1
|
Yang Y, Owusu FB, Wu H, Zhang X, Li R, Liu Z, Zhang S, Leng L, Wang Q. Mitochondria as therapeutic targets for Natural Products in the treatment of Cardiovascular Diseases. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119588. [PMID: 40057144 DOI: 10.1016/j.jep.2025.119588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products represent a unique medical approach to treating disease and have been used in clinical practice for thousands of years in cardiovascular disease (CVDs). In recent years, natural products have received increasing attention for their high efficiency, safety, and low toxicity, and their targeted regulation of mitochondria offers promising strategies for the treatment of CVDs. However, the potential mechanisms by which natural products target mitochondria for cardiovascular treatment have not been fully elucidated. AIM OF THE STUDY Literature from the past decade is reviewed to emphasize the therapeutic efficacy and potential mechanisms of natural products targeting mitochondria in the treatment of CVDs. MATERIALS AND METHODS In the NCBI PubMed database, relevant literature was searched using 'natural products', 'mitochondria' and 'cardiovascular disease' as search terms, and review papers were excluded. The remaining articles were screened for relevance. Priority was given to articles using rat models, in vivo, ex vivo or in vitro assays. The resulting articles were categorized into natural product categories, including saponins, alkaloids, plant extracts and preparations. This article reviews the research progress on mitochondria as potential therapeutic targets for CVDs and summarizes the application of mitochondria-targeted natural products in the treatment of CVDs. RESULTS Mitochondrial damage may be attributed to impairment of biogenesis (mitochondrial number and mitochondrial DNA damage), dynamics disruption (mitophagy inhibition and overpromotion, fusion and fission),disruption of optimal function including Adenosine triphosphate generation, Reactive oxygen species (ROS) production, fatty acid β oxidation, mitochondrial membrane permeability, calcium homeostasis imbalance, and membrane potential depolarization. Mitochondrial dysfunction or damage leads to cardiomyocyte dysfunction, ion disorders, cell death, and ultimately CVDs, such as myocardial infarction, heart failure, ischemia reperfusion, and diabetic heart disease. Natural products, which include flavonoids, saponins, phenolic acids, alkaloids, polysaccharides, extracts, and formulations, are seen to have significant clinical efficacy in the treatment of CVDs. Mechanistically, natural products regulate mitophagy, mitochondrial fusion and fission, while improving mitochondrial respiratory function, reducing ROS production, and inhibiting mitochondria-dependent apoptosis in cardiomyocytes, thereby protecting myocardial cells and heart function. CONCLUSIONS This paper reviews the potential and mechanism of natural products to regulate mitochondria for the treatment of CVDs, creating more opportunities for understanding their therapeutic targets and derivatization of lead compounds, and providing a scientific basis for advancing CVDs drug research.
Collapse
Affiliation(s)
- Yanze Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Han Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Zhanbiao Liu
- Laboratory Animal Center, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaozhuo Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China; Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
2
|
Yang HL, Wang YM, Li Q, Luo H, Tan J, Zhao X, Zi D. Intravenous administration of mitochondria improves ovarian function by anti-apoptosis in the premature ovarian insufficiency model. Climacteric 2025; 28:200-211. [PMID: 39791362 DOI: 10.1080/13697137.2024.2441248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVE For patients with contraindications to hormone therapy, the absence of effective treatments for ovarian dysfunction post chemotherapy represents a critical issue requiring resolution. Local administration of mitochondria may enhance ovarian function in premature ovarian insufficiency (POI) by ameliorating diminished mitochondrial activity. Nevertheless, there is a paucity of literature on the efficacy of mitochondrial transplantation through intravenous injection, a less invasive and more convenient method than local injection, for the improvement of ovarian function in POI following chemotherapy. METHOD Mitochondria were isolated from mouse livers, their activity and integrity were validated with MitoTracker Red and their localization was examined via confocal microscopy, real-time quantitative PCR and enzyme-linked immunosorbent assay post tail vein injection. An ovarian insufficiency animal model induced by chemotherapy was developed, and ovarian function was assessed through ovarian diameter, vaginal smear, body weight, sex hormone levels and histological analysis. The impact of mitochondrial transplantation on an ovarian cell model was examined through the assessment of mitochondrial function, apoptosis and levels of reactive oxygen species. CONCLUSION Tail vein injection of isolated mitochondria has the potential to enhance ovarian functions in an animal model of POI induced by cyclophosphamide, increase mitochondrial activity in impaired ovarian cells and decrease the rate of apoptosis.
Collapse
Affiliation(s)
- Han-Lin Yang
- Department of Gynecology and Obstetrics, Guizhou Provincial People's Hospital, Guiyang, China
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Yuan-Mei Wang
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Qing Li
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Hao Luo
- College of Bioengineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| | - Jun Tan
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| | - Dan Zi
- Department of Gynecology and Obstetrics, Guizhou Provincial People's Hospital, Guiyang, China
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Guiyang, China
- Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, China
- Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences/Stem Cell and Tissue Engineering Research Center, Guizhou Medical University, Guiyang, China
| |
Collapse
|
3
|
Das S, Mathew A, Janardhanan KK. Methanolic Extract of Morchella esculenta (Ascomycota) Prevents Chemotherapy-Related Cardiotoxicity in Tumor-Bearing Mice. Int J Med Mushrooms 2025; 27:51-61. [PMID: 39717918 DOI: 10.1615/intjmedmushrooms.2024055751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The quest for bioactives that confer protection against chemotherapy induced cardio toxicity is a front-line area of cardio oncology research. Species of genus Morchella have been used in traditional medicine to treat asthma, wound healing, cough, cold, indigestion, excessive phlegm and breathlessness. M. esculenta, commonly known as guchhi in India is a highly prized culinary morel mushroom. Recent studies carried out in our laboratory have demonstrated significant cardioprotective effect of M. esculenta against doxorubicin (DOX)-induced cardiotoxicity. Since bioactive extracts of morel mushrooms were found to possess profound antioxidant activity, the possible interference of these extracts with antineoplastic activity of chemotherapy drugs is often surmised. The current study was undertaken to evaluate the effect of two anticancer drugs, DOX and cyclophosphamide (CP) on solid tumor-bearing mice treated with bioactive extract of M. esculenta. Solid tumor was induced by subcutaneous injection of Dalton's lymphoma ascites (DLA) cells on the right hind limbs of Swiss albino mice. Animals were administered with various concentrations of methanol extract (ME) of M. esculenta following tumor induction. Tumor growth (volume and mass) was measured for four weeks after tumor induction. Cardioprotective effect of methanolic extract was assessed by determining cardiac injury markers levels in serum, antioxidant status in myocardium and histopathology of heart tissue. The results showed significant cardioprotective effect of ME of M. esculenta on tumor-bearing mice. The findings also suggest that ME of M. esculenta did not delimit the therapeutic effect of DOX and CP despite its profound antioxidant activity.
Collapse
Affiliation(s)
- Sneha Das
- Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur 680 555, Kerala, India
| | - Anit Mathew
- Department of Microbiology, Amala Cancer Research Centre, Amala Nagar, Thrissur 680 555, Kerala, India
| | | |
Collapse
|
4
|
Desai D, Majrashi M, Pathak S, Almaghrabi M, Liu K, Pondugula SR, Tiwari AK, Babu RJ, Deruiter J, Dhanasekaran M. Evaluate the in vitro effect of anthracycline and alkylating cytophosphane chemotherapeutics on dopaminergic neurons. Cancer Rep (Hoboken) 2024; 7:e2074. [PMID: 38627904 PMCID: PMC11021631 DOI: 10.1002/cnr2.2074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.
Collapse
Affiliation(s)
- Darshini Desai
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Majrashi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of PharmacologyFaculty of Medicine, University of JeddahJeddahSaudi Arabia
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Mohammed Almaghrabi
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
- Department of Medicinal ChemistryFaculty of Pharmacy, Taibah UniversityAl‐MedinaSaudi Arabia
| | - Keyi Liu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Satyanarayana R. Pondugula
- Department of AnatomyPhysiology and Pharmacology, College of Veterinary Medicine, Auburn UniversityAuburnAlabamaUSA
| | - Amit K. Tiwari
- Department of Pharmaceutical SciencesCollege of Pharmacy, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - R. Jayachandra Babu
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | - Jack Deruiter
- Department of Drug Discovery and DevelopmentHarrison College of Pharmacy, Auburn UniversityAuburnAlabamaUSA
| | | |
Collapse
|
5
|
Rathore A, Sharma AK, Murti Y, Bansal S, Kumari V, Snehi V, Kulshreshtha M. Medicinal Plants in the Treatment of Myocardial Infarction Disease: A Systematic Review. Curr Cardiol Rev 2024; 20:e290424229484. [PMID: 38685783 PMCID: PMC11327834 DOI: 10.2174/011573403x278881240405044328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/16/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), also referred to as a "heart attack," is brought on by a partial or total interruption of blood supply to the myocardium. Myocardial infarction can be "silent," go undiagnosed, or it can be a catastrophic occurrence that results in hemodynamic decline and untimely death. In recent years, herbal remedies for MI have become effective, secure, and readily accessible. OBJECTIVE The purpose of this review was to examine the medicinal plants and phytochemicals that have been used to treat MI in order to assess the potential contribution of natural substances to the development of herbal MI treatments. METHODOLOGY A literature search was employed to find information utilizing electronic databases, such as Web of Science, Google Scholar, PubMed, Sci Finder, Reaxys, and Cochrane. RESULTS The identification of 140 plants from 12 families led to the abstraction of data on the plant families, parts of the plant employed, chemical contents, extracts, model used, and dose. CONCLUSION The majority of the MI plants, according to the data, belonged to the Fabaceae (11%) and Asteraceae (9%) families, and the most prevalent natural components in plants with MI were flavonoids (43%), glucosides (25%), alkaloids (23%), phenolic acid (19%), saponins (15%), and tannins (12%).
Collapse
Affiliation(s)
- Anamika Rathore
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Anuj Kumar Sharma
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Yogesh Murti
- G.L.A. University, Mathura, Uttar Pradesh, India
| | - Sonal Bansal
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Vibha Kumari
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Varsha Snehi
- Department of Pharmaceutical Chemistry, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | - Mayank Kulshreshtha
- Department of Pharmacology, Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| |
Collapse
|
6
|
Zhao R, Jiang S, Tang Y, Ding G. Effects of Low Molecular Weight Peptides from Red Shrimp ( Solenocera crassicornis) Head on Immune Response in Immunosuppressed Mice. Int J Mol Sci 2023; 24:10297. [PMID: 37373442 DOI: 10.3390/ijms241210297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to investigate the immunoenhancement effects of low molecular weight peptides (SCHPs-F1) from red shrimp (Solenocera crassicornis) head against cyclophosphamide (CTX)-induced immunosuppressed mice. ICR mice were intraperitoneally injected with 80 mg/kg CTX for 5 consecutive days to establish the immunosuppressive model and then intragastrically administered with SCHPs-F1 (100 mg/kg, 200 mg/kg, and 400 mg/kg) to investigate its improving effect on immunosuppressed mice and explore its potential mechanism using Western blot. SCHPs-F1 could effectively improve the spleen and thymus index, promoting serum cytokines and immunoglobulins production and upregulating the proliferative activity of splenic lymphocytes and peritoneal macrophages of the CTX-treated mice. Moreover, SCHPs-F1 could significantly promote the expression levels of related proteins in the NF-κB and MAPK pathways in the spleen tissues. Overall, the results suggested that SCHPs-F1 could effectively ameliorate the immune deficiency caused by CTX and had the potential to explore as an immunomodulator in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Rui Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shuoqi Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Guofang Ding
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
7
|
Omer S, Pathak S, Nadar R, Bowen D, Sandey M, Dhanasekaran M, Pondugula S, Mansour M, Boothe D. Validating the anti-lymphoma pharmacodynamic actions of the endocannabinoids on canine non-Hodgkin lymphoma. Life Sci 2023; 327:121862. [PMID: 37330042 DOI: 10.1016/j.lfs.2023.121862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
AIMS This study established the in vitro anti-lymphoma pharmacodynamic actions of the endocannabinoids (anandamide-AEA and 2-arachidonoylglycerol-2AG) on canine non-Hodgkin lymphoma (NHL) and human NHL cells. MAIN METHODS The expression of cannabinoid (CB1 and CB2) receptors in various canine NHL cells {1771, CLBL-1, CLL-1, peripheral blood mononuclear cells (PBMCs)} was studied using Quantitative real-time PCR (RT-qPCR). Anti-lymphoma cell viability assay was performed to assess the effect of endocannabinoids on various canine and human NHL cells (1771, CLBL-1, CLL-1, Ramos cells). The spectrophotometric and fluorometric procedures evaluated oxidative stress, inflammation, apoptosis, and mitochondrial function markers. SAS® and Prism-V La Jolla, CA, USA, were used for statistical analysis. KEY FINDINGS The current study validated the presence of CB1 and CB2 receptors in the canine NHL cells. There was a significantly higher expression of CB1 and CB2 receptors in B-cell lymphoma (BCL) cells (1771, CLBL-1, Ramos) compared to canine T-cell lymphoma (TCL) cells (CL-1). AEA and 2AG dose and time-dependently exhibited significant but differential anti-lymphoma effects on canine and human NHL cells. Anti-lymphoma pharmacodynamic actions of the endocannabinoids in the canine 1771 NHL cells revealed a significant alteration in the markers of oxidative stress, inflammation, and a decrease in mitochondrial function without altering the apoptotic markers. SIGNIFICANCE Establishing the anti-lymphoma pharmacodynamic actions of endocannabinoids may provide new therapeutic interventions and expedite cannabinoid research.
Collapse
Affiliation(s)
- Saba Omer
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA; Shifa College of Dentistry, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Rishi Nadar
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Dylan Bowen
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Satyanarayana Pondugula
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Mohammed Mansour
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Dawn Boothe
- Department of Anatomy, Physiology, & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA.
| |
Collapse
|
8
|
Liu K, Kadannagari S, Deruiter J, Pathak S, Abbott KL, Salamat JM, Pondugula SR, Akingbemi BT, Dhanasekaran M. Effects of developmental exposures to Bisphenol-A and Bisphenol-S on hepatocellular function in male Long-Evans rats. Life Sci 2023; 326:121752. [PMID: 37172818 DOI: 10.1016/j.lfs.2023.121752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (μg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.
Collapse
Affiliation(s)
- Keyi Liu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Surekha Kadannagari
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Jack Deruiter
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Suhrud Pathak
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, AL, USA
| | - Kodye L Abbott
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Julia M Salamat
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Satyanarayana R Pondugula
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Benson T Akingbemi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | |
Collapse
|
9
|
Mahmoud Refaie MM, Bayoumi AM, Mokhemer SA, Shehata S, Abd El-Hameed NM. Role of hypoxia inducible factor/vascular endothelial growth factor/endothelial nitric oxide synthase signaling pathway in mediating the cardioprotective effect of dapagliflozin in cyclophosphamide-induced cardiotoxicity. Hum Exp Toxicol 2023; 42:9603271231193392. [PMID: 37526264 DOI: 10.1177/09603271231193392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
BACKGROUND Cyclophosphamide (CP) is a commonly used chemotherapeutic and immunosuppressive alkylating agent. However, cardiac adverse effects of CP interfere with its clinical benefit. Cardio-oncology research is currently an important issue and finding effective cardiopreserving agents is a critical need. For the first time, we aimed to detect if dapagliflozin (DAP) could ameliorate CP-induced cardiac injury and investigated the role of hypoxia inducible factor α (HIF1α)/vascular endothelial growth factor (VEGF)/endothelial nitric oxide synthase (eNOS) pathway. METHODS Forty male Wistar albino rats were included in the current model. Studied groups are: control group; CP-induced cardiotoxicity group; CP group treated with DAP; CP group treated with DAP and administered a nitric oxide synthase inhibitor; nitro-ω-L-arginine (L-NNA) before DAP to explore the role of eNOS. RESULTS Our data revealed that CP could induce cardiac damage as manifested by significant increases in cardiac enzymes, blood pressure, malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), HIF1α, sodium glucose co-transporter 2 (SGLT2) and cleaved caspase-3 levels with toxic histopathological changes. However, there are significant decreases in reduced glutathione (GSH), total antioxidant capacity (TAC), VEGF, and eNOS. On the opposite side, co-administration of DAP showed marked improvement of CP-induced cardiac damage that may be due to its ability to inhibit SGLT2, antioxidant, anti-inflammatory and anti-apoptotic properties. Results showed decreasing the cardioprotective effect of DAP on administration of L-NNA, reflecting the critical effect of eNOS in mediating such protection. CONCLUSION DAP could reduce CP cardiotoxicity based upon its ability to modulate SGLT2 and HIF1α/VEGF/eNOS signaling pathway.
Collapse
Affiliation(s)
| | - Asmaa Ma Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, Egypt
| | - Sahar Ahmed Mokhemer
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | - Sayed Shehata
- Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | | |
Collapse
|
10
|
Lv XF, Wen RQ, Liu K, Zhao XK, Pan CL, Gao X, Wu X, Zhi XD, Ren CZ, Chen QL, Lu WJ, Bai TY, Li YD. Role and molecular mechanism of traditional Chinese medicine in preventing cardiotoxicity associated with chemoradiotherapy. Front Cardiovasc Med 2022; 9:1047700. [PMID: 36419486 PMCID: PMC9678083 DOI: 10.3389/fcvm.2022.1047700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/20/2022] [Indexed: 08/12/2023] Open
Abstract
Cardiotoxicity is a serious complication of cancer therapy. It is the second leading cause of morbidity and mortality in cancer survivors and is associated with a variety of factors, including oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and abnormal myocardial energy metabolism. A number of studies have shown that traditional Chinese medicine (TCM) can mitigate chemoradiotherapy-associated cardiotoxicity via these pathways. Therefore, this study reviews the effects and molecular mechanisms of TCM on chemoradiotherapy-related cardiotoxicity. In this study, we searched PubMed for basic studies on the anti-cardiotoxicity of TCM in the past 5 years and summarized their results. Angelica Sinensis, Astragalus membranaceus Bunge, Danshinone IIA sulfonate sodium (STS), Astragaloside (AS), Resveratrol, Ginsenoside, Quercetin, Danggui Buxue Decoction (DBD), Shengxian decoction (SXT), Compound Danshen Dripping Pill (CDDP), Qishen Huanwu Capsule (QSHWC), Angelica Sinensis and Astragalus membranaceus Bunge Ultrafiltration Extract (AS-AM),Shenmai injection (SMI), Xinmailong (XML), and nearly 60 other herbs, herbal monomers, herbal soups and herbal compound preparations were found to be effective as complementary or alternative treatments. These preparations reduced chemoradiotherapy-induced cardiotoxicity through various pathways such as anti-oxidative stress, anti-inflammation, alleviating endoplasmic reticulum stress, regulation of apoptosis and autophagy, and improvement of myocardial energy metabolism. However, few clinical trials have been conducted on these therapies, and these trials can provide stronger evidence-based support for TCM.
Collapse
Affiliation(s)
- Xin-Fang Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Ruo-Qing Wen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Kai Liu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin-Ke Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chen-Liang Pan
- The First Hospital of Lanzhou University, Lanzhou, China
| | - Xiang Gao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xue Wu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Dong Zhi
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Chun-Zhen Ren
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Qi-Lin Chen
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Wei-Jie Lu
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ting-Yan Bai
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
| | - Ying-Dong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory of Prevention and Treatment for Chronic Diseases by Traditional Chinese Medicine, University Hospital of Gansu Traditional Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
11
|
Yang K, Li J, Tao L. Purine metabolism in the development of osteoporosis. Biomed Pharmacother 2022; 155:113784. [DOI: 10.1016/j.biopha.2022.113784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
|