboxy-Terminal Modulator Protein (CTMP) Aggravates Brain Ischemic Injury in Diabetic db/db Mice. Neurochem Res 2016; 41:2179-89. [PMID: 27161366 DOI: 10.1007/s11064-016-1932-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
Abstract
Deregulation of Akt signaling is important in the brain injuries caused by cerebral ischemia in diabetic animals, and the underlying mechanism is not fully understood. We investigated the role of carboxy-terminal modulator protein (CTMP), an endogenous Akt inhibitor, in brain injury following focal cerebral ischemia in type 2 diabetic db/db mice and their control littermates non-diabetic db/+ mice. db/db mice showed a significant elevation in the expression of CTMP compared to db/+ mice under normal physiological conditions. After ischemia, db/db mice exhibit higher levels of CTMP expression, decreased Akt kinase activity, adverse neurological deficits and cerebral infarction than db/+ mice. To further certain the effectiveness of Akt signaling to the final outcome of cerebral ischemia, the animals were treated with LY294002, an inhibitor of the Akt pathway, which aggravated the ischemic injury in db/+ mice but not in db/db mice. RNA interference-mediated depletion of CTMP were finally applied in db/db mice, which restored Akt activity, improved neurological scores and reduced infarct volume. These results suggest that elevation of CTMP in diabetic mice suppresses Akt activity and ultimately negatively affects the outcome of ischemia. Inhibitors specifically targeting CTMP may be beneficial in the treatment of cerebral ischemia in patients with diabetes.
Collapse
Affiliation(s)
- Yu Chen
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Min Cai
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiao Deng
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Tian
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Shiquan Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Li Tong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hailong Dong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. .,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China. .,Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
14
|
Farías JG, Carrasco-Pozo C, Carrasco Loza R, Sepúlveda N, Álvarez P, Quezada M, Quiñones J, Molina V, Castillo RL. Polyunsaturated fatty acid induces cardioprotection against ischemia-reperfusion through the inhibition of NF-kappaB and induction of Nrf2. Exp Biol Med (Maywood) 2016; 242:1104-1114. [PMID: 27190274 DOI: 10.1177/1535370216649263] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The mechanistic evidence to support the cardioprotective effects of polyunsaturated fatty acids (PUFA) are controversial. The aim was to test cardioprotective mechanisms induced by PUFA supplementation against cardiac ischemia-reperfusion (IR) injury. Ten-week-old male Wistar rats (225 ± 14 g, n = 14) were divided in two groups: rats without supplementation ( n = 7) and a PUFA group, supplemented by PUFA (0.6 g/kg/day; DHA:EPA = 3:1) for eight weeks ( n = 7). Hearts were perfused with Krebs-Henseleit buffer for 20 min (control conditions); others were subjected to control conditions, 30 min of global ischemia and 120 min of reperfusion (IR group). Infarct size (IS) and left ventricular developed pressure (LVDP) were measured at 120 min of reperfusion. Oxidative stress biomarkers (TBARS, total carbonyls), antioxidant status (CAT, catalase; SOD, superoxide dismutase; GSH-Px, glutathione peroxidase activity and GSH/GSSG ratio), myeloperoxidase activity, ATP levels and nuclear transcription factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappaB (NF-κB) were determined in both experimental conditions. At the end of reperfusion, hearts supplemented with PUFA showed lower IS and a higher LVDP compared with the nonsupplemented rats. Hearts in the group supplemented with PUFA showed lower levels of oxidative stress markers and higher antioxidant activity, decreased MPO activity and NF-κB and Nrf2 activation compared with the nonsupplemented group. Cardioprotective effects of PUFA are exerted through induction of anti-inflammatory and antioxidant mechanism at tissue level.
Collapse
Affiliation(s)
- Jorge G Farías
- 1 Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Catalina Carrasco-Pozo
- 2 Departamento de Nutrición, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - Rodrigo Carrasco Loza
- 3 Laboratorio de Investigación Biomédica, Facultad de Medicina Oriente, Hospital del Salvador, Universidad de Chile, Santiago 7500922, Chile
| | - Néstor Sepúlveda
- 4 Laboratorio de Producción Animal, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Pedro Álvarez
- 5 Servicio Anestesiología, Hospital San Juan de Dios, Santiago 8380453, Chile
| | - Mauricio Quezada
- 6 Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile.,7 Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| | - John Quiñones
- 4 Laboratorio de Producción Animal, Facultad de Ciencias Agropecuarias y Forestales, Universidad de La Frontera, Temuco 4811230, Chile
| | - Víctor Molina
- 8 Hospital de Niños, Roberto del Río, Santiago 8380418, Chile
| | - Rodrigo L Castillo
- 7 Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
15
|
Al-awar A, Kupai K, Veszelka M, Szűcs G, Attieh Z, Murlasits Z, Török S, Pósa A, Varga C. Experimental Diabetes Mellitus in Different Animal Models. J Diabetes Res 2016; 2016:9051426. [PMID: 27595114 PMCID: PMC4993915 DOI: 10.1155/2016/9051426] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/16/2022] Open
Abstract
Animal models have historically played a critical role in the exploration and characterization of disease pathophysiology and target identification and in the evaluation of novel therapeutic agents and treatments in vivo. Diabetes mellitus disease, commonly known as diabetes, is a group of metabolic disorders characterized by high blood glucose levels for a prolonged time. To avoid late complications of diabetes and related costs, primary prevention and early treatment are therefore necessary. Due to its chronic symptoms, new treatment strategies need to be developed, because of the limited effectiveness of the current therapies. We overviewed the pathophysiological features of diabetes in relation to its complications in type 1 and type 2 mice along with rat models, including Zucker Diabetic Fatty (ZDF) rats, BB rats, LEW 1AR1/-iddm rats, Goto-Kakizaki rats, chemically induced diabetic models, and Nonobese Diabetic mouse, and Akita mice model. The advantages and disadvantages that these models comprise were also addressed in this review. This paper briefly reviews the wide pathophysiological and molecular mechanisms associated with type 1 and type 2 diabetes, particularly focusing on the challenges associated with the evaluation and predictive validation of these models as ideal animal models for preclinical assessments and discovering new drugs and therapeutic agents for translational application in humans.
Collapse
Affiliation(s)
- Amin Al-awar
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
- *Krisztina Kupai:
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Gergő Szűcs
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Zouhair Attieh
- Department of Laboratory Science and Technology, Faculty of Health Sciences, American University of Science and Technology, Alfred Naccache Avenue, Beirut 1100, Lebanon
| | | | - Szilvia Török
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Kozep Fasor 52, 6726 Szeged, Hungary
| |
Collapse
|
16
|
Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart. Br J Pharmacol 2015; 172:2026-50. [PMID: 25521834 PMCID: PMC4386979 DOI: 10.1111/bph.13042] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| |
Collapse
|
17
|
Kansal SK, Jyoti U, Sharma S, Kaura A, Deshmukh R, Goyal S. Effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2015; 388:635-41. [PMID: 25743572 DOI: 10.1007/s00210-015-1105-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022]
Abstract
Hyperlipidemia is regarded as independent risk factor in the development of ischemic heart disease, and it can increase the myocardial susceptibility to ischemia-/reperfusion (I/R)-induced injury. Hyperlipidemia attenuates the cardioprotective response of ischemic preconditioning (IPC). The present study investigated the effect of zinc supplements in the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat hearts. Hyperlipidemia was induced in rat by feeding high-fat diet (HFD) for 6 weeks then the serum lipid profile was observed. In experiment, the isolated Langendorff rat heart preparation was subjected to 4 cycles of ischemic preconditioning (IPC), then 30 min of ischemia followed by 120 min of reperfusion. Myocardial infarct size was elaborated morphologically by triphenyltetrazolium chloride (TTC) staining and biochemically by lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB) release from coronary effluent and left ventricular collagen content. However, the effect of zinc supplement, i.e., zinc pyrithione (10 μM) perfused during reperfusion for 120 min, significantly abrogated the attenuated cardioprotective effect of ischemic preconditioning in hyperlipidemic rat heart whereas administration of chelator of this zinc ionophore, i.e., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylene diamine (TPEN; 10 μM), perfused during reperfusion 2 min before the perfusion of zinc pyrithione abrogated the cardioprotective effect of zinc supplement during experiment in hyperlipidemic rat heart. Thus, the administration of zinc supplements limits the infarct size, LDH, and CK-MB and enhanced the collagen level which suggests that the attenuated cardioprotective effect of IPC in hyperlipidemic rat is due to zinc loss during reperfusion caused by ischemia/reperfusion.
Collapse
Affiliation(s)
- Sunil Kumar Kansal
- University Institute of Pharmaceutical Sciences & Research, Baba Farid University of Health Sciences, Faridkot, Punjab, 151203, India
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
19
|
Balakumar P, Nyo YH, Renushia R, Raaginey D, Oh AN, Varatharajan R, Dhanaraj SA. Classical and pleiotropic actions of dipyridamole: Not enough light to illuminate the dark tunnel? Pharmacol Res 2014; 87:144-50. [PMID: 24861566 DOI: 10.1016/j.phrs.2014.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/01/2014] [Accepted: 05/13/2014] [Indexed: 12/01/2022]
Abstract
Dipyridamole is a platelet inhibitor indicated for the secondary prevention of transient ischemic attack. It inhibits the enzyme phosphodiesterase, elevates cAMP and cGMP levels and prevents platelet aggregation. Dipyridamole inhibits the cellular uptake of adenosine into red blood cells, platelets and endothelial cells that results in increased extracellular availability of adenosine, leading to modulation of cardiovascular function. The antiplatelet action of dipyridamole might offer therapeutic benefits in secondary stroke prevention in combination with aspirin. Inflammation and oxidative stress play an important role in atherosclerosis and thrombosis development, leading to stroke progression. Studies demonstrated anti-inflammatory, anti-oxidant and anti-proliferative actions of dipyridamole. These pleiotropic potentials of dipyridamole might contribute to improved therapeutic outcomes when used with aspirin in preventing secondary stroke. Dipyridamole was documented as a coronary vasodilator 5 decades ago. The therapeutic failure of dipyridamole as a coronary vasodilator is linked with induction of 'coronary steal' phenomenon in which by dilating resistance vessels in non-ischemic zone, dipyridamole diverts the already reduced blood flow away from the area of ischemic myocardium. Dipyridamole at high-dose could cause a marked 'coronary steal' effect. Dipyridamole, however, at low-dose could have a minimal hemodynamic effect. Low-dose dipyridamole treatment has a therapeutic potential in partially preventing diabetes mellitus-induced experimental vascular endothelial and renal abnormalities by enhancing endothelial nitric oxide signals and inducing renovascular reduction of oxidative stress. In spite of plenteous research on dipyridamole's use in clinics, its precise clinical application is still obscure. This review sheds lights on pleiotropic pharmacological actions and therapeutic potentials of dipyridamole.
Collapse
Affiliation(s)
- Pitchai Balakumar
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia.
| | - Ying Hui Nyo
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Raja Renushia
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Devarajan Raaginey
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Ann Nah Oh
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Rajavel Varatharajan
- Pharmacology Unit, Faculty of Pharmacy, Asian Institute of Medicine, Science and Technology (AIMST) University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Sokkalingam A Dhanaraj
- Pharmaceutical Technology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| |
Collapse
|
20
|
Balakumar P, Sundram K, Dhanaraj SA. Dapagliflozin: Glucuretic action and beyond. Pharmacol Res 2014; 82:34-9. [DOI: 10.1016/j.phrs.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
|
21
|
Balakumar P, Dhanaraj SA. Cardiovascular pleiotropic actions of DPP-4 inhibitors: A step at the cutting edge in understanding their additional therapeutic potentials. Cell Signal 2013; 25:1799-803. [DOI: 10.1016/j.cellsig.2013.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/06/2013] [Indexed: 12/25/2022]
|
22
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov 2013; 12:447-64. [PMID: 23722347 DOI: 10.1038/nrd4010] [Citation(s) in RCA: 856] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
23
|
Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. NATURE REVIEWS. DRUG DISCOVERY 2013. [PMID: 23722347 DOI: 10.1038/nrd4010]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nucleoside analogues have been in clinical use for almost 50 years and have become cornerstones of treatment for patients with cancer or viral infections. The approval of several additional drugs over the past decade demonstrates that this family still possesses strong potential. Here, we review new nucleoside analogues and associated compounds that are currently in preclinical or clinical development for the treatment of cancer and viral infections, and that aim to provide increased response rates and reduced side effects. We also highlight the different approaches used in the development of these drugs and the potential of personalized therapy.
Collapse
|
24
|
Babbar L, Mahadevan N, Balakumar P. Fenofibrate attenuates impaired ischemic preconditioning-mediated cardioprotection in the fructose-fed hypertriglyceridemic rat heart. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:319-29. [DOI: 10.1007/s00210-012-0830-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
|