1
|
Wardhani K, Yazzie S, Edeh O, Grimes M, Dixson C, Jacquez Q, Zychowski KE. Neuroinflammation is dependent on sex and ovarian hormone presence following acute woodsmoke exposure. Sci Rep 2024; 14:12995. [PMID: 38844478 PMCID: PMC11156661 DOI: 10.1038/s41598-024-63562-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
Woodsmoke (WS) exposure is associated with significant health-related sequelae. Different populations can potentially exhibit varying susceptibility, based on endocrine phenotypes, to WS and investigating neurological impacts following inhaled WS is a growing area of research. In this study, a whole-body inhalation chamber was used to expose both male and female C57BL/6 mice (n = 8 per group) to either control filtered air (FA) or acute WS (0.861 ± 0.210 mg/m3) for 4 h/d for 2 days. Neuroinflammatory and lipid-based biological markers were then assessed. In a second set of studies, female mice were divided into two groups: one group was ovariectomized (OVX) to simulate an ovarian hormone-deficient state (surgical menopause), and the other underwent Sham surgery as controls, to mechanistically assess the impact of ovarian hormone presence on neuroinflammation following FA and acute WS exposure to simulate an acute wildfire episode. There was a statistically significant impact of sex (P ≤ 0.05) and statistically significant interactions between sex and treatment in IL-1β, CXCL-1, TGF-β, and IL-6 brain relative gene expression. Hippocampal and cortex genes also exhibited significant changes in acute WS-exposed Sham and OVX mice, particularly in TGF-β (hippocampus) and CCL-2 and CXCL-1 (cortex). Cortex GFAP optical density (OD) showed a notable elevation in male mice exposed to acute WS, compared to the control FA. Sham and OVX females demonstrated differential GFAP expression, depending on brain region. Overall, targeted lipidomics in phosphatidylcholine (PC) and phosphatidylethanolamine (PE) serum and brain lipids demonstrated more significant changes between control FA and acute WS exposure in female mice, compared to males. In summary, male and female mice show distinct neuroinflammatory markers in response to acute WS exposure. Furthermore, ovarian hormone deficiency may impact the neuroinflammatory response following an acute WS event.
Collapse
Affiliation(s)
- Kartika Wardhani
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Sydnee Yazzie
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Onamma Edeh
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Martha Grimes
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Connor Dixson
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Quiteria Jacquez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Katherine E Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM, 87131, USA.
| |
Collapse
|
2
|
Lee SH, Lin CY, Chen TF, Chou CCK, Chiu MJ, Tee BL, Liang HJ, Cheng TJ. Distinct brain lipid signatures in response to low-level PM 2.5 exposure in a 3xTg-Alzheimer's disease mouse inhalation model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156456. [PMID: 35660587 DOI: 10.1016/j.scitotenv.2022.156456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) poses a significant risk to human health. The molecular mechanisms underlying low-level PM2.5-induced neurotoxicity in the central nervous system remain unclear. In addition, changes in lipids in response to PM2.5 exposure have not yet been fully elucidated. In this study, 3xTg-Alzheimer's disease (AD) mice experienced continuous whole-body exposure to non-concentrated PM2.5 for three consecutive months, while control mice inhaled particulate matter-filtered air over the same time span. A liquid chromatography-mass spectrometry-based lipidomic platform was used to determine the distinct lipid profiles of various brain regions. The average PM2.5 concentration during the exposure was 11.38 μg/m3, which was close to the regulation limits of USA and Taiwan. The partial least squares discriminant analysis model showed distinct lipid profiles in the cortex, hippocampus, and olfactory bulb, but not the cerebellum, of mice in the exposure group. Increased levels of fatty acyls, glycerolipids, and sterol lipids, as well as the decreased levels of glycerophospholipids and sphingolipids in PM2.5-exposed mouse brains may be responsible for the increased energy demand, membrane conformation, neuronal loss, antioxidation, myelin function, and cellular signaling pathways associated with AD development. Our research suggests that subchronic exposure to low levels of PM2.5 may cause neurotoxicity by changing the lipid profiles in a susceptible model. Lipidomics is a powerful tool to study the early effects of PM2.5-induced AD toxicity.
Collapse
Affiliation(s)
- Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ching-Yu Lin
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Hao-Jan Liang
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Shkirkova K, Lamorie-Foote K, Zhang N, Li A, Diaz A, Liu Q, Thorwald MA, Godoy-Lugo JA, Ge B, D'Agostino C, Zhang Z, Mack WJ, Sioutas C, Finch CE, Mack WJ, Zhang H. Neurotoxicity of Diesel Exhaust Particles. J Alzheimers Dis 2022; 89:1263-1278. [PMID: 36031897 DOI: 10.3233/jad-220493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Air pollution particulate matter (PM) is strongly associated with risks of accelerated cognitive decline, dementia and Alzheimer's disease. Ambient PM batches have variable neurotoxicity by collection site and season, which limits replicability of findings within and between research groups for analysis of mechanisms and interventions. Diesel exhaust particles (DEP) offer a replicable model that we define in further detail. OBJECTIVE Define dose- and time course neurotoxic responses of mice to DEP from the National Institute of Science and Technology (NIST) for neurotoxic responses shared by DEP and ambient PM. METHODS For dose-response, adult C57BL/6 male mice were exposed to 0, 25, 50, and 100μg/m3 of re-aerosolized DEP (NIST SRM 2975) for 5 h. Then, mice were exposed to 100μg/m3 DEP for 5, 100, and 200 h and assayed for amyloid-β peptides, inflammation, oxidative damage, and microglial activity and morphology. RESULTS DEP exposure at 100μg/m3 for 5 h, but not lower doses, caused oxidative damage, complement and microglia activation in cerebral cortex and corpus callosum. Longer DEP exposure for 8 weeks/200 h caused further oxidative damage, increased soluble Aβ, white matter injury, and microglial soma enlargement that differed by cortical layer. CONCLUSION Exposure to 100μg/m3 DEP NIST SRM 2975 caused robust neurotoxic responses that are shared with prior studies using DEP or ambient PM0.2. DEP provides a replicable model to study neurotoxic mechanisms of ambient PM and interventions relevant to cognitive decline and dementia.
Collapse
Affiliation(s)
- Kristina Shkirkova
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krista Lamorie-Foote
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Nathan Zhang
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Andrew Li
- Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Arnold Diaz
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Qinghai Liu
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max A Thorwald
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jose A Godoy-Lugo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Brandon Ge
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Zijiao Zhang
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Wendy J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Caleb E Finch
- Dornsife College, University of Southern California, Los Angeles, CA, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Lopez K, Camacho A, Jacquez Q, Amistadi MK, Medina S, Zychowski K. Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. TOXICS 2022; 10:457. [PMID: 36006136 PMCID: PMC9413489 DOI: 10.3390/toxics10080457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) exposure is a global health issue that impacts both urban and rural communities. Residential communities in the Southwestern United States have expressed concerns regarding the health impacts of fugitive PM from rural, legacy mine-sites. In addition, the recent literature suggests that exosomes may play a role in driving toxicological phenotypes following inhaled exposures. In this study, we assessed exosome-driven mechanisms and systemic health impacts following inhaled dust exposure, using a rodent model. Using an exosome inhibitor, GW4869 (10 μM), we inhibited exosome generation in the lungs of mice via oropharyngeal aspiration. We then exposed mice to previously characterized inhaled particulate matter (PM) from a legacy mine-site and subsequently assessed downstream behavioral, cellular, and molecular biomarkers in lung, serum, and brain tissue. Results indicated that CCL-2 was significantly upregulated in the lung tissue and downregulated in the brain (p < 0.05) following PM exposure. Additional experiments revealed cerebrovascular barrier integrity deficits and increased glial fibrillary acidic protein (GFAP) staining in the mine-PM exposure group, mechanistically dependent on exosome inhibition. An increased stress and anxiety response, based on the open-field test, was noted in the mine-PM exposure group, and subsequently mitigated with GW4869 intervention. Exosome lipidomics revealed 240 and eight significantly altered positive-ion lipids and negative-ion lipids, respectively, across the three treatment groups. Generally, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids were significantly downregulated in the PM group, compared to FA. In conclusion, these data suggest that systemic, toxic impacts of inhaled PM may be mechanistically dependent on lung-derived, circulating exosomes, thereby driving a systemic, proinflammatory phenotype.
Collapse
Affiliation(s)
- Keegan Lopez
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Alexandra Camacho
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Kay Amistadi
- Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Medina
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Katherine Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Liu Y, Huang W, Lin X, Xu R, Li L, Ding H. Variation of spatio-temporal distribution of on-road vehicle emissions based on real-time RFID data. J Environ Sci (China) 2022; 116:151-162. [PMID: 35219414 DOI: 10.1016/j.jes.2021.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 06/14/2023]
Abstract
High-resolution vehicular emissions inventories are important for managing vehicular pollution and improving urban air quality. This study developed a vehicular emission inventory with high spatio-temporal resolution in the main urban area of Chongqing, based on real-time traffic data from 820 RFID detectors covering 454 roads, and the differences in spatio-temporal emission characteristics between inner and outer districts were analysed. The result showed that the daily vehicular emission intensities of CO, hydrocarbons, PM2.5, PM10, and NOx were 30.24, 3.83, 0.18, 0.20, and 8.65 kg/km per day, respectively, in the study area during 2018. The pollutants emission intensities in inner district were higher than those in outer district. Light passenger cars (LPCs) were the main contributors of all-day CO emissions in the inner and outer districts, from which the contributors of NOx emissions were different. Diesel and natural gas buses were major contributors of daytime NOx emissions in inner districts, accounting for 40.40%, but buses and heavy duty trucks (HDTs) were major contributors in outer districts. At nighttime, due to the lifting of truck restrictions and suspension of buses, HDTs become the main NOx contributor in both inner and outer districts, and its three NOx emission peak hours were found, which are different to the peak hours of total NOx emission by all vehicles. Unlike most other cities, bridges and connecting channels are always emission hotspots due to long-time traffic congestion. This knowledge will help fully understand vehicular emissions characteristics and is useful for policymakers to design precise prevention and control measures.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou 510006, China
| | - Wenfeng Huang
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou 510006, China
| | - Xiaofang Lin
- Shantou Municipal Urban Public Transportation Management Office, Shantou 515000, China
| | - Rui Xu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou 510006, China
| | - Li Li
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou 510006, China
| | - Hui Ding
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China; Guangdong Provincial Engineering Research Center for Traffic Environmental Monitoring and Control, Guangzhou 510006, China.
| |
Collapse
|
6
|
Wilson A, Velasco CA, Herbert GW, Lucas SN, Sanchez BN, Cerrato JM, Spilde M, Li QZ, Campen MJ, Zychowski KE. Mine-site derived particulate matter exposure exacerbates neurological and pulmonary inflammatory outcomes in an autoimmune mouse model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:503-517. [PMID: 33682625 PMCID: PMC8052313 DOI: 10.1080/15287394.2021.1891488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Southwestern United States has a legacy of industrial mining due to the presence of rich mineral ore deposits. The relationship between environmental inhaled particulate matter (PM) exposures and neurological outcomes within an autoimmune context is understudied. The aim of this study was to compare two regionally-relevant dusts from high-priority abandoned mine-sites, Claim 28 PM, from Blue Gap Tachee, AZ and St. Anthony mine PM, from the Pueblo of Laguna, NM and to expose autoimmune-prone mice (NZBWF1/J). Mice were randomly assigned to one of three groups (n = 8/group): DM (dispersion media, control), Claim 28 PM, or St. Anthony PM, subjected to oropharyngeal aspiration of (100 µg/50 µl), once per week for a total of 4 consecutive doses. A battery of immunological and neurological endpoints was assessed at 24 weeks of age including: bronchoalveolar lavage cell counts, lung gene expression, brain immunohistochemistry, behavioral tasks and serum autoimmune biomarkers. Bronchoalveolar lavage results demonstrated a significant increase in number of polymorphonuclear neutrophils following Claim 28 and St. Anthony mine PM aspiration. Lung mRNA expression showed significant upregulation in CCL-2 and IL-1ß following St. Anthony mine PM aspiration. In addition, neuroinflammation was present in both Claim 28 and St. Anthony mine-site derived PM exposure groups. Behavioral tasks resulted in significant deficits as determined by Y-maze new arm frequency following Claim 28 aspiration. Neutrophil elastase was significantly upregulated in the St. Anthony mine exposure group. Interestingly, there were no significant changes in serum autoantigens suggesting systemic inflammatory effects may be mediated through other molecular mechanisms following low-dose PM exposures.
Collapse
Affiliation(s)
- Alexis Wilson
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Carmen A. Velasco
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
- Department of Chemical Engineering, Universidad Central del Ecuador, Ritter s/n & Bolivia, Quito 17-01-3972, Ecuador
| | - Guy W. Herbert
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Selita N. Lucas
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Bethany N. Sanchez
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - José M. Cerrato
- Department of Civil, Construction & Environmental Engineering, University of New Mexico, Albuquerque, New Mexico 87131
| | - Michael Spilde
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, New Mexico 87131
| | - Quan-Zhen Li
- Department of Immunology and Microarray Core, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| | - Katherine E. Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, New Mexico 87131
| |
Collapse
|
7
|
Begay J, Sanchez B, Wheeler A, Baldwin F, Lucas S, Herbert G, Ordonez Y, Shuey C, Klaver Z, Harkema JR, Wagner JG, Morishita M, Bleske B, Zychowski KE, Campen MJ. Assessment of particulate matter toxicity and physicochemistry at the Claim 28 uranium mine site in Blue Gap, AZ. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:31-48. [PMID: 33050837 PMCID: PMC7726040 DOI: 10.1080/15287394.2020.1830210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Thousands of abandoned uranium mines (AUMs) exist in the western United States. Due to improper remediation, windblown dusts generated from AUMs are of significant community concern. A mobile inhalation lab was sited near an AUM of high community concern ("Claim 28") with three primary objectives: to (1) determine the composition of the regional ambient particulate matter (PM), (2) assess meteorological characteristics (wind speed and direction), and (3) assess immunological and physiological responses of mice after exposures to concentrated ambient PM (or CAPs). C57BL/6 and apolipoprotein E-null (ApoE-/-) mice were exposed to CAPs in AirCARE1 located approximately 1 km to the SW of Claim 28, for 1 or 28 days for 4 hr/day at approximately 80 µg/m3 CAPs. Bronchoalveolar lavage fluid (BALF) analysis revealed a significant influx of neutrophils after a single-day exposure in C57BL/6 mice (average PM2.5 concentration = 68 µg/m3). Lungs from mice exposed for 1 day exhibited modest increases in Tnfa and Tgfb mRNA levels in the CAPs exposure group compared to filtered air (FA). Lungs from mice exposed for 28 days exhibited reduced Tgfb (C57BL/6) and Tnfa (ApoE-/-) mRNA levels. Wind direction was typically moving from SW to NE (away from the community) and, while detectable in all samples, uranium concentrations in the PM2.5 fraction were not markedly different from published-reported values. Overall, exposure to CAPs in the region of the Blue GAP Tachee's Claim-28 uranium mine demonstrated little evidence of overt pulmonary injury or inflammation or ambient air contamination attributed to uranium or vanadium.
Collapse
Affiliation(s)
- Jessica Begay
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Bethany Sanchez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Abigail Wheeler
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | - Selita Lucas
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Guy Herbert
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Yoselin Ordonez
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | - Chris Shuey
- Southwest Research and Information Center, Albuquerque, NM, USA
| | | | | | | | | | - Barry Bleske
- University of New Mexico College of Pharmacy, Albuquerque, NM, USA
| | | | | |
Collapse
|