1
|
Zhang L, Zhou J. Zebrafish: A smart tool for heart disease research. JOURNAL OF FISH BIOLOGY 2024; 105:1487-1500. [PMID: 37824489 DOI: 10.1111/jfb.15585] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/07/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
The increasing prevalence of heart disease poses a significant threat to human survival and safety. However, the current treatments available for heart disease are quite limited. Therefore, it is important to utilize suitable animal models that can accurately simulate the physiological characteristics of heart disease. This would help improve our understanding of this disease and aid in the development of new treatment methods and drugs. Zebrafish heart not only exhibits similarities to mammalian hearts, but they also share ~70% of homologous genes with humans. Utilizing zebrafish as an alternative to expensive and time-consuming mammalian models offers numerous advantages. Zebrafish models can be easily established and maintained, and compound screening and genetic methods allow for the development of various economical and easily controlled zebrafish and zebrafish embryonic heart disease models in a short period of time. Consequently, zebrafish have become a powerful tool for exploring the pathological mechanisms of heart disease and identifying new effective genes. In this review, we summarize recent studies on different zebrafish models of heart disease. We also describe the techniques and protocols used to develop zebrafish models of myocardial infarction, heart failure, and congenital heart disease, including surgical procedures, forward and reverse genetics, and drug and combination screening. This review aims to promote the utilization of zebrafish models in investigating diverse pathological mechanisms of heart disease, enhancing our knowledge and comprehension of heart disease, and offering novel insights and objectives for exploring the prevention and treatment of heart disease.
Collapse
Affiliation(s)
- Lantian Zhang
- Education Branch, Chongqing Publishing Group, Chongqing, China
| | - Jinrun Zhou
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Hong T, Park J, An G, Song J, Song G, Lim W. Evaluation of organ developmental toxicity of environmental toxicants using zebrafish embryos. Mol Cells 2024; 47:100144. [PMID: 39489379 PMCID: PMC11635654 DOI: 10.1016/j.mocell.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/04/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
There is increasing global concern about environmental pollutants, such as heavy metals, plastics, pharmaceuticals, personal care products, and pesticides, which have been detected in a variety of environments and are likely to be exposed to nontarget organisms, including humans. Various animal models have been utilized for toxicity assessment, and zebrafish are particularly valuable for studying the toxicity of various compounds owing to their similarity to other aquatic organisms and 70% genetic similarity to humans. Their development is easy to observe, and transgenic models for organs such as the heart, liver, blood vessels, and nervous system enable efficient studies of organ-specific toxicity. This suggests that zebrafish are a valuable tool for evaluating toxicity in specific organs and forecasting the potential impacts on other nontarget species. This review describes organ toxicity caused by various toxic substances and their mechanisms in zebrafish.
Collapse
Affiliation(s)
- Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junho Park
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Yu R, Ai N, Huang C, Wang D, Bian C, Ge W, Chong CM. Aspirin reduces Ponatinib-induced cardiovascular toxic phenotypes and death in zebrafish. Biomed Pharmacother 2024; 180:117503. [PMID: 39357328 DOI: 10.1016/j.biopha.2024.117503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Ponatinib (Iclusig) is an oral tyrosine kinase BCR-ABL inhibitor for treating patients with Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) and chronic myeloid leukemia (CML) who are resistant to the therapies with other tyrosine kinase inhibitors. However, adverse cardiovascular events caused by Ponatinib are a serious issue that affects patients' survival rates. Thus, it is necessary to search for candidate drugs to reduce the cardiovascular toxicity of Ponatinib. PURPOSE To investigate the effects of Aspirin on Ponatinib-induced cardiovascular toxicity in zebrafish. METHODS AB strain of wild type zebrafish (Danio rerio), Tg (cmlc2: GFP) transgenic zebrafish, and Tg (gata1: dsRed) transgenic zebrafish were used as in vivo models to assess survival, blood flow, cardiac morphology, and function. Thrombus formation was detected using O-dianisidine staining. The transcriptome of zebrafish larvae treated with Ponatinib was assessed using RNA sequencing. RESULTS Ponatinib not only reduced survival rate but also caused cardiovascular toxic events such as pericardial edema, abnormal heart structure, low heart rate, and thrombosis. In addition, whole-body transcriptome analysis showed that Ponatinib up-regulated the expression of cyclooxygenase-1 (COX-1). Compared with other antithrombotic drugs, a COX-1 inhibitor Aspirin more effectively reduced ponatinib-induced cardiovascular toxicity events and improved the survival rate of zebrafish larvae. CONCLUSION Our findings suggest that Aspirin exhibits the potential to reduce Ponatinib-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Ruiqi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Nana Ai
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chen Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, SAR 999078, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
4
|
Nys N, Khatib AM, Siegfried G. Apela promotes blood vessel regeneration and remodeling in zebrafish. Sci Rep 2024; 14:3718. [PMID: 38355946 PMCID: PMC10867005 DOI: 10.1038/s41598-023-50677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024] Open
Abstract
In contrast to adult mammals, zebrafish display a high capacity to heal injuries and repair damage to various organs. One of the earliest responses to injury in adult zebrafish is revascularization, followed by tissue morphogenesis. Tissue vascularization entails the formation of a blood vessel plexus that remodels into arteries and veins. The mechanisms that coordinate these processes during vessel regeneration are poorly understood. Hence, investigating and identifying the factors that promote revascularization and vessel remodeling have great therapeutic potential. Here, we revealed that fin vessel remodeling critically depends on Apela peptide. We found that Apela selectively accumulated in newly formed zebrafish fin tissue and vessels. The temporal expression of Apela, Apln, and their receptor Aplnr is different during the regenerative process. While morpholino-mediated knockdown of Apela (Mo-Apela) prevented vessel remodeling, exogenous Apela peptide mediated plexus repression and the development of arteries in regenerated fins. In contrast, Apela enhanced subintestinal venous plexus formation (SIVP). The use of sunitinib completely inhibited vascular plexus formation in zebrafish, which was not prevented by exogenous application. Furthermore, Apela regulates the expression of vessel remolding-related genes including VWF, IGFPB3, ESM1, VEGFR2, Apln, and Aplnr, thereby linking Apela to the vascular plexus factor network as generated by the STRING online database. Together, our findings reveal a new role for Apela in vessel regeneration and remodeling in fin zebrafish and provide a framework for further understanding the cellular and molecular mechanisms involved in vessel regeneration.
Collapse
Affiliation(s)
- Nicolas Nys
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
| | - Abdel-Majid Khatib
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- ZebraFish, Research and Technology, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- Bergonié Institute, Bordeaux, France.
| | - Geraldine Siegfried
- RYTME, Bordeaux Institute of Oncology (BRIC)-UMR1312 Inserm, University of Bordeaux, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
- ZebraFish, Research and Technology, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France.
| |
Collapse
|
5
|
Park J, An G, You J, Park H, Hong T, Song G, Lim W. Dimethenamid promotes oxidative stress and apoptosis leading to cardiovascular, hepatic, and pancreatic toxicities in zebrafish embryo. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109741. [PMID: 37689173 DOI: 10.1016/j.cbpc.2023.109741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Dimethenamid, one of the acetamide herbicides, is widely used on soybeans and corns to inhibit weed growth. Although other acetamide herbicides have been reported to have several toxicities in non-target organisms including developmental toxicity, the toxicity of dimethenamid has not yet been studied. In this research, we utilized the zebrafish animal model to verify the developmental toxicity of dimethenamid. It not only led to morphological abnormalities in zebrafish larvae but also reduced their viability. ROS production and inflammation responses were promoted in zebrafish larvae. Also, uncontrolled apoptosis occurred when the gene expression level related to the cell cycle and apoptosis was altered by dimethenamid. These changes resulted in toxicities in the cardiovascular system, liver, and pancreas are observed in transgenic zebrafish models including fli1a:EGFP and L-fabp:dsRed;elastase:GFP. Dimethenamid triggered morphological defects in the heart and vasculature by altering the mRNA levels related to cardiovascular development. The liver and pancreas were also damaged through not only the changes of their morphology but also through the dysregulation in their function related to metabolic activity. This study shows the developmental defects induced by dimethenamid in zebrafish larvae and the possibility of toxicity in other non-target organisms.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Shi Y, Li L, Wang C, Huang J, Feng L, Chen X, Sik AG, Liu K, Jin M, Wang R. Developmental toxicity induced by chelerythrine in zebrafish embryos via activating oxidative stress and apoptosis pathways. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109719. [PMID: 37586581 DOI: 10.1016/j.cbpc.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Chelerythrine (CHE), a natural benzophenanthridine alkaloid, possesses various biological and pharmacological activities, such as antimicrobial, antitumor and anti-inflammatory effects. However, its adverse side effect has not been fully elucidated. Therefore, this study was designed to investigate the developmental toxicity of CHE in zebrafish. We found that CHE could lead to a notably increase of the mortality and malformation rate, while lead to reduction of the hatching rate and body length. CHE also could affect the normal developing processes of the heart, liver and phagocytes in zebrafish. Furthermore, the reactive oxygen species (ROS) and apoptosis levels were notably increased. In addition, the mRNA expressions of genes (bax, caspase-9, p53, SOD1, KEAP1, TNF-α, STAT3 and NF-κB) were significantly increased, while the bcl2 and nrf2 were notably inhibited by CHE. These results indicated that the elevation of ROS and apoptosis were involved in the developmental toxicity induced by CHE. In conclusion, CHE exhibits a developmental toxicity in zebrafish, which helps to understand the potential toxic effect of CHE.
Collapse
Affiliation(s)
- Yuxin Shi
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chuansen Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jing Huang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Attila Gabor Sik
- Institute of Physiology, Medical School, University of Pecs, Pecs H-7624, Hungary; Szentagothai Research Centre, University of Pecs, Pecs H-7624, Hungary; Institute of Clinical Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kechun Liu
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology, Shandong Academy of Sciences, 28789 East Jingshi Road, Ji'nan 250103, Shandong Province, People's Republic of China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
7
|
Huang L, Wang Z, Liu J, Wan M, Liu J, Liu F, Tu X, Xiao J, Liao X, Lu H, Zhang S, Cao Z. Apatinib induces zebrafish hepatotoxicity by inhibiting Wnt signaling and accumulation of oxidative stress. ENVIRONMENTAL TOXICOLOGY 2023; 38:2679-2690. [PMID: 37551640 DOI: 10.1002/tox.23902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/09/2023]
Abstract
Apatinib, a small-molecule VEGFR2-tyrosine kinase inhibitor, has shown potent anticancer activity in various clinical cancer treatments, but also different adverse reactions. Therefore, it is necessary to study its potential toxicity and working mechanism. We used zebrafish to investigate the effects of apatinib on the development of embryos. Zebrafish exposed to 2.5, 5, and 10 μM apatinib showed adverse effects such as decreased liver area, pericardial oedema, slow yolk absorption, bladder atrophy, and body length shortening. At the same time, it leads to abnormal liver tissue structure, liver function and related gene expression. Furthermore, after exposure to apatinib, oxidative stress levels were significantly elevated but liver developmental toxicity was effectively ameliorated with oxidative stress inhibitor treatment. Apatinib induces down-regulation of key target genes of Wnt signaling pathway in zebrafish, and it is found that Wnt activator can significantly rescue liver developmental defects. These results suggest that apatinib may induce zebrafish hepatotoxicity by inhibiting the Wnt signaling pathway and up-regulating oxidative stress, helping to strengthen our understanding of rational clinical application of apatinib.
Collapse
Affiliation(s)
- Ling Huang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Zhipeng Wang
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jieping Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Jiejun Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Xiaofei Tu
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| | - Shouhua Zhang
- Department of General Surgery, The Affiliated Children's Hospital of Nanchang University, Nanchang, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China
| |
Collapse
|
8
|
Wang X, Chen F, Lu J, Wu M, Cheng J, Xu W, Li Z, Zhang Y. Developmental and cardiovascular toxicities of acetochlor and its chiral isomers in zebrafish embryos through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165296. [PMID: 37406693 DOI: 10.1016/j.scitotenv.2023.165296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Acetochlor (ACT) is a widely used pesticide, yet the environmental and health safety of its chiral isomers remains inadequately evaluated. In this study, we evaluated the toxicity of ACT and its chiral isomers in a zebrafish model. Our findings demonstrate that ACT and its chiral isomers disrupt early zebrafish embryo development, inducing oxidative stress, abnormal lipid metabolism, and apoptosis. Additionally, ACT and its chiral isomers lead to cardiovascular damage, including reduced heart rate, decreased red blood cell (RBC) flow rate, and vascular damage. We further observed that (+)-S-ACT has a significant impact on the transcription of genes involved in cardiac and vascular development, including tbx5, hand2, nkx2.5, gata4, vegfa, dll4, cdh5, and vegfc. Our study highlights the potential risk posed by different conformations of chiral isomeric pesticides and raises concerns regarding their impact on human health. Overall, our results suggest that the chiral isomers of ACT induce developmental defects and cardiovascular toxicity in zebrafish, with (+)-S-ACT being considerably more toxic to zebrafish than (-)-R-ACT.
Collapse
Affiliation(s)
- Xin Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Fan Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengqi Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
9
|
Park J, Hong T, An G, Park H, Song G, Lim W. Triadimenol promotes the production of reactive oxygen species and apoptosis with cardiotoxicity and developmental abnormalities in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160761. [PMID: 36502969 DOI: 10.1016/j.scitotenv.2022.160761] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Various types of fungicides, especially triazole fungicides, are used to prevent fungal diseases on farmlands. However, the developmental toxicity of one of the triazole fungicides, triadimenol, remains unclear. Therefore, we used the zebrafish animal model, a representative toxicological model, to investigate it. Triadimenol induced morphological alterations in the eyes and body length along with yolk sac and heart edema. It also stimulated the production of reactive oxygen species and expression of inflammation-related genes and caused apoptosis in the anterior regions of zebrafish, especially in the heart. The phosphorylation levels of Akt, ERK, JNK, and p38 proteins involved in the PI3K and MAPK pathways, which are important for the development process, were also reduced by triadimenol. These changes led to malformation of the heart and vascular structures, as observed in the flk1:eGFP transgenic zebrafish models and a reduction in the heart rate. In addition, the expression of genes associated with cardiac and vascular development was also reduced. Therefore, we elucidated the mechanisms associated with triadimenol toxicity that leads to various abnormalities and developmental toxicity in zebrafish.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
11
|
Lu J, Wang W, Xu W, Zhang C, Zhang C, Tao L, Li Z, Zhang Y. Induction of developmental toxicity and cardiotoxicity in zebrafish embryos by Emamectin benzoate through oxidative stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154040. [PMID: 35196543 DOI: 10.1016/j.scitotenv.2022.154040] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/31/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Emamectin benzoate (EMB) is a widely used pesticide in agriculture, but its potential risks to the environment and health have not been fully evaluated. In this study, we evaluated the toxicity of Emamectin benzoate using zebrafish model, and found that it affected early embryonic development, such as malformations and delayed hatching. Mechanistically, Emamectin benzoate increased oxidative stress by excessive production of reactive oxygen species (ROS) and abnormal activities of the antioxidant enzymes. Moreover, Emamectin benzoate exposure caused abnormalities in zebrafish heart morphology and function, such as long SV-BA distance and slow heart rate. Alterations were induced in the transcription of heart development-related genes (nkx2.5, tbx5, gata4 and myl7). In summary, our data showed that Emamectin benzoate induces developmental toxicity and cardiotoxicity in zebrafish. Our research provides new evidence on the Emamectin benzoate's toxicity and potential risk in human health.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chenggong Zhang
- Institute of Forensic Science Shanghai Municipal Public Security Bureau, Shanghai Municipal Bureau of Public Security, Shanghai 200437, China
| | - Cheng Zhang
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
12
|
Wang X, Yang X, Wang J, Li L, Zhang Y, Jin M, Chen X, Sun C, Wang R, Liu K. Cardiotoxicity of sanguinarine via regulating apoptosis and MAPK pathways in zebrafish and HL1 cardiomyocytes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109228. [PMID: 34744004 DOI: 10.1016/j.cbpc.2021.109228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022]
Abstract
Sanguinarine, a plant phytoalexin, possesses extensive biological activities including antimicrobial, insecticidal, antitumor, anti-inflammatory and anti-angiogenesis effect. But its cardiotoxicity has rarely been studied. Here, we assess the cardiotoxicity of sanguinarine in vivo using larval zebrafish from 48 hpf to 96 hpf. The results show that sanguinarine caused severe malformation and the dysfunction of the heart including reductions of heart rate, red blood cell number, blood flow dynamics, stroke volume and increase of SV-BA distance, subintestinal venous congestion. Further studies showed that apoptosis in the zebrafish heart region was observed after sanguinarine exposure using TUNEL assay and AO staining method. In addition, the genes, such as sox9b, myl7, nkx2.5 and bmp10, which play crucial parts in the development and the function of the heart, were changed after sanguinarine treatment. caspase3, caspase9, bax and bcl2, apoptosis-related genes, were also altered by sanguinarine. Further studies were performed to study the cardiotoxicity in vitro using cardiomyocytes HL1 cell line. The results showed that remarkable increase of apoptosis and ROS level in HL1 cells were induced by sanguinarine. Moreover, the MAPK pathway (JNK and P38) were notably enhanced and involved in the cardiotoxicity induced by sanguinarine. Our findings will provide better understanding of sanguinarine in the toxic effect on heart.
Collapse
Affiliation(s)
- Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xueliang Yang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Jiazhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Xiqiang Chen
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Shandong Provincial Engineering Laboratory for Biological Testing Technology, 28789 Jingshidong Road, Licheng District, Jinan 250103, Shandong Province, PR China.
| |
Collapse
|
13
|
Ling D, Chen H, Chan G, Lee SMY. Quantitative measurements of zebrafish heartrate and heart rate variability: A survey between 1990-2020. Comput Biol Med 2021; 142:105045. [PMID: 34995954 DOI: 10.1016/j.compbiomed.2021.105045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 12/19/2022]
Abstract
Zebrafish is an essential model organism for studying cardiovascular diseases, given its advantages of fast proliferation and high gene homology with humans. Zebrafish embryos/larvae are valuable experimental models used in toxicology studies to analyze drug toxicity, including hepatoxicity, nephrotoxicity and cardiotoxicity, as well as for drug discovery and drug safety screening in the preclinical stage. Heart rate (HR) serves as a functional endpoint in studies of cardiotoxicity, while heart rate variability (HRV) serves as an indicator of cardiac arrhythmia. Cardiotoxicity is a major cause of early and late termination of drug trials, so a more comprehensive understanding of zebrafish HR and HRV is important. This review summarized HR and HRV in a specific range of applications and fields, focusing on zebrafish heartbeat detection procedures, signal analysis technology and well-established commercial software, such as LabVIEW, Rvlpulse, and ZebraLab. We also compared HR detection algorithms and electrocardiography (ECG)-based methods of heart signal extraction. The relationship between HR and HRV was also systematically analyzed; HR was shown to have an inverse correlation with HRV. Applications to drug testing are also highlighted in this review. Furthermore, HR and HRV were shown to be regulated by the automatic nervous system; their connections with ECG measurements are also summarized herein.
Collapse
Affiliation(s)
- Dongmin Ling
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macao, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
14
|
Huang L, Liu J, Li W, Liu F, Wan M, Chen G, Su M, Guo C, Han F, Xiong G, Liao X, Lu H, Cao Z. Lenvatinib exposure induces hepatotoxicity in zebrafish via inhibiting Wnt signaling. Toxicology 2021; 462:152951. [PMID: 34534561 DOI: 10.1016/j.tox.2021.152951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/04/2021] [Accepted: 09/11/2021] [Indexed: 11/25/2022]
Abstract
Lenvatinib is a multi-kinase inhibitor for widely treating thyroid cancer. However, little studies have been done about it or its toxicity on embryonic development of vertebrate. In this study, we used zebrafish to assess the effect of lenvatinib on early embryonic development. Exposure of zebrafish embryos to 58, 117, 176 nM lenvatinib induced abnormal embryonic development, such as decreased heart rate, pericardial edema, delayed yolk absorption, and bladder atrophy. Lenvatinib exposure reduced liver area and down-regulated liver developmental related genes. The proliferation of hepatocytes and the expression of apoptosis-related genes were significantly reduced.by Lenvatinib. Furthermore, the imbalance of liver metabolism and abnormal liver tissue structure were observed in adult zebrafish after Lenvatinib exposure. Oxidative stress was up-regulated by lenvatinib and astaxanthin partially rescued hepatic developmental defects via downregulating oxidative stress. After lenvatinib exposure, Wnt signaling was down-regulated, and activation of Wnt signaling partially rescued hepatic developmental defects. Therefore, these results suggested that lenvatinib might induce zebrafish hepatotoxicity by down-regulating Wnt signaling related genes and inducing oxidative stress. This study provides a reference for the potential hepatotoxicity of lenvatinib during embryonic development and raises health concern about the potential harm of exposure to lenvatinib for foetuses.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Mengqi Wan
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Meile Su
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Chen Guo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Guanghua Xiong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
15
|
Lane S, More LA, Asnani A. Zebrafish Models of Cancer Therapy-Induced Cardiovascular Toxicity. J Cardiovasc Dev Dis 2021; 8:jcdd8020008. [PMID: 33499052 PMCID: PMC7911266 DOI: 10.3390/jcdd8020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose of review: Both traditional and novel cancer therapies can cause cardiovascular toxicity in patients. In vivo models integrating both cardiovascular and cancer phenotypes allow for the study of on- and off-target mechanisms of toxicity arising from these agents. The zebrafish is the optimal whole organism model to screen for cardiotoxicity in a high throughput manner, while simultaneously assessing the role of cardiotoxicity pathways on the cancer therapy’s antitumor effect. Here we highlight established zebrafish models of human cardiovascular disease and cancer, the unique advantages of zebrafish to study mechanisms of cancer therapy-associated cardiovascular toxicity, and finally, important limitations to consider when using the zebrafish to study toxicity. Recent findings: Cancer therapy-associated cardiovascular toxicities range from cardiomyopathy with traditional agents to arrhythmias and thrombotic complications associated with newer targeted therapies. The zebrafish can be used to identify novel therapeutic strategies that selectively protect the heart from cancer therapy without affecting antitumor activity. Advances in genome editing technology have enabled the creation of several transgenic zebrafish lines valuable to the study of cardiovascular and cancer pathophysiology. Summary: The high degree of genetic conservation between zebrafish and humans, as well as the ability to recapitulate cardiotoxic phenotypes observed in patients with cancer, make the zebrafish an effective model to study cancer therapy-associated cardiovascular toxicity. Though this model provides several key benefits over existing in vitro and in vivo models, limitations of the zebrafish model include the early developmental stage required for most high-throughput applications.
Collapse
Affiliation(s)
- Sarah Lane
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
| | - Luis Alberto More
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
| | - Aarti Asnani
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
16
|
Ng PCI, Chan JYW, Leung RKK, Li J, Ren Z, Chan AWH, Xu Y, Lee SS, Wang R, Ji X, Zheng J, Chan DPC, Yew WW, Lee SMY. Role of oxidative stress in clofazimine-induced cardiac dysfunction in a zebrafish model. Biomed Pharmacother 2020; 132:110749. [PMID: 33017766 DOI: 10.1016/j.biopha.2020.110749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Clofazimine (CFZ), a riminophenazine, is now commonly used in the treatment of multidrug-resistant tuberculosis. However, its use may be potentially associated with cardiac dysfunction in some individuals. In this study, the zebrafish heart, by merit of its developmental and genetic characteristics being in homology with that of human, was chosen as an animal model for evaluation of such dysfunction. METHODS Morphological and physiological parameters were used to assess cardiac dysfunction. Transcriptome analysis was performed, followed by validation with real-time quantitative PCR, for delineation of the relevant genomics. RESULTS Exposure of 2 dpf zebrafish to 4 mg/L CFZ for 2 days, adversely affected cardiac functions including significant decreases in HR, SV, CO, and FS, with observable pathophysiological developments of pericardial effusion and blood accumulation in the heart, in comparison with the control group. In addition, genes which respond to xenobiotic stimulus, related to oxygen transport, glutathione metabolism and extracellular matrix -receptor interactions, were significantly enriched among the differentially up-regulated genes. Antioxidant response element motif was enriched in the 5000 base pair upstream regions of the differentially expressed genes. Co-administration of N-acetylcysteine was shown to protect zebrafish against the development of CFZ-induced cardiac dysfunction. CONCLUSIONS This study suggests an important role of oxidative stress as a major pathogenetic mechanism of riminophenazine-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Phoebe C I Ng
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Judy Y W Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ross K K Leung
- School of Public Health, University of Hong Kong, Hong Kong, China; Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - J Li
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Z Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Anthony W H Chan
- Department of Anatomical & Cellular Pathology, Chinese University of Hong Kong, Hong Kong, China
| | - Y Xu
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - S S Lee
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China
| | - R Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xia Ji
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Macao, China
| | - Denise P C Chan
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China.
| | - W W Yew
- Stanley Ho Centre for Emerging Infectious Diseases, Chinese University of Hong Kong, Hong Kong, China.
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
17
|
Li S, Lu Y, Ding D, Ma Z, Xing X, Hua X, Xu J. Fibroblast growth factor 2 contributes to the effect of salidroside on dendritic and synaptic plasticity after cerebral ischemia/reperfusion injury. Aging (Albany NY) 2020; 12:10951-10968. [PMID: 32518214 PMCID: PMC7346066 DOI: 10.18632/aging.103308] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
Ischemic stroke, a serious neurological disease, is associated with cell death, axonal and dendritic plasticity, and other activities. Anti-inflammatory, anti-apoptotic, promote dendritic and synaptic plasticity are critical therapeutic targets after ischemic stroke. Fibroblast growth factor-2 (FGF2), which is involved in the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)/CAMP response element (CRE)-binding protein (CREB) pathway, has been shown to facilitate dendritic and synaptic plasticity. Salidroside (Sal) has been reported to have anti-inflammatory, anti-oxidative, and anti-apoptotic effects; however, the underlying mechanisms of Sal in promoting dendritic and synaptic plasticity remain unclear. Here, the anti-inflammatory, anti-apoptotic, dendritic and synaptic plasticity effects of Sal were investigated in vitro in PC12 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions and in vivo in rats with middle cerebral artery occlusion/reperfusion (MCAO/R). We investigated the role of Sal in promoting dendritic and synaptic plasticity in the ischemic penumbra and whether the FGF2-mediated cAMP/PKA/CREB pathway was involved in this process. The present study demonstrated that Sal could significantly inhibit inflammation and apoptosis, and promote dendritic and synaptic plasticity. Overall, our study suggests that Sal is an effective treatment for ischemic stroke that functions via the FGF2-mediated cAMP/PKA/CREB pathway to promote dendritic and synaptic plasticity.
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Yechen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Daofang Ding
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Zhenzhen Ma
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Xiangxin Xing
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Xuyun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.,Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.,Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China.,Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
18
|
Toxicity Reduction of Euphorbia kansui Stir-Fried with Vinegar Based on Conversion of 3- O-(2' E,4' Z-Decadi-enoyl)-20- O-acetylingenol. Molecules 2019; 24:molecules24203806. [PMID: 31652602 PMCID: PMC6832248 DOI: 10.3390/molecules24203806] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 11/23/2022] Open
Abstract
The dried roots of Euphorbia kansui S.L.Liou ex S.B.Ho have long been used to treat edema in China. However, the severe toxicity caused by Euphorbia kansui (EK) has seriously restricted its clinical application. Although EK was processed with vinegar to reduce its toxicity, the detailed mechanisms of attenuation in toxicity of EK stir-fried with vinegar (VEK) have not been well delineated. Diterpenoids are the main toxic ingredients of EK, and changes in these after processing may be the underlying mechanism of toxicity attenuation of VEK. 3-O-(2′E,4′Z-decadienoyl)-20-O-acetylingenol (3-O-EZ) is one of the diterpenoids derived from EK, and the content of 3-O-EZ was significantly reduced after processing. This study aims to explore the underlying mechanisms of toxicity reduction of VEK based on the change of 3-O-EZ after processing with vinegar. Based on the chemical structure of 3-O-EZ and the method of processing with vinegar, simulation experiments were carried out to confirm the presence of the product both in EK and VEK and to enrich the product. Then, the difference of peak area of 3-O-EZ and its hydrolysate in EK and VEK were detected by ultra-high-performance liquid chromatography (UPLC). Furthermore, the toxicity effect of 3-O-EZ and its hydrolysate, as well as the underlying mechanism, on zebrafish embryos were investigated. The findings showed that the diterpenoids (3-O-EZ) in EK can convert into less toxic ingenol in VEK after processing with vinegar; meanwhile, the content of ingenol in VEK was higher than that of EK. More interestingly, the ingenol exhibited less toxicity (acute toxicity, developmental toxicity and organic toxicity) than that of 3-O-EZ, and 3-O-EZ could increase malondialdehyde (MDA) content and reduce glutathione (GSH) content; cause embryo oxidative damage by inhibition of the succinate dehydrogenase (SDH) and superoxide dismutase (SOD) activity; and induce inflammation and apoptosis by elevation of IL-2 and IL-8 contents and activation of the caspase-3 and caspase-9 activity. Thus, this study contributes to our understanding of the mechanism of attenuation in toxicity of VEK, and provides the possibility of safe and rational use of EK in clinics.
Collapse
|
19
|
Zou X, Liu Q, Guo S, Zhu J, Han J, Xia Z, Du Y, Wei L, Shang J. A Novel Zebrafish Larvae Hypoxia/Reoxygenation Model for Assessing Myocardial Ischemia/Reperfusion Injury. Zebrafish 2019; 16:434-442. [PMID: 31314708 DOI: 10.1089/zeb.2018.1722] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Strategies to reduce reperfusion injury after ischemia have been considered in clinical practice, but few interventions have successfully passed the proof-of-concept stage. In this study, we developed a novel zebrafish larvae hypoxia/reoxygenation (H/R) model to simulate myocardial ischemia/reperfusion injury (MIRI), with potential utility as a drug screening tool. After H/R treatment, videos of transgenic [Tg(cmlc:EGFP)] larval zebrafish hearts were captured using a digital high-speed camera, and the heart rate, diastolic area, systolic area, and total fraction of area changed were quantified. The mRNA expression of tnnt2, bnp, and hif1α was quantified, and red blood cells (RBCs) were detected by O-dianisidine staining. We found that a decline in cardiac contractility occurred in zebrafish larvae 48 h after hypoxia treatment. Reoxygenation for 2-5 h after 48 h of hypoxia caused heart dysfunction in zebrafish larvae, and were determined to be the optimum conditions for simulating MIRI similar to mammalian models. Our results indicated that heart dysfunction after reoxygenation in zebrafish larvae was accompanied by an upregulated gene expression of a number of myocardial injury biomarkers and increased numbers of RBCs. In conclusion, the novel larval zebrafish H/R model developed in this study could be used for rapid in vivo screening and efficacy assessment of MIRI therapeutics.
Collapse
Affiliation(s)
- Xiaoyan Zou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiuyan Liu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Songchang Guo
- School of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Junyi Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jichun Han
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhenjiang Xia
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yuzhi Du
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Wei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Shang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
20
|
A novel Ca2+ current blocker promotes angiogenesis and cardiac healing after experimental myocardial infarction in mice. Pharmacol Res 2018; 134:109-117. [DOI: 10.1016/j.phrs.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/24/2018] [Accepted: 06/05/2018] [Indexed: 12/28/2022]
|
21
|
Kithcart AP, MacRae CA. Zebrafish assay development for cardiovascular disease mechanism and drug discovery. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:126-131. [PMID: 30518489 DOI: 10.1016/j.pbiomolbio.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Calum A MacRae
- Brigham and Women's Hospital, Harvard Medical School, USA.
| |
Collapse
|
22
|
Zebrafish heart failure models: opportunities and challenges. Amino Acids 2018; 50:787-798. [DOI: 10.1007/s00726-018-2578-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/24/2018] [Indexed: 01/03/2023]
|
23
|
Gu G, Na Y, Chung H, Seok SH, Lee HY. Zebrafish Larvae Model of Dilated Cardiomyopathy Induced by Terfenadine. Korean Circ J 2017; 47:960-969. [PMID: 29035434 PMCID: PMC5711688 DOI: 10.4070/kcj.2017.0080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022] Open
Abstract
Background and Objectives Dilated cardiomyopathy can be the end-stage of severe cardiac disorders and directly affects the cardiac muscle, inducing cardiomegaly and heart failure (HF). Although a wide variety of animal models are available to study dilated cardiomyopathy, there is no model to assess dilated cardiomyopathy with non-invasive, simple, and large screening methods. Methods We developed a dilated cardiomyopathy model in zebrafish larvae using short duration terfenadine, a known cardiotoxic drug that induces ventricular size dilation. Fractional shortening of zebrafish hearts was calculated. Results We treated zebrafish with 5 to 10 µM terfenadine for 24 hours. In terfenadine-treated zebrafish, blood frequently pooled and clotted in the chamber, and circulation was remarkably reduced. Atria and ventricles were swollen, and fluid was deposited around the heart, mimicking edema. Cardiac contractility was significantly reduced, and ventricular area was significantly enlarged. Heart rate was markedly reduced even after terfenadine withdrawal. Acridine orange staining also showed that terfenadine increased cardiomyocyte apoptosis. A significant increase of natriuretic peptide B (NPPB) mRNA was found in terfenadine-treated zebrafish. A low dose of terfenadine (5–10 µM) did not show mortality in short-term treatment (24 hours). However, moderate dose (35–45 µM) terfenadine treatment reduced zebrafish survival within 1 hour. Conclusion With advantages of rapid sample preparation procedure and transparent observation of the live heart, this model can potentially be applied to large-scale drug screening and toxicity assays for non-ischemic HF.
Collapse
Affiliation(s)
- Gyojeong Gu
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea
| | - Yirang Na
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Chung
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Korea.
| | - Hae Young Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
24
|
Abstract
Fibroblast growth factors (FGF) are mitogenic signal mediators that induce cell proliferation and survival. Although cardiac myocytes are post-mitotic, they have been shown to be able to respond to local and circulating FGFs. While precise molecular mechanisms are not well characterized, some FGF family members have been shown to induce cardiac remodeling under physiologic conditions by mediating hypertrophic growth in cardiac myocytes and by promoting angiogenesis, both events leading to increased cardiac function and output. This FGF-mediated physiologic scenario might transition into a pathologic situation involving cardiac cell death, fibrosis and inflammation, and eventually cardiac dysfunction and heart failure. As discussed here, cardiac actions of FGFs - with the majority of studies focusing on FGF2, FGF21 and FGF23 - and their specific FGF receptors (FGFR) and precise target cell types within the heart, are currently under experimental investigation. Especially cardiac effects of endocrine FGFs entered center stage over the past five years, as they might provide communication routes that couple metabolic mechanisms, such as bone-regulated phosphate homeostasis, or metabolic stress, such as hyperphosphatemia associated with kidney injury, with changes in cardiac structure and function. In this context, it has been shown that elevated serum FGF23 can directly tackle cardiac myocytes via FGFR4 thereby contributing to cardiac hypertrophy in models of chronic kidney disease, also called uremic cardiomyopathy. Precise characterization of FGFs and their origin and regulation of expression, and even more importantly, the identification of the FGFR isoforms that mediate their cardiac actions should help to develop novel pharmacological interventions for heart failure, such as FGFR4 inhibition to tackle uremic cardiomyopathy.
Collapse
Affiliation(s)
- Christian Faul
- Katz Family Drug Discovery Center, Division of Nephrology and Hypertension, Department of Medicine, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA; Department of Cell Biology and Anatomy, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Turner JR. Integrated cardiovascular safety: multifaceted considerations in drug development and therapeutic use. Expert Opin Drug Saf 2017; 16:481-492. [PMID: 28264617 DOI: 10.1080/14740338.2017.1300252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- J. Rick Turner
- Cardiac Safety Services, QuintilesIMS, Durham, NC, USA
- Department of Pharmacy Practice, Campbell University College of Pharmacy & Health Sciences, Buies Creek, NC, USA
| |
Collapse
|
26
|
Yang Y, Bu P. Progress on the cardiotoxicity of sunitinib: Prognostic significance, mechanism and protective therapies. Chem Biol Interact 2016; 257:125-31. [PMID: 27531228 DOI: 10.1016/j.cbi.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 07/23/2016] [Accepted: 08/05/2016] [Indexed: 12/15/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) are multi-targeted anti-cancer agents effective in the treatment of renal cell carcinoma (RCC), imatinib-resistant gastrointestinal stromal tumor (GIST) and pancreatic cancer (PC). Targeting and inhibiting a wide range of oncogenically relevant receptor tyrosine kinases (RTKs), TKIs have been the golden standard treatment of several types of cancer. The cardiotoxicity of TKIs, however, has also emerged alongside their anti-cancer potencies and has attracted research attention. Over the past few years significant progress has been made in developing a deeper understanding of aspects such as extent of cardiotoxicity, prognostic implications and survival predictions, toxicological mechanisms, and potential cardioprotective therapies. In this review we focus on a typical TKI sunitinib and summarize the up-to-date knowledge of sunitinib-induced cardiac abnormalities reported in clinical studies, weighing their implications of prognostic values. We also examine recent findings in underlying mechanisms, and development of potential cardioprotective agents.
Collapse
Affiliation(s)
- Yi Yang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peili Bu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Shared mechanism of teratogenicity of anti-angiogenic drugs identified in the chicken embryo model. Sci Rep 2016; 6:30038. [PMID: 27443489 PMCID: PMC4957076 DOI: 10.1038/srep30038] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/29/2016] [Indexed: 12/24/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is essential for tumor growth, stabilization and progression. Angiogenesis inhibitors are now widely used in the clinic; however, there are relatively few published studies on the mechanism of their presumed teratogenic effects. To address this issue, we screened a variety of angiogenesis inhibitors in developing zebrafish and chicken embryo models to assess for developmental defects and potential teratogenic effects. We confirmed previous reports that sunitinib, sorafenib and TNP-470 are teratogenic and demonstrate that axitinib, pazopanib, vandetanib, and everolimus are also teratogens in these models. A dose response study identified the drugs inhibit HUVEC cell proliferation in vitro, and also target the developing blood vessels of embryos in vivo. This provides further evidence for the potential risk of fetal toxicity when using these drugs in a clinical setting, and emphasizes the importance of the development and maintenance of the vasculature in the embryo. We conclude that angiogenesis inhibitors, regardless of the molecular target, are teratogenic when exposed to chicken embryos.
Collapse
|
28
|
Update on Cardiovascular Safety of Tyrosine Kinase Inhibitors: With a Special Focus on QT Interval, Left Ventricular Dysfunction and Overall Risk/Benefit. Drug Saf 2016; 38:693-710. [PMID: 26008987 DOI: 10.1007/s40264-015-0300-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We previously reviewed the cardiovascular safety of 16 tyrosine kinase inhibitors (TKIs), approved for use in oncology as of 30 September 2012. Since then, the indications for some of them have been widened and an additional nine TKIs have also been approved as of 30 April 2015. Eight of these nine are indicated for use in oncology and one (nintedanib) for idiopathic pulmonary fibrosis. This report is an update on the cardiovascular safety of those 16 TKIs, including the post-marketing data concerning their pro-arrhythmic effects, and reviews the cardiovascular safety of the nine new TKIs approved since (afatinib, cabozantinib, ceritinib, dabrafenib, ibrutinib, lenvatinib, nintedanib, ponatinib, and trametinib). As before, we focus on specific aspects of cardiovascular safety, namely their potential to induce QT interval prolongation, left ventricular (LV) dysfunction and hypertension but now also summarise the risks of arterial thromboembolic events (ATEs) associated with these agents. Of the newer TKIs, cabozantinib and ceritinib have been shown to induce a mild to moderate degree of QTc interval prolongation while cardiac dysfunction has been reported with the use of afatinib, dabrafenib, lenvatinib, ponatinib and trametinib. The label for axitinib was revised to include a new association with cardiac dysfunction. Hypertension is associated with cabozantinib, lenvatinib, nintedanib, ponatinib and trametinib. Ponatinib, within 10 months of its approval in December 2012, required voluntary (temporary) suspension of its marketing until significant safety revisions (restricted indication, additional warnings and precautions about the risk of arterial occlusion and thromboembolic events and amended dose) were made to its label. Compared with the previous 16 TKIs, more of the recently introduced TKIs are associated with the risk of LV dysfunction, and fewer with QT prolongation. Available data on morbidity and mortality associated with TKIs, together with post-marketing experience with lapatinib and ponatinib, emphasise the need for effective pharmacovigilance and ongoing re-assessment of their risk/benefit after approval of these novel agents. If not adequately managed, these cardiovascular effects significantly decrease the quality of life and increase the morbidity and mortality in a population already at high risk. Evidence accumulated over the last decade suggests that their clinical benefit, although worthwhile, is modest and extends only to progression-free survival and complete response without any effect on overall survival. During uncontrolled use in routine clinical practice, their risk/benefit is likely to be inferior to that perceived from highly controlled clinical trials.
Collapse
|