1
|
Sarkar A, Messerli SM, Talukder MMU, Messerli MA. Applied Electric Fields Polarize Initiation and Growth of Endothelial Sprouts. J Tissue Eng Regen Med 2023; 2023:6331148. [PMID: 40226427 PMCID: PMC11919209 DOI: 10.1155/2023/6331148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 04/15/2025]
Abstract
Therapeutic electric fields (EFs) are applied to the epidermis to accelerate the healing of chronic epidermal wounds and promote skin transplantation. While research has emphasized understanding the role of EFs in polarizing the migration of superficial epidermal cells, there are no reports describing the effect of EFs on polarization of the underlying vasculature. We explored the effects of EFs on the growth of endothelial sprouts, precursors to functional blood vessels. We discovered that DC EFs of the same magnitude near wounded epidermis polarize initiation, growth, and turning of endothelial sprouts toward the anode. While EFs polarize sprouts, they do not change the frequency of primary sprout or branch formation. Unidirectional electrical pulses also polarize sprouts based on their time-averaged EF magnitude. Sprout polarization occurs antiparallel to the direction of electrically driven water flow (electro-osmosis) and is consistent with the direction of sprout polarization induced by pressure-driven flow. These results support the role of EFs in controlling the direction of neovascularization during the healing of soft tissues and tissue engineering.
Collapse
Affiliation(s)
- Anyesha Sarkar
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Shanta M. Messerli
- Sanford Research, Sioux Falls, SD 57104, USA
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD 57107, USA
| | - Md Moin Uddin Talukder
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Mark A. Messerli
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
2
|
Wang YT, Meng XT. A review of the evidence to support electrical stimulation -induced vascularization in engineered tissue. Regen Ther 2023; 24:237-244. [PMID: 37534238 PMCID: PMC10393514 DOI: 10.1016/j.reth.2023.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/25/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
Tissue engineering presents a promising solution for regenerative medicine and the success depends on the supply of oxygen/nutrients to the cells by rapid vascularization. More and more technologies are being developed to facilitate vascularization of engineered tissues. In this review, we indicated that a regulatory system which influences all angiogenesis associated cells to achieve their desired functional state is ideal for the construction of vascularized engineered tissues in vitro. We presented the evidence that electrical stimulation (ES) enhances the synergistic promotion of co-cultured angiogenesis associated cells and its potential regulatory mechanisms, highlighted the potential advantages of a combination of mesenchymal stem cells (MSCs), endothelial cells (ECs) and ES to achieve tissue vascularization, with particular emphasis on the different biological pathways of ES-regulated ECs. Finally, we proposed the future direction of using ES to reconstruct engineered tissue blood vessels, pointed out the potential advantages and disadvantages of ES application on tissue vascularization.
Collapse
Affiliation(s)
- Ying-tong Wang
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
- The Undergraduate Center of Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Xiao-ting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun, PR China
| |
Collapse
|
3
|
Ammann KR, Slepian MJ. Vascular endothelial and smooth muscle cell galvanotactic response and differential migratory behavior. Exp Cell Res 2021; 399:112447. [PMID: 33347857 PMCID: PMC7906251 DOI: 10.1016/j.yexcr.2020.112447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023]
Abstract
Chronic disease or injury of the vasculature impairs the functionality of vascular wall cells particularly in their ability to migrate and repair vascular surfaces. Under pathologic conditions, vascular endothelial cells (ECs) lose their non-thrombogenic properties and decrease their motility. Alternatively, vascular smooth muscle cells (SMCs) may increase motility and proliferation, leading to blood vessel luminal invasion. Current therapies to prevent subsequent blood vessel occlusion commonly mechanically injure vascular cells leading to endothelial denudation and smooth muscle cell luminal migration. Due to this dichotomous migratory behavior, a need exists for modulating vascular cell growth and migration in a more targeted manner. Here, we examine the efficacy of utilizing small direct current electric fields to influence vascular cell-specific migration ("galvanotaxis"). We designed, fabricated, and implemented an in vitro chamber for tracking vascular cell migration direction, distance, and displacement under galvanotactic influence of varying magnitude. Our results indicate that vascular ECs and SMCs have differing responses to galvanotaxis; ECs exhibit a positive correlation of anodal migration while SMCs exhibit minimal change in directional migration in relation to the electric field direction. SMCs exhibit less motility response (i.e. distance traveled in 4 h) compared to ECs, but SMCs show a significantly higher motility at low electric potentials (80 mV/cm). With further investigation and translation, galvanotaxis may be an effective solution for modulation of vascular cell-specific migration, leading to enhanced endothelialization, with coordinate reduced smooth muscle in-migration.
Collapse
Affiliation(s)
- Kaitlyn R Ammann
- Department of Medicine, Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA.
| | - Marvin J Slepian
- Department of Medicine, Sarver Heart Center, College of Medicine, University of Arizona, Tucson, AZ, 85721, USA; Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85721, USA; Department of Materials Science and Engineering, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
4
|
Ryan CNM, Doulgkeroglou MN, Zeugolis DI. Electric field stimulation for tissue engineering applications. BMC Biomed Eng 2021; 3:1. [PMID: 33397515 PMCID: PMC7784019 DOI: 10.1186/s42490-020-00046-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023] Open
Abstract
Electric fields are involved in numerous physiological processes, including directional embryonic development and wound healing following injury. To study these processes in vitro and/or to harness electric field stimulation as a biophysical environmental cue for organised tissue engineering strategies various electric field stimulation systems have been developed. These systems are overall similar in design and have been shown to influence morphology, orientation, migration and phenotype of several different cell types. This review discusses different electric field stimulation setups and their effect on cell response.
Collapse
Affiliation(s)
- Christina N M Ryan
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Meletios N Doulgkeroglou
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland.,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway & USI, Galway, Ireland. .,Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland. .,Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Faculty of Biomedical Sciences, Università della Svizzera Italiana (USI), Lugano, Switzerland.
| |
Collapse
|
5
|
Trofimov AO, Kalentiev G, Karelsky M, Ksenofontova C, Ruzavina A, Yuriev M, Bragin DE. Cerebral Hemodynamics After Transcranial Direct Current Stimulation (tDCS) in Patients with Consequences of Traumatic Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:59-62. [PMID: 30178324 DOI: 10.1007/978-3-319-91287-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UNLABELLED In recent years, hopes for better treatment of traumatic brain injury (TBI) have focused on non-pharmacologic transcranial electrical brain stimulation; however, studies of perfusion changes after stimulation are few and contradictory. Therefore, the aim of this study was to assess cerebral perfusion after high-definition transcranial direct current stimulation (HD-tDCS) in patients with posttraumatic encephalopathy (PTE). METHODS Twenty patients with PTE (16 men and 4 women, aged 35.5 ± 14.8 years) underwent perfusion computed tomography (PCT), followed by anodal HD-tDCS and post-stimulation tomography at 21 days after TBI. The Westermark perfusion maps were constructed and quantitative perfusion parameters calculated. Significance was preset to P < 0.05. RESULTS Qualitative analysis revealed that all patients had areas with reduced cerebral blood flow (CBF) and increased average mean transit time (MTT). HD-tDCS was accompanied by a significant decrease in the number of zones of both hypoperfusion and ischemia (p < 0.05). Quantitative analysis showed that, in all patients, HD-tDCS caused a significant increase in CBF (p < 0.001), cerebral blood volume (CBV) (p < 0.01) and MTT shortening (p < 0.05) in the frontotemporal region on the anode side. In the basal ganglia, a significant increase in CBF was found only in the five patients in whom this was initially reduced (p < 0.01) and only with an anode placed on the same side. CONCLUSIONS In patients with complications due to PTE TBI, HD-tDCS causes a significant increase in CBV, CBF and a decrease in the average MTT, suggesting better oxygen delivery to tissue.
Collapse
Affiliation(s)
- Alexey O Trofimov
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - George Kalentiev
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Michael Karelsky
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Cristina Ksenofontova
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Alevtina Ruzavina
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Michail Yuriev
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Denis E Bragin
- Department of Neurosurgery, University of New Mexico School of Medicine, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
6
|
Long H, Yang G, Ma K, Xiao Z, Ren X. [Effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:853-861. [PMID: 29798532 PMCID: PMC8498154 DOI: 10.7507/1002-1892.201702027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/22/2017] [Indexed: 02/05/2023]
Abstract
Objective To investigate the effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells (ADSCs). Methods ADSCs were isolated from 5-week-old Sprague Dawley rats (weight, 100-150 g) and cultivated. The cells at passages 3-5 were inoculated to prepare cell climbing slices, subsequently was exposed to direct-current electrical stimulations (ES) at electric field strengths of 1, 2, 3, 4, 5, and 6 V/cm on a homemade electric field bioreactor (groups A1, A2, A3, A4, A5, and A6); at electric field strength of 6 V/cm, at 50% duty cycle, and at frequency of 1 and 2 Hz (groups B1 and B2) of square wave ES; at electric field strength of 6 V/cm, at pulse width of 2 ms, and at frequency of 1 and 2 Hz (groups C1 and C2) of biphasic pulse wave ES; and no ES was given as a control (group D). The changes of cellular morphology affected by applied ES were evaluated by time-lapse micropho-tography via inverted microscope. The cell alignment was evaluated via average orientation factor ( OF). The cytoske-leton of electric field treated ADSCs was characterized by rhodamine-phalloidin staining. The cell survival rates were assessed via cell live/dead staining and intracellular calcium activities were detected by calcium ion fluorescent staining. Results The response of ADSCs to ES was related to the direct-current electric field intensity. The higher the direct-current electric field intensity was, the more cells aligned perpendicular to the direction of electric field. At each time point, there was no obvious cell alignment in groups B1, B2 and C1, C2. The average OF of groups A5 and A6 were significantly higher than that of group D ( P<0.05), but no significant difference was found between other groups and group D ( P>0.05). The cytoskeleton staining showed that the cells of groups A5 and A6 exhibited a compact fascicular structure of cytoskeleton, and tended to be perpendicular to the direction of the electric field vector. The cellular survival rate of groups A4, A5, and A6 were significantly lower than that of group D ( P<0.05), but no significant difference was found between other groups and group D ( P>0.05). Calcium fluorescence staining showed that the fluorescence intensity of calcium ions in groups A4, A5, and A6 was slightly higher than that in group D, and no significant difference was found between other groups and group D. Conclusion The direct-current electric field stimulations with physiological electric field strength (5 V/cm and 6 V/cm) can induce the alignment of ADSCs, but no cell alignment is found under conditions of less than 5 V/cm direct-current electric field, square wave, and biphasic pulse wave stimulation. The cellular viability is negatively correlated with the electric field intensity.
Collapse
Affiliation(s)
- Haiyan Long
- Center of Engineering-Training, Chengdu Aeronautic Polytechnic, Chengdu Sichuan, 610100, P.R.China
| | - Gang Yang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu Sichuan, 610065,
| | - Kunlong Ma
- Department of Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Yongchuan Chongqing, 402160, P.R.China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xiaomei Ren
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu Sichuan, 610065, P.R.China
| |
Collapse
|
7
|
Yang G, Long H, Ren X, Ma K, Xiao Z, Wang Y, Guo Y. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field. Dev Growth Differ 2017; 59:70-82. [PMID: 28185267 DOI: 10.1111/dgd.12340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 02/05/2023]
Abstract
Cell alignment and motility play a critical role in a variety of cell behaviors, including cytoskeleton reorganization, membrane-protein relocation, nuclear gene expression, and extracellular matrix remodeling. Direct current electric field (EF) in vitro can direct many types of cells to align vertically to EF vector. In this work, we investigated the effects of EF stimulation on rat adipose-tissue-derived stromal cells (ADSCs) in 2D-culture on plastic culture dishes and in 3D-culture on various scaffold materials, including collagen hydrogels, chitosan hydrogels and poly(L-lactic acid)/gelatin electrospinning fibers. Rat ADSCs were exposed to various physiological-strength EFs in a homemade EF-bioreactor. Changes of morphology and movements of cells affected by applied EFs were evaluated by time-lapse microphotography, and cell survival rates and intracellular calcium oscillations were also detected. Results showed that EF facilitated ADSC morphological changes, under 6 V/cm EF strength, and that ADSCs in 2D-culture aligned vertically to EF vector and kept a good cell survival rate. In 3D-culture, cell galvanotaxis responses were subject to the synergistic effect of applied EF and scaffold materials. Fast cell movement and intracellular calcium activities were observed in the cells of 3D-culture. We believe our research will provide some experimental references for the future study in cell galvanotaxis behaviors.
Collapse
Affiliation(s)
- Gang Yang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Haiyan Long
- Center of Engineering-Training, Chengdu Aeronautic Polytechnic, Chengdu, 610100, China
| | - Xiaomei Ren
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Kunlong Ma
- Department of Orthopaedics, Yongchuan Hospital, Chongqing Medical University, Chongqing, 402160, China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Wang
- Department of Medical Information and Engineering, School of Electrical Engineering and Information, Sichuan University, Chengdu, 610065, China
| | - Yingqiang Guo
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
8
|
Mousavi SJ, Hamdy Doweidar M. Three-dimensional numerical model of cell morphology during migration in multi-signaling substrates. PLoS One 2015; 10:e0122094. [PMID: 25822332 PMCID: PMC4379188 DOI: 10.1371/journal.pone.0122094] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 02/21/2015] [Indexed: 12/19/2022] Open
Abstract
Cell Migration associated with cell shape changes are of central importance in many biological processes ranging from morphogenesis to metastatic cancer cells. Cell movement is a result of cyclic changes of cell morphology due to effective forces on cell body, leading to periodic fluctuations of the cell length and cell membrane area. It is well-known that the cell can be guided by different effective stimuli such as mechanotaxis, thermotaxis, chemotaxis and/or electrotaxis. Regulation of intracellular mechanics and cell's physical interaction with its substrate rely on control of cell shape during cell migration. In this notion, it is essential to understand how each natural or external stimulus may affect the cell behavior. Therefore, a three-dimensional (3D) computational model is here developed to analyze a free mode of cell shape changes during migration in a multi-signaling micro-environment. This model is based on previous models that are presented by the same authors to study cell migration with a constant spherical cell shape in a multi-signaling substrates and mechanotaxis effect on cell morphology. Using the finite element discrete methodology, the cell is represented by a group of finite elements. The cell motion is modeled by equilibrium of effective forces on cell body such as traction, protrusion, electrostatic and drag forces, where the cell traction force is a function of the cell internal deformations. To study cell behavior in the presence of different stimuli, the model has been employed in different numerical cases. Our findings, which are qualitatively consistent with well-known related experimental observations, indicate that adding a new stimulus to the cell substrate pushes the cell to migrate more directionally in more elongated form towards the more effective stimuli. For instance, the presence of thermotaxis, chemotaxis and electrotaxis can further move the cell centroid towards the corresponding stimulus, respectively, diminishing the mechanotaxis effect. Besides, the stronger stimulus imposes a greater cell elongation and more cell membrane area. The present model not only provides new insights into cell morphology in a multi-signaling micro-environment but also enables us to investigate in more precise way the cell migration in the presence of different stimuli.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Mohamed Hamdy Doweidar
- Group of Structural Mechanics and Materials Modeling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
9
|
Collective migration exhibits greater sensitivity but slower dynamics of alignment to applied electric fields. Cell Mol Bioeng 2015; 8:247-257. [PMID: 26692908 DOI: 10.1007/s12195-015-0383-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During development and disease, cells migrate collectively in response to gradients in physical, chemical and electrical cues. Despite its physiological significance and potential therapeutic applications, electrotactic collective cell movement is relatively less well understood. Here, we analyze the combined effect of intercellular interactions and electric fields on the directional migration of non-transformed mammary epithelial cells, MCF-10A. Our data show that clustered cells exhibit greater sensitivity to applied electric fields but align more slowly than isolated cells. Clustered cells achieve half-maximal directedness with an electric field that is 50% weaker than that required by isolated cells; however, clustered cells take ∼2-4 fold longer to align. This trade-off in greater sensitivity and slower dynamics correlates with the slower speed and intrinsic directedness of collective movement even in the absence of an electric field. Whereas isolated cells exhibit a persistent random walk, the trajectories of clustered cells are more ballistic as evidenced by the superlinear dependence of their mean square displacement on time. Thus, intrinsically-directed, slower clustered cells take longer to redirect and align with an electric field. These findings help to define the operating space and the engineering trade-offs for using electric fields to affect cell movement in biomedical applications.
Collapse
|
10
|
Pelletier SJ, Cicchetti F. Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 2015; 18:pyu047. [PMID: 25522391 PMCID: PMC4368894 DOI: 10.1093/ijnp/pyu047] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transcranial direct current stimulation is a noninvasive technique that has been experimentally tested for a number of psychiatric and neurological conditions. Preliminary observations suggest that this approach can indeed influence a number of cellular and molecular pathways that may be disease relevant. However, the mechanisms of action underlying its beneficial effects are largely unknown and need to be better understood to allow this therapy to be used optimally. In this review, we summarize the physiological responses observed in vitro and in vivo, with a particular emphasis on cellular and molecular cascades associated with inflammation, angiogenesis, neurogenesis, and neuroplasticity recruited by direct current stimulation, a topic that has been largely neglected in the literature. A better understanding of the neural responses to transcranial direct current stimulation is critical if this therapy is to be used in large-scale clinical trials with a view of being routinely offered to patients suffering from various conditions affecting the central nervous system.
Collapse
Affiliation(s)
| | - Francesca Cicchetti
- Centre Hospitalier Universitaire de Québec, Axe Neuroscience, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti); Département de Psychiatrie et Neurosciences, Université Laval, Québec, QC, Canada (Mr Pelletier and Dr Cicchetti).
| |
Collapse
|
11
|
Mousavi SJ, Doblaré M, Doweidar MH. Computational modelling of multi-cell migration in a multi-signalling substrate. Phys Biol 2014; 11:026002. [PMID: 24632566 DOI: 10.1088/1478-3975/11/2/026002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell-cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell-cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell-cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works.
Collapse
Affiliation(s)
- Seyed Jamaleddin Mousavi
- Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain. Mechanical Engineering Department, School of Engineering and Architecture (EINA), University of Zaragoza, Spain. Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | |
Collapse
|
12
|
Liebano RE, Machado AFP. Vascular Endothelial Growth Factor Release Following Electrical Stimulation in Human Subjects. Adv Wound Care (New Rochelle) 2014; 3:98-103. [PMID: 24761350 DOI: 10.1089/wound.2013.0427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/21/2013] [Indexed: 11/13/2022] Open
Abstract
Significance: Angiogenesis is an important phenomenon involved in the healing of chronic wounds, and it is mainly mediated by the release of vascular endothelial growth factor (VEGF) from endothelial cells. Electrical stimulation (ES) is a well-documented treatment used to assist the healing of chronic wounds. Due to the importance of VEGF in the healing process, and the need to know the mechanisms of action of ES involved in the process, this report aimed to determine by a literature review whether the VEGF release occurs following ES in human subjects. Recent Advances: The findings of this literature review suggest that ES releases VEGF, and this effect may be responsible for promoting angiogenesis after ES. Critical Issues: Despite the findings of this literature review on the release of VEGF by ES on wound healing are promising, a large number of studies are needed to confirm such effects. Future Directions: Further studies should be conducted to identify the best parameters and treatment schedule of ES to be used for the VEGF release.
Collapse
|
13
|
Lara Rodriguez L, Schneider IC. Directed cell migration in multi-cue environments. Integr Biol (Camb) 2013; 5:1306-23. [DOI: 10.1039/c3ib40137e] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | - Ian C. Schneider
- Department of Chemical and Biological Engineering, Iowa State University, USA
- Department of Genetics, Development and Cell Biology, Iowa State University, USA
| |
Collapse
|