1
|
Liehr T, Kankel S, Hardt KS, Buhl EM, Noels H, Keller DT, Schröder-Lange SK, Weiskirchen R. Genetic and Molecular Characterization of H9c2 Rat Myoblast Cell Line. Cells 2025; 14:502. [PMID: 40214456 PMCID: PMC11988023 DOI: 10.3390/cells14070502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
This study presents a comprehensive genetic characterization of the H9c2 cell line, a widely used model for cardiac myoblast research. We established a short tandem repeat (STR) profile for H9c2 that is useful to confirm the identity and stability of the cell line. Additionally, we prepared H9c2 metaphase chromosomes and performed karyotyping and molecular cytogenetics to further investigate chromosomal characteristics. The genetic analysis showed that H9c2 cells exhibit chromosomal instability, which may impact experimental reproducibility and data interpretation. Next-generation sequencing (NGS) was performed to analyze the transcriptome, revealing gene expression patterns relevant to cardiac biology. Western blot analysis further validated the expression levels of selected cardiac genes identified through NGS. Additionally, Phalloidin staining was used to visualize cytoskeletal organization, highlighting the morphological features of these cardiac myoblasts. Our findings collectively support that H9c2 cells are a reliable model for studying cardiac myoblast biology, despite some genetic alterations identified resembling sarcoma cells. The list of genes identified through NGS analysis, coupled with our comprehensive genetic analysis, will serve as a valuable resource for future studies utilizing this cell line in cardiovascular medicine.
Collapse
Affiliation(s)
- Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07747 Jena, Germany;
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, D-07747 Jena, Germany;
| | - Katharina S. Hardt
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (K.S.H.); (D.T.K.); (S.K.S.-L.)
| | - Eva M. Buhl
- Electron Microscopy Facility, Institute of Pathology, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH University Hospital Aachen, D-52074 Aachen, Germany;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6211 Maastricht, The Netherlands
| | - Diandra T. Keller
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (K.S.H.); (D.T.K.); (S.K.S.-L.)
| | - Sarah K. Schröder-Lange
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (K.S.H.); (D.T.K.); (S.K.S.-L.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, D-52074 Aachen, Germany; (K.S.H.); (D.T.K.); (S.K.S.-L.)
| |
Collapse
|
2
|
Zhang P, Lu R. The Molecular and Biological Function of MEF2D in Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:379-403. [PMID: 39017853 DOI: 10.1007/978-3-031-62731-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Myocyte enhancer factor 2 (MEF2) is a key transcription factor (TF) in skeletal, cardiac, and neural tissue development and includes four isoforms: MEF2A, MEF2B, MEF2C, and MEF2D. These isoforms significantly affect embryonic development, nervous system regulation, muscle cell differentiation, B- and T-cell development, thymocyte selection, and effects on tumorigenesis and leukemia. This chapter describes the multifaceted roles of MEF2 family proteins, covering embryonic development, nervous system regulation, and muscle cell differentiation. It further elucidates the contribution of MEF2 to various blood and immune cell functions. Specifically, in B-cell precursor acute lymphoblastic leukemia (BCP-ALL), MEF2D is aberrantly expressed and forms a fusion protein with BCL9, CSF1R, DAZAP1, HNRNPUL1, and SS18. These fusion proteins are closely related to the pathogenesis of leukemia. In addition, it specifically introduces the regulatory effect of MEF2D fusion protein on the proliferation and growth of B-cell acute lymphoblastic leukemia (B-ALL) cells. Finally, we detail the positive feedback loop between MEF2D and IRF8 that significantly promotes the progression of acute myeloid leukemia (AML) and the importance of the ZMYND8-BRD4 interaction in regulating the IRF8 and MYC transcriptional programs. The MEF2D-CEBPE axis is highlighted as a key transcriptional mechanism controlling the block of leukemic cell self-renewal and differentiation in AML. This chapter starts with the structure and function of MEF2 family proteins, specifically summarizing and analyzing the role of MEF2D in B-ALL and AML, mediating the complex molecular mechanisms of transcriptional regulation and exploring their implications for human health and disease.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Rui Lu
- Department of Medicine, Division of Hematology/Oncology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
3
|
Effects of the Acetyltransferase p300 on Tumour Regulation from the Novel Perspective of Posttranslational Protein Modification. Biomolecules 2023; 13:biom13030417. [PMID: 36979352 PMCID: PMC10046601 DOI: 10.3390/biom13030417] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
p300 acts as a transcription coactivator and an acetyltransferase that plays an important role in tumourigenesis and progression. In previous studies, it has been confirmed that p300 is an important regulator in regulating the evolution of malignant tumours and it also has extensive functions. From the perspective of non-posttranslational modification, it has been proven that p300 can participate in regulating many pathophysiological processes, such as activating oncogene transcription, promoting tumour cell growth, inducing apoptosis, regulating immune function and affecting embryo development. In recent years, p300 has been found to act as an acetyltransferase that catalyses a variety of protein modification types, such as acetylation, propanylation, butyylation, 2-hydroxyisobutyration, and lactylation. Under the catalysis of this acetyltransferase, it plays its crucial tumourigenic driving role in many malignant tumours. Therefore, the function of p300 acetyltransferase has gradually become a research hotspot. From a posttranslational modification perspective, p300 is involved in the activation of multiple transcription factors and additional processes that promote malignant biological behaviours, such as tumour cell proliferation, migration, and invasion, as well as tumour cell apoptosis, drug resistance, and metabolism. Inhibitors of p300 have been developed and are expected to become novel anticancer drugs for several malignancies. We review the characteristics of the p300 protein and its functional role in tumour from the posttranslational modification perspective, as well as the current status of p300-related inhibitor research, with a view to gaining a comprehensive understanding of p300.
Collapse
|
4
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Duddu S, Chakrabarti R, Ghosh A, Shukla PC. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Front Genet 2020; 11:588602. [PMID: 33193725 PMCID: PMC7596349 DOI: 10.3389/fgene.2020.588602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Transcription factors as multifaceted modulators of gene expression that play a central role in cell proliferation, differentiation, lineage commitment, and disease progression. They interact among themselves and create complex spatiotemporal gene regulatory networks that modulate hematopoiesis, cardiogenesis, and conditional differentiation of hematopoietic stem cells into cells of cardiovascular lineage. Additionally, bone marrow-derived stem cells potentially contribute to the cardiovascular cell population and have shown potential as a therapeutic approach to treat cardiovascular diseases. However, the underlying regulatory mechanisms are currently debatable. This review focuses on some key transcription factors and associated epigenetic modifications that modulate the maintenance and differentiation of hematopoietic stem cells and cardiac progenitor cells. In addition to this, we aim to summarize different potential clinical therapeutic approaches in cardiac regeneration therapy and recent discoveries in stem cell-based transplantation.
Collapse
Affiliation(s)
| | | | | | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
6
|
MEF-2 isoforms' (A-D) roles in development and tumorigenesis. Oncotarget 2019; 10:2755-2787. [PMID: 31105874 PMCID: PMC6505634 DOI: 10.18632/oncotarget.26763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/01/2019] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor (MEF)-2 plays a critical role in proliferation, differentiation, and development of various cell types in a tissue specific manner. Four isoforms of MEF-2 (A-D) differentially participate in controlling the cell fate during the developmental phases of cardiac, muscle, vascular, immune and skeletal systems. Through their associations with various cellular factors MEF-2 isoforms can trigger alterations in complex protein networks and modulate various stages of cellular differentiation, proliferation, survival and apoptosis. The role of the MEF-2 family of transcription factors in the development has been investigated in various cell types, and the evolving alterations in this family of transcription factors have resulted in a diverse and wide spectrum of disease phenotypes, ranging from cancer to infection. This review provides a comprehensive account on MEF-2 isoforms (A-D) from their respective localization, signaling, role in development and tumorigenesis as well as their association with histone deacetylases (HDACs), which can be exploited for therapeutic intervention.
Collapse
|
7
|
Tang C, Deng Y, Duan H, Zhang Y, Li Y, Qiu D, Zhou K, Hua Y, Wang C. The effect of maternal exposure to di-(2-ethylhexyl)-phthalate on fetal cardiac development in mice. J Appl Toxicol 2018; 38:834-842. [PMID: 29377175 DOI: 10.1002/jat.3591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Changqing Tang
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- West China Medical School of Sichuan University; Chengdu Sichuan China
| | - Yuxin Deng
- Pidu Campus; Jiaxiang Foreign Languages School Chengdu Sichuan China
| | - Hongyu Duan
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Yi Zhang
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Yifei Li
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Dajian Qiu
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| | - Kaiyu Zhou
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Yimin Hua
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University); Ministry of Education Chengdu; Sichuan China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province; West China Second University Hospital; Sichuan University Chengdu Sichuan China
| | - Chuan Wang
- Department of Pediatric Cardiology; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
- The Cardiac Development and Early Intervention Unit, West China Institute of Women and Children's Health; West China Second University Hospital, Sichuan University; Chengdu Sichuan China
| |
Collapse
|
8
|
Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 2017; 119:373-383. [PMID: 28274852 DOI: 10.1016/j.phrs.2017.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Hu
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
9
|
Yi Q, Xu H, Yang K, Wang Y, Tan B, Tian J, Zhu J. Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through the regulation of Gcn5 and DNMT-1. Mol Med Rep 2017; 15:2511-2520. [PMID: 28447752 PMCID: PMC5428324 DOI: 10.3892/mmr.2017.6343] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
Previous studies from this group demonstrated that insulin gene enhancer binding protein ISL-1 (Islet-1) specifically induces the differentiation of mesenchymal stem cells (MSCs) into cardiomyocyte-like cells through histone acetylation. However, the underlying mechanisms remain unclear. In the present study, the role of the histone acetylation and DNA methylation on the regulatory mechanism of the Islet-1 was further investigated by methylation-specific polymerase chain reaction (PCR), chromatin immunoprecipitation quantitative PCR and western blot analysis. The results demonstrated that Islet-1 upregulated expression of general control of amino acid biosynthesis protein 5 (Gcn5) and enhanced the binding of Gcn5 to the promoters of GATA binding protein 4 (GATA4) and NK2 homeobox 5 (Nkx2.5). In addition, Islet-1 downregulated DNA methyltransferase (DNMT)-1 expression and reduced its binding to the GATA4 promoter. In contrast, the amount of DNMT-1 binding on Nkx2.5 did not match the expression trend. Therefore, it was concluded that Islet-1 may influence the histone acetylation and DNA methylation of GATA4 promoter region via Gcn5 and DNMT-1 during the MSC differentiation into cardiomyocyte-like cells, thus prompting the expression of GATA4. The Nkx2.5 was likely only affected by histone acetylation instead of DNA methylation. The present study demonstrated that Islet-1 induces the differentiation of mesenchymal stem cells into cardiomyocyte-like cells through a specific interaction between histone acetylation and DNA methylation on regulating GATA4.
Collapse
Affiliation(s)
- Qin Yi
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Hao Xu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ke Yang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yue Wang
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Tian
- Cardiovascular Department (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
10
|
Shi J, Zhao W, Pan B, Zheng M, Si L, Zhu J, Liu L, Tian J. Alcohol Exposure Causes Overexpression of Heart Development-Related Genes by Affecting the Histone H3 Acetylation via BMP Signaling Pathway in Cardiomyoblast Cells. Alcohol Clin Exp Res 2016; 41:87-95. [PMID: 27883221 DOI: 10.1111/acer.13273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abusive alcohol utilization of pregnant woman may cause congenital heart disease (CHD) of fetus, where alcohol ignites histone H3 hyperacetylation leading to abnormal development of heart morphogenesis and associated genes. Knowledge about the regularized upstream genes is little, but bone morphogenetic protein (BMP) signaling may actively and prominently take part in alteration in acetylation of histone H3. The supreme objective of this study was to unearth the involvement of BMP signaling pathway in alcohol-driven hyperacetylation of histone H3 in cardiomyoblast cells. METHODS Cardiomyoblast cells (H9c2 cells) were addicted with alcohol (100 mM) for 24 hours. Dorsomorphin (5 μM) was used for the inhibition of BMP signaling pathway. We detected the phosphorylation activity of SMAD1/5/8, mRNA expression, histone acetyltransferases (HAT)/histone deacetylase (HDAC) activity, and acetylation of histone H3. RESULTS Following alcohol exposure, phosphorylation of SMAD1/5/8 and HAT activities was increased to a significant extent, while histone H3 acetylation and expression of heart development-related genes were also increased. The said phenomenon influenced by alcohol was reverted upon dorsomorphin treatment to the cells without effecting HDAC activity. CONCLUSIONS The data clearly identified that BMP-mediated histone H3 acetylation of heart development-related genes might be one of the possible cellular mechanisms to control alcohol-induced expression of heart development-related genes. Dorsomorphin, on the other hand, may modulate alcohol-induced hyperacetylation of histone H3 through BMP targeting, which could be a potential way to block CHD.
Collapse
Affiliation(s)
- Jin Shi
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Developmental Disease in Childhood, Ministry of Education, Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Weian Zhao
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China.,Key Laboratory of Developmental Disease in Childhood, Ministry of Education, Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Bo Pan
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zheng
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Si
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Key Laboratory of Developmental Disease in Childhood, Ministry of Education, Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Lingjuan Liu
- Key Laboratory of Developmental Disease in Childhood, Ministry of Education, Chongqing Medical University, Chongqing, China.,Key Laboratory of Pediatrics in Chongqing, Chongqing, China.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Jie Tian
- Heart Centre, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Shen Z, Wang B, Luo J, Jiang K, Zhang H, Mustonen H, Puolakkainen P, Zhu J, Ye Y, Wang S. Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases. J Proteomics 2016; 142:24-32. [PMID: 27178108 DOI: 10.1016/j.jprot.2016.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. BIOLOGICAL SIGNIFICANCE This study described provides, for the first time, that full-scale profiling of lysine acetylated proteins were identified and quantified in colorectal cancer (CRC) and paired liver metastases. The novelty of the study is that we constructed a complete atlas of acetylome in CRC and paired liver metastases. Moreover, we analyzed these differentially expressed acetylated proteins in cell component, molecular function and biological process. In addition, metabolic pathways, domain structures and protein interaction networks of acetylated proteins were also investigated. Our approaches shows that of the differentially expressed proteins, HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. Our findings provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC.
Collapse
Affiliation(s)
- Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, Beijing 100191, PR China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Hui Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China
| | - Harri Mustonen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Central Hospital and University of Helsinki, Helsinki 00290, Finland
| | - Jun Zhu
- Jingjie PTM Biolab (Hangzhou) Co. Ltd, Hangzhou 310018, PR China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| | - Shan Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing 100044, PR China.
| |
Collapse
|
12
|
Lillico R, Stesco N, Khorshid Amhad T, Cortes C, Namaka MP, Lakowski TM. Inhibitors of enzymes catalyzing modifications to histone lysine residues: structure, function and activity. Future Med Chem 2016; 8:879-97. [PMID: 27173004 DOI: 10.4155/fmc-2016-0021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gene expression is partly controlled by epigenetic mechanisms including histone-modifying enzymes. Some diseases are caused by changes in gene expression that can be mitigated by inhibiting histone-modifying enzymes. This review covers the enzyme inhibitors targeting histone lysine modifications. We summarize the enzymatic mechanisms of histone lysine acetylation, deacetylation, methylation and demethylation and discuss the biochemical roles of these modifications in gene expression and in disease. We discuss inhibitors of lysine acetylation, deacetylation, methylation and demethylation defining their structure-activity relationships and their potential mechanisms. We show that there are potentially indiscriminant off-target effects on gene expression even with the use of selective epigenetic enzyme inhibitors.
Collapse
Affiliation(s)
- Ryan Lillico
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicholas Stesco
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tina Khorshid Amhad
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Claudia Cortes
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Mike P Namaka
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Joint Laboratory of Biological Psychiatry Between Shantou University Medical College and College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Department of Rehabilitation Medicine, Health Sciences Centre (HSC), Winnipeg, MB, Canada
| | - Ted M Lakowski
- Faculty of Health Sciences, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
- Pharmaceutical Analysis Laboratory, College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Marques CL, Cancela ML, Laizé V. Transcriptional regulation of gilthead seabream bone morphogenetic protein (BMP) 2 gene by bone- and cartilage-related transcription factors. Gene 2015; 576:229-36. [PMID: 26456102 DOI: 10.1016/j.gene.2015.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 09/04/2015] [Accepted: 10/04/2015] [Indexed: 01/30/2023]
Abstract
Bone morphogenetic protein (BMP) 2 belongs to the transforming growth factor β (TGFβ) superfamily of cytokines and growth factors. While it plays important roles in embryo morphogenesis and organogenesis, BMP2 is also critical to bone and cartilage formation. Protein structure and function have been remarkably conserved throughout evolution and BMP2 transcription has been proposed to be tightly regulated, although few data is available. In this work we report the cloning and functional analysis of gilthead seabream BMP2 promoter. As in other vertebrates, seabream BMP2 gene has a 5′ non-coding exon, a feature already present in DPP gene, the fruit fly ortholog of vertebrate BMP2 gene, and maintained throughout evolution. In silico analysis of seabream BMP2 promoter revealed several binding sites for bone and cartilage related transcription factors (TFs) and their functionality was evaluated using promoter-luciferase constructions and TF-expressing vectors. Runt-related transcription factor 3 (RUNX3) was shown to negatively regulate BMP2 transcription and combination with the core binding factor β (CBFβ) further reduced transcriptional activity of the promoter. Although to a lesser extent, myocyte enhancer factor 2C (MEF2C) had also a negative effect on the regulation of BMP2 gene transcription, when associated with SRY (sex determining region Y)-box 9 (SOX9b). Finally, v-ets avian erythroblastosis virus E26 oncogene homolog 1 (ETS1) was able to slightly enhance BMP2 transcription. Data reported here provides new insights toward the better understanding of the transcriptional regulation of BMP2 gene in a bone and cartilage context.
Collapse
Affiliation(s)
- Cátia L Marques
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; PhD Program in Biomedical Sciences, University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal; Department of Biomedical Sciences and Medicine (DCBM), University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Faro, Portugal.
| |
Collapse
|
14
|
The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase. Mol Cell Biol 2015; 35:1633-47. [PMID: 25733682 DOI: 10.1128/mcb.01461-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
MEF2s are pleiotropic transcription factors (TFs) which supervise multiple cellular activities. During the cell cycle, MEF2s are activated at the G0/G1 transition to orchestrate the expression of the immediate early genes in response to growth factor stimulation. Here we show that, in human and murine fibroblasts, MEF2 activities are downregulated during late G1. MEF2C and MEF2D interact with the E3 ligase F-box protein SKP2, which mediates their subsequent degradation through the ubiquitin-proteasome system. The cyclin-dependent kinase 4 (CDK4)/cyclin D1 complex phosphorylates MEF2D on serine residues 98 and 110, and phosphorylation of these residues is an important determinant for SKP2 binding. Unscheduled MEF2 transcription during the cell cycle reduces cell proliferation, whereas its containment sustains DNA replication. The CDK inhibitor p21/CDKN1A gene is a MEF2 target gene required to exert this antiproliferative influence. MEF2C and MEF2D bind a region within the first intron of CDKN1A, presenting epigenetic markers of open chromatin. Importantly, H3K27 acetylation within this regulative region depends on the presence of MEF2D. We propose that following the initial engagement in the G0/G1 transition, MEF2C and MEF2D must be polyubiquitylated and degraded during G1 progression to diminish the transcription of the CDKN1A gene, thus favoring entry into S phase.
Collapse
|