1
|
Sahin G, Doğanlar ZB. Extended sub-chronic exposure to heavy metal mixture induced multidrug resistance against chemotherapy agents in ovarian cancer cells. Toxicol Lett 2025; 407:50-62. [PMID: 40158757 DOI: 10.1016/j.toxlet.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent scientific findings suggest that persistent, minimal quantity exposure to heavy metals combinations can instigate negative reactions across various cell types, tissues, and organs. However, the interplay between heavy metals present in blood and cancerous cells remains largely unclear. We aimed to examine the capability of a Pb, Cd, and Co at very low concentrations blend to trigger multidrug resistance against chemotherapeutic remedies such as cisplatin, 5-fluorouracil, and doxorubicin in the NIH-Ovcar3 human ovarian cancer cell line. Additionally, we sought to dissect the molecular mechanisms bolstering this resistance. Our results illustrate that consistent administration of the heavy metal mixture at extraordinarily low concentrations fosters pronounced chemotherapy resistance in Ovcar3 cells via cross resistance. This resistance endured and was propagated through ensuing cell generations. We observed that ATP-binding cassette (ABC) membrane transporters, specifically P-gp/ABCB1, BRCP/ABCG2, and ABCC1-type cellular detoxification functions, were markedly overexpressed, playing a crucial role in multidrug resistance. This finding supports the molecular evidence of the acquired multidrug resistance phenotype and provides preliminary insights into the potential resistance mechanism. We also found decreased mortality rates in the resistant ovarian cancer cells, with the mitochondrial apoptosis pathway activating at a reduced rate post-chemotherapy relative to the non-resistant control cells. Furthermore, multidrug-resistant cells exhibited increased motility and enhanced wound-healing abilities, hinting at a higher metastatic potential. These findings suggest that analysing P-gp, BRCP, and ABCC1 multidrug resistance gene expression and/or protein levels within biopsy samples from ovarian cancer patients at risk of heavy metal exposure could prove advantageous in determining chemotherapy dosage and prolonging patient lifespan.
Collapse
Affiliation(s)
- Gözde Sahin
- Department of Gynecologic Oncology,Basaksehir Çam and Sakura City Hospital, İstanbul 34480, Turkey.
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| |
Collapse
|
2
|
Wang X, Wang Y, Tang T, Zhao G, Dong W, Li Q, Liang X. Curcumin-Loaded RH60/F127 Mixed Micelles: Characterization, Biopharmaceutical Characters and Anti-Inflammatory Modulation of Airway Inflammation. Pharmaceutics 2023; 15:2710. [PMID: 38140051 PMCID: PMC10747166 DOI: 10.3390/pharmaceutics15122710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin's ability to impact chronic inflammatory conditions, such as metabolic syndrome and arthritis, has been widely researched; however, its poor bioavailability limits its clinical application. The present study is focused on the development of curcumin-loaded polymeric nanomicelles as a drug delivery system with anti-inflammatory effects. Curcumin was loaded in PEG-60 hydrogenated castor oil and puronic F127 mixed nanomicelles (Cur-RH60/F127-MMs). Cur-RH60/F127-MMs was prepared using the thin film dispersion method. The morphology and releasing characteristics of nanomicelles were evaluated. The uptake and permeability of Cur-RH60/F127-MMs were investigated using RAW264.7 and Caco-2 cells, and their bioavailability and in vivo/vitro anti-inflammatory activity were also evaluated. The results showed that Cur-RH60/F127-MMs have regular sphericity, possess an average diameter smaller than 20 nm, and high encapsulation efficiency for curcumin (89.43%). Cur-RH60/F127-MMs significantly increased the cumulative release of curcumin in vitro and uptake by cells (p < 0.01). The oral bioavailability of Cur-RH60/F127-MMs was much higher than that of curcumin-active pharmaceutical ingredients (Cur-API) (about 9.24-fold). The treatment of cell lines with Cur-RH60/F127-MMs exerted a significantly stronger anti-inflammatory effect compared to Cur-API. In addition, Cur-RH60/F127-MMs significantly reduced OVA-induced airway hyperresponsiveness and inflammation in an in vivo experimental asthma model. In conclusion, this study reveals the possibility of formulating a new drug delivery system for curcumin, in particular nanosized micellar aqueous dispersion, which could be considered a perspective platform for the application of curcumin in inflammatory diseases of the airways.
Collapse
Affiliation(s)
- Xinli Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.W.); (G.Z.); (W.D.); (Q.L.)
- Jiangxi Medical Device Testing Center, Nanchang 330029, China
| | - Yanyan Wang
- Clinical Medical School, Jiangxi University of Chinese Medicine, Nanchang 330004, China;
| | - Tao Tang
- Department of Pharmacy, Ji’an Central People’s Hospital, Ji’an 343000, China;
| | - Guowei Zhao
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.W.); (G.Z.); (W.D.); (Q.L.)
| | - Wei Dong
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.W.); (G.Z.); (W.D.); (Q.L.)
| | - Qiuxiang Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.W.); (G.Z.); (W.D.); (Q.L.)
| | - Xinli Liang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China; (X.W.); (G.Z.); (W.D.); (Q.L.)
| |
Collapse
|
3
|
Rocca C, De Bartolo A, Guzzi R, Crocco MC, Rago V, Romeo N, Perrotta I, De Francesco EM, Muoio MG, Granieri MC, Pasqua T, Mazza R, Boukhzar L, Lefranc B, Leprince J, Gallo Cantafio ME, Soda T, Amodio N, Anouar Y, Angelone T. Palmitate-Induced Cardiac Lipotoxicity Is Relieved by the Redox-Active Motif of SELENOT through Improving Mitochondrial Function and Regulating Metabolic State. Cells 2023; 12:cells12071042. [PMID: 37048116 PMCID: PMC10093731 DOI: 10.3390/cells12071042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiac lipotoxicity is an important contributor to cardiovascular complications during obesity. Given the fundamental role of the endoplasmic reticulum (ER)-resident Selenoprotein T (SELENOT) for cardiomyocyte differentiation and protection and for the regulation of glucose metabolism, we took advantage of a small peptide (PSELT), derived from the SELENOT redox-active motif, to uncover the mechanisms through which PSELT could protect cardiomyocytes against lipotoxicity. To this aim, we modeled cardiac lipotoxicity by exposing H9c2 cardiomyocytes to palmitate (PA). The results showed that PSELT counteracted PA-induced cell death, lactate dehydrogenase release, and the accumulation of intracellular lipid droplets, while an inert form of the peptide (I-PSELT) lacking selenocysteine was not active against PA-induced cardiomyocyte death. Mechanistically, PSELT counteracted PA-induced cytosolic and mitochondrial oxidative stress and rescued SELENOT expression that was downregulated by PA through FAT/CD36 (cluster of differentiation 36/fatty acid translocase), the main transporter of fatty acids in the heart. Immunofluorescence analysis indicated that PSELT also relieved the PA-dependent increase in CD36 expression, while in SELENOT-deficient cardiomyocytes, PA exacerbated cell death, which was not mitigated by exogenous PSELT. On the other hand, PSELT improved mitochondrial respiration during PA treatment and regulated mitochondrial biogenesis and dynamics, preventing the PA-provoked decrease in PGC1-α and increase in DRP-1 and OPA-1. These findings were corroborated by transmission electron microscopy (TEM), revealing that PSELT improved the cardiomyocyte and mitochondrial ultrastructures and restored the ER network. Spectroscopic characterization indicated that PSELT significantly attenuated infrared spectral-related macromolecular changes (i.e., content of lipids, proteins, nucleic acids, and carbohydrates) and also prevented the decrease in membrane fluidity induced by PA. Our findings further delineate the biological significance of SELENOT in cardiomyocytes and indicate the potential of its mimetic PSELT as a protective agent for counteracting cardiac lipotoxicity.
Collapse
Affiliation(s)
- Carmine Rocca
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Anna De Bartolo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Rita Guzzi
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Maria Caterina Crocco
- Department of Physics, Molecular Biophysics Laboratory, University of Calabria, 87036 Rende, Italy
- STAR Research Infrastructure, University of Calabria, Via Tito Flavio, 87036 Rende, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Naomi Romeo
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ida Perrotta
- Centre for Microscopy and Microanalysis (CM2), Department of Biology, Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Grazia Muoio
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95124 Catania, Italy
| | - Maria Concetta Granieri
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Rosa Mazza
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
| | - Loubna Boukhzar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | | | - Teresa Soda
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Youssef Anouar
- UNIROUEN, Inserm U1239, Neuroendocrine, Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen Normandie University, 76000 Mont-Saint-Aignan, France
- UNIROUEN, UMS-UAR HERACLES, PRIMACEN, Cell Imaging Platform of Normandy, Institute for Research and Innovation in Biomedicine (IRIB), 76183 Rouen, France
| | - Tommaso Angelone
- Cellular and Molecular Cardiovascular Pathophysiology Laboratory, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, 87036 Rende, Italy
- National Institute of Cardiovascular Research (INRC), 40126 Bologna, Italy
| |
Collapse
|
4
|
Layos L, Martínez-Balibrea E, Ruiz de Porras V. Curcumin: A Novel Way to Improve Quality of Life for Colorectal Cancer Patients? Int J Mol Sci 2022; 23:ijms232214058. [PMID: 36430537 PMCID: PMC9695864 DOI: 10.3390/ijms232214058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in men and the second most common in women. Treatment of metastatic CRC consists of highly toxic chemotherapeutic drug combinations that often negatively affect patient quality of life (QoL). Moreover, chemotherapy-induced toxicity and chemotherapy resistance are among the most important factors limiting cancer treatment and can lead to the interruption or discontinuation of potentially effective therapy. Several preclinical studies have demonstrated that curcumin acts through multiple cellular pathways and possesses both anti-cancer properties against CRC and the capacity to mitigate chemotherapy-related side effects and overcome drug resistance. In this review article, we suggest that the addition of curcumin to the standard chemotherapeutic treatment for metastatic CRC could reduce associated side-effects and overcome chemotherapy resistance, thereby improving patient QoL.
Collapse
Affiliation(s)
- Laura Layos
- Medical Oncology Department, Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
- ProCURE Program, Catalan Institute of Oncology, Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
| | - Vicenç Ruiz de Porras
- Catalan Institute of Oncology, Badalona Applied Research Group in Oncology (B·ARGO), Ctra. Can Ruti-Camí de les Escoles s/n, 08916 Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Ctra. Can Ruti-Camí de les escoles s/n, 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-(93)-5546301
| |
Collapse
|
5
|
Arda H, Doğanlar O. Stress-induced miRNAs isolated from wheat have a unique therapeutic potential in ultraviolet-stressed human keratinocyte cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17977-17996. [PMID: 34677776 DOI: 10.1007/s11356-021-17039-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence supports the existence of cross-kingdom gene regulation. However, the therapeutic potential of stress-specific plant miRNAs and their role in UV-related pathologies in human tissue remain largely unexplored. The aim of this study was to investigate the therapeutic potential and mechanisms of action of stress-induced miRNA cocktails (SI-WmiRs) from Einkorn wheat (Triticum monococcum L.) on human keratinocyte (HaCaT) cells exposed to a high dose of UV-B radiation. We used a biofactory approach and irradiated wheatgrass with UV-C for 240 min to obtain the specific SI-WmiRs that wheat produces to recover from UV stress. We followed the plant with molecular and biochemical analyses and extracted our SI-WmiRs at the most appropriate time (0 h and 6 h after UV-C application). Then, we applied the SI-WmiR cocktail to HaCaT cells exposed to high-dose of UV-B radiation. Our results show that UV-B radiation induced lipid peroxidation and DNA damage, as demonstrated by increased malondialdehyde (MDA) levels and changes in the RAPD band profile, respectively. UV stress also impaired IL6/JAK2/STAT3 signalling and activated the inflammatory mediators IL6 and TNF-α in HaCaT cells, leading to significant induction of apoptotic cell death. We found that SI-WmiR transfection prevents lipid peroxidation and oxidative stress-related DNA damage by increasing antioxidant (CuZn-SOD, Mn-SOD) and DNA repair (EXO1, SMUG1 and XRCC3) gene expression. In addition, SI-WmiRs regulated IL6/JAK2/STAT3 signalling by reducing JAK2 and STAT3 gene expression and phosphorylated protein levels compared to the control treatments. Moreover, SI-WmiRs inhibited pro-apoptotic BAX, Caspase 3 and Caspase 8 gene expression and protein levels to prevent apoptosis of UV-stressed HaCaT cells. Our results demonstrate that stress-induced wheat miRNAs produced using a biofactory approach have strong potential as a novel and effective alternative therapy for UV stress-related skin damage.
Collapse
Affiliation(s)
- Hayati Arda
- Department of Plant Physiology, Faculty of Science, Trakya University, 22030, Edirne, Turkey
| | - Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
6
|
Prolonged sub-lethal exposure to galaxolide (HHCB) and tonalide (AHTN) promotes the metastatic potential of glioblastoma tumor spheroids. Neurotoxicology 2021; 87:219-230. [PMID: 34687775 DOI: 10.1016/j.neuro.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/06/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023]
Abstract
Galaxolide and tonalide are well-known polycyclic musks whose intensive use without limitations in numerous cleaning, hygiene, and personal care products has resulted in widespread direct human exposure via absorption, inhalation, and oral ingestion. Latest data shows that long-term, low-dose exposure to toxic chemicals can induce unpredictable harmful effects in a variety of living systems, however, interactions between synthetic musks and brain tumours remain largely unexplored. Glioblastoma (GB) accounts for nearly half of all tumours of the central nervous system and is characterized by very poor prognosis. The aims of this study were (1) to investigate the potential effect of long-term (20-generation) single and combined application of galaxolide and tonalide at sub-lethal doses (5-2.5 u M) on the angiogenesis, invasion, and migration of human U87 cells or tumour spheroids, and (2) to explore the underlying molecular mechanisms. Random amplified polymorphic DNA assays revealed significant DNA damage and increased total mutation load in galaxolide- and/or tonalide-treated U87 cells. In those same groups, we also detected remarkable tumour spheroid invasion and up-regulation of both HIF1-α/VEGF/MMP9 and IL6/JAK2/STAT3 signals, known to have important roles in hypoxia-related angiogenesis and/or proliferation. Prolonged musk treatment further altered angio-miRNA expression in a manner consistent with poor prognosis in GB. We also detected significant over-expression of the genes Slug, Snail, ZEB1, and Vimentin, which are biomarkers of epithelial to mesenchymal transition. In addition, matrigel, transwell, and wound healing assays clearly showed that long-term sub-lethal exposure to galaxolide and/or tonalide induced invasion and migration proposing a high metastatic potential. Our results suggest that assessing expression of HIF-1a, VEGF, STAT3, and the miR-17-92 cluster in biopsy samples of GB patients who have a history of possible long-term exposure to galaxolide or tonalide could be beneficial for deciding a therapy regime. Additionally, we recommend that extensively-used hygiene and cleaning materials be selected from synthetic musk-free products, especially when used in palliative care processes for GB patients.
Collapse
|
7
|
Doğanlar O, Doğanlar ZB, Kurtdere AK, Chasan T, Ok ES. Chronic exposure of human glioblastoma tumors to low concentrations of a pesticide mixture induced multidrug resistance against chemotherapy agents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110940. [PMID: 32800223 DOI: 10.1016/j.ecoenv.2020.110940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Recent evidence indicates that chronic, low-dose exposure to mixtures of pesticides can cause adverse responses in a variety of cells, tissues and organs, although interactions between pesticides circulating in the blood and cancer cells remain largely unexplored. The aim of this study was to investigate the potential of a mixture of four pesticides to induce multidrug resistance against the chemotherapeutic agents cisplatin, 5-fluorouracil and temozolomide in the human U87 glioblastoma cell line, and to explore the molecular mechanisms underlying this resistance. We found that the repeated administration of the pesticide mixture (containing the insecticides chlorpyrifos-ethyl and deltamethrin, the fungicide metiram, and the herbicide glyphosate) induced a strong drug resistance in U87 cells. The resistance was durable and transferred to subsequent cell generations. In addition, we detected a significant over-expression of the ATP-binding cassette (ABC) membrane transporters P-gp/ABCB1 and BRCP/ABCG2 as well as a glutathione-S-transferase (GST)/M1-type cellular detoxification function, known to have important roles in multidrug resistance, thus providing molecular support for the acquired multidrug resistance phenotype and shedding light on the mechanism of resistance. We further determined that there was lower mortality in the resistant brain tumor cells and that the mitochondrial apoptosis pathway was activated at a lower rate after chemotherapy compared to non-resistant control cells. In addition, multidrug-resistant cells were found to have both higher motility and wound-healing properties, suggesting a greater metastatic potential. Our results suggest that the investigation of P-gp, BRCP and GST/M1 multidrug resistance gene expression and/or protein levels in biopsy specimens of brain tumor patients who were at risk of pesticide exposure could be beneficial in determining chemotherapy dose and prolonging patient survival.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cisplatin
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Multiple/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Glioblastoma/genetics
- Glioblastoma/pathology
- Humans
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Proteins/pharmacology
- Pesticides/toxicity
- Toxicity Tests, Chronic
Collapse
Affiliation(s)
- Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey.
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Ayşe Kardelen Kurtdere
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Tourkian Chasan
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| | - Esma Seben Ok
- Department of Medical Biology, Faculty of Medicine, Trakya University, 22030 Edirne, Turkey
| |
Collapse
|
8
|
Naringin Combined with NF-κB Inhibition and Endoplasmic Reticulum Stress Induces Apoptotic Cell Death via Oxidative Stress and the PERK/eIF2α/ATF4/CHOP Axis in HT29 Colon Cancer Cells. Biochem Genet 2020; 59:159-184. [PMID: 32979141 DOI: 10.1007/s10528-020-09996-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
Currently, combination therapy is considered the most effective solution for a selective chemotherapeutic effect in the treatment of colon cancer. This study investigated the death of both colon cancer HT29 cells and healthy vascular smooth muscle TG-Ha-VSMC cells (VSMCs) induced by naringin combined with endoplasmic reticulum (ER) stress and NF-κB inhibition. Naringin combined with tunicamycin and BAY 11-7082 suppressed the proliferation of HT29 cells in a dose-dependent manner and induced particularly apoptotic death without significantly affecting healthy VSMCs according to Annexin V/PI staining and AO/EB staining analyses. Insufficient antioxidant defense and heat shock response as well as excessive ROS generation were observed in HT29 cells following combination therapy. Quantitative real-time PCR and western blot analysis demonstrated that drug combination-induced mitochondrial apoptosis was activated through the ROS-mediated PERK/eIF2α/ATF4/CHOP pathway. Additionally, naringin combination significantly reduced the sXBP expression induced by tunicamycin+BAY 11-7082 in a dose-dependent manner. In conclusion, this study found that naringin combined with tunicamycin+BAY 11-7082 efficiently induced apoptotic cell death in HT29 colon cancer cells via oxidative stress and the PERK/eIF2α/ATF4/CHOP pathway, suggesting that naringin combined with tunicamycin plus BAY 11-7082 could be a new combination therapy strategy for effective colon cancer treatment with minimal side effects on healthy cells.
Collapse
|
9
|
Ruiz de Porras V, Layos L, Martínez-Balibrea E. Curcumin: A therapeutic strategy for colorectal cancer? Semin Cancer Biol 2020; 73:321-330. [PMID: 32942023 DOI: 10.1016/j.semcancer.2020.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the second cause of cancer death worldwide. The metastatic disease is mainly treated with aggressive therapies consisting on combinations of cytotoxic chemotherapy plus anti-EGFR or anti-VEGF drugs. In spite of the improvements in clinical outcomes achieved in the last decade, these are the result of multiple new combinations using the existing therapeutic options and the introduction of regorafenib and TAS-102 in second or later lines of treatment. As immunotherapies are limited to less than 5% of CRC patients harboring tumors with deficient mismatch repair, there is an urgent need of finding new drugs to increase our patients' survival opportunities. Among all the natural products that are candidates to be used for the treatment of CRC cancer, curcumin (the golden spice) is in the spotlight. Used for centuries in the Ayurveda medicine, its demonstrated anticancer properties and low toxicity profile made it the focus of hundreds of preclinical and clinical investigations. So far we know that it can be combined with most of the aforementioned drugs in a safe and synergistic way. Regretfully, its poor bioavailability has been one of the main issues for its successful introduction in the clinic. Nevertheless, a plethora of new formulations with a huge increase in bioavailability are under study with promising results. In this review we discuss the possibility of incorporating curcumin in the treatment of CRC; specifically, we review preclinical and clinical data supporting its possible combination with current therapies as well as new formulations under clinical study. It is time for the golden spice revolution.
Collapse
Affiliation(s)
- Vicenç Ruiz de Porras
- B-ARGO Group, Medical Oncology Service, Catalan Institute of Oncology, Ctra. Del Canyet s/n, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| | - Laura Layos
- B-ARGO Group, Medical Oncology Service, Catalan Institute of Oncology, Ctra. Del Canyet s/n, 08916, Badalona, Spain; Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| | - Eva Martínez-Balibrea
- Germans Trias i Pujol Research Institute (IGTP), Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain; Program of Predictive and Personalized Cancer Medicine (PMPPC), IGTP, Ctra. De Can Ruti, camí de les escoles s/n, 08916, Badalona, Spain.
| |
Collapse
|
10
|
Doğanlar O, Doğanlar ZB, Ovali MA, Güçlü O, Demir U, Doğan A, Uzun M. Melatonin regulates oxidative stress and apoptosis in fetal hearts of pinealectomised RUPP rats. Hypertens Pregnancy 2020; 39:429-443. [PMID: 32791955 DOI: 10.1080/10641955.2020.1802595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This study aimed to investigate the effects of melatonin on cardiac oxidative stress and apoptosis in the fetal heart in RUPP rats. METHODS The fetal heart samples were obtained from melatonin administrated RUPP rats. RESULTS Our results indicate that preeclampsia exacerbated by melatonin deficiency triggers hypoxic conditions, both mis/un-folded protein response, oxidative stress-induced DNA damage and apoptosis. Melatonin treatment provided significant therapeutic effects on fetal hearts via regulating all these stress response at cellular and molecular levels. CONCLUSION Melatonin may be considered as a potential molecule for development of preventive strategies to reduce the PE induced risk of cardiovascular diseases in offspring.
Collapse
Affiliation(s)
- Oğuzhan Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Mehmet Akif Ovali
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | - Orkut Güçlü
- Department of Cardiovascular Surgery, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Ufuk Demir
- Experimental Research Center, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| | - Ayten Doğan
- Department of Medical Biology, Faculty of Medicine, Trakya University , Edirne, Turkey
| | - Metehan Uzun
- Department of Physiology, Faculty of Medicine, Çanakkale Onsekiz Mart University , Çanakkale, Turkey
| |
Collapse
|
11
|
Deng Q, Li XX, Fang Y, Chen X, Xue J. Therapeutic Potential of Quercetin as an Antiatherosclerotic Agent in Atherosclerotic Cardiovascular Disease: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5926381. [PMID: 32565865 PMCID: PMC7292974 DOI: 10.1155/2020/5926381] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is one of the diseases with the highest morbidity and mortality globally. It causes a huge burden on families and caregivers and high costs for medicine and surgical interventions. Given expensive surgeries and failures of most conventional treatments, medical community tries to find a more cost-effective cure. Thus, attentions have been primarily focused on food or herbs. Quercetin (Qu) extracted from food, a flavonoid component, develops potentials of alternative or complementary medicine in atherosclerosis. Due to the wide range of health benefits, researchers have considered to apply Qu as a natural compound in therapy. This review is aimed to identify the antiatherosclerosis functions of Qu in treating ASCVD such as anti-inflammatory, antioxidant properties, effects on endothelium-dependent vasodilation, and blood lipid-lowering.
Collapse
Affiliation(s)
- Qian Deng
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Xue Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanting Fang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Chen
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingui Xue
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Visvikis A, Kyvelou SM, Pietri P, Georgakopoulos C, Manousou K, Tousoulis D, Stefanadis C, Vlachopoulos C, Pektasides D. Cardiotoxic Profile and Arterial Stiffness of Adjuvant Chemotherapy for Colorectal Cancer. Cancer Manag Res 2020; 12:1175-1185. [PMID: 32104097 PMCID: PMC7025666 DOI: 10.2147/cmar.s223032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Even though new cancer therapies have improved the overall survival, in some cases they have been associated with adverse effects, including increased cardiotoxicity. The purpose of the present study was to assess the cardiovascular effects of adjuvant chemotherapy for colorectal cancer and mainly the impact on arterial stiffness indices. MATERIAL AND METHODS A total of 70 patients with non-metastatic colorectal cancer who were treated either with FOLFOX (n=16) or with XELOX (n=54) adjuvant chemotherapy were included in the study. All patients were subjected to full cardiovascular evaluation at the beginning and the end of chemotherapy. Arterial stiffness was assessed by means of pulse wave velocity (PWV) and augmentation index (Aix) and full laboratory examinations were conducted prior to, and soon after, the termination of chemotherapy. RESULTS Patients exhibited significantly higher levels of carotid-radial PWV, carotid femoral RWV and Aix post-chemotherapy (p<0.001); these findings remained significant when examined separately in each treatment subgroup (FOLFOX, XELOX). The observed changes were independent of treatment regimen and baseline patient characteristics. Univariate regression analyses showed that baseline PWVc-r and PWVc-f were the only factors associated with PWVc-r and PWVc-f change, while Aix change was independent of its baseline value. CONCLUSION There is a clear burden in arterial stiffness indices post-adjuvant chemotherapy for colorectal cancer in both chemotherapy groups. This is a finding of important clinical significance, however more prospective studies are required in order to encode the possible mechanisms involved.
Collapse
Affiliation(s)
- A Visvikis
- Third Department of Medical Oncology, Agioi Anargyroi General Oncology Hospital of Kifissia, Athens, Greece
| | - SM Kyvelou
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - P Pietri
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - C Georgakopoulos
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - K Manousou
- Third Department of Medical Oncology, Agioi Anargyroi General Oncology Hospital of Kifissia, Athens, Greece
| | - D Tousoulis
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - C Stefanadis
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - C Vlachopoulos
- Cardiology Department, First Cardiology Clinic, Athens Medical School, Hippokration Hospital, Athens, Greece
| | - D Pektasides
- Second Department of Internal Medicine, School of Medicine, University of Athens, Athens, Greece
| |
Collapse
|