1
|
Liu JC, Lei SY, Zhang DH, He QY, Sun YY, Zhu HJ, Qu Y, Zhou SY, Yang Y, Li C, Guo ZN. The pleiotropic effects of statins: a comprehensive exploration of neurovascular unit modulation and blood-brain barrier protection. Mol Med 2024; 30:256. [PMID: 39707228 DOI: 10.1186/s10020-024-01025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
The blood-brain barrier (BBB) is the most central component of the neurovascular unit (NVU) and is crucial for the maintenance of the internal environment of the central nervous system and the regulation of homeostasis. A multitude of neuroprotective agents have been developed to exert neuroprotective effects and improve the prognosis of patients with ischemic stroke. These agents have been designed to maintain integrity and promote BBB repair. Statins are widely used as pharmacological agents for the treatment and prevention of ischemic stroke, making them a cornerstone in the pharmacological armamentarium for this condition. The primary mechanism of action is the reduction of serum cholesterol through the inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which results in a decrease in low-density lipoprotein cholesterol (LDL-C) and an increase in cholesterol clearance. Nevertheless, basic and clinical research has indicated that statins may exert additional pleiotropic effects beyond LDL-C reduction. Previous studies on ischemic stroke have demonstrated that statins can enhance neurological function, reduce inflammation, and promote angiogenic and synaptic processes following ischemic stroke. The BBB has been increasingly recognized for its role in the development and progression of ischemic stroke. Statins have also been found to play a potential BBB protective role by affecting members of the NVU. This review aimed to provide a comprehensive theoretical basis for the clinical application of statins by systematically detailing how statins influence the BBB, particularly focusing on the regulation of the function of each member of the NVU.
Collapse
Affiliation(s)
- Jia-Cheng Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Shuang-Yin Lei
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Ying-Ying Sun
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Hong-Jing Zhu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China
| | - Chao Li
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Xinmin Street 1#, Changchun, 130021, China.
- Neuroscience Research Center, The First Hospital of Jilin University, Xinmin Street 1#, Changchun, 130021, China.
| |
Collapse
|
2
|
Catalão CHR, da Costa LHA, Dos Santos JR, Alberici LC, Falconi-Sobrinho LL, Coimbra NC, Dominguini D, Dal-Pizzol F, Barichello T, Rocha MJA. Mitigating neuroinflammation in cognitive areas: exploring the impact of HMG-CoA reductase inhibitor. Biochem J 2024; 481:1585-1602. [PMID: 39466125 PMCID: PMC11957353 DOI: 10.1042/bcj20240217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/20/2024] [Accepted: 10/28/2024] [Indexed: 10/29/2024]
Abstract
Existing literature suggests that infection-specific mechanisms may play a significant role in the onset and progression of dementia, as opposed to the broader phenomenon of systemic inflammation. In addition, 3-hydroxy-3-methylglutaryl (HMG)-coenzyme A (CoA) reductase inhibitors have been proposed as a potential therapeutic approach for sepsis, given their anti-inflammatory and antioxidant properties. We investigated the neuroprotective effect of an HMG-CoA reductase inhibitor (simvastatin) by analyzing neurodegenerative markers, mitochondrial respiration, and neuronal tracing in the prefrontal cortex (PFC) and thalamic nucleus reuniens (RE) of sepsis survivor animals. Adult Wistar rats were subjected to sepsis by cecal ligation and puncture or left non-manipulated. The animals were treated with simvastatin or vehicle for 4 days before and 10 days after surgery. The treatment preserved the non-associative memory (P < 0.05), recovered expression of Smad-3 in the hippocampus (P < 0.05), and prevented increased expression of calpain-1 (hippocampus: P < 0.0001; PFC: P < 0.05) and GSKβ (hippocampus: P < 0.0001; PFC: P < 0.0001) in the brain structures of the sepsis survivor animals. These animals also showed mitochondrial dysfunction and decreased axon terminals in the RE. Simvastatin seems to restore energy metabolism by improving the electron transfer system (ETS) values in the hippocampus (P < 0.01) and the oxidative phosphorylation/ETS (P/E) ratio in the PFC (P < 0.05), in addition to preventing the reduction of axon terminals in survivor animals. These results suggest a potential neuroprotective effect and the importance of considering HMG-CoA reductase inhibitors as a possible adjuvant therapy in sepsis.
Collapse
Affiliation(s)
- Carlos Henrique Rocha Catalão
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luis Henrique Angenendt da Costa
- Department of Neurosciences and Behavioral Sciences of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Jonathas Rodrigo Dos Santos
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Luciane Carla Alberici
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | | | - Norberto Cysne Coimbra
- Department of Pharmacology of Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Diogo Dominguini
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Tatiana Barichello
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, U.S.A
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Maria José Alves Rocha
- Department of Psychology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| |
Collapse
|
3
|
Abudurexiti M, Xue J, Li X, Zhang X, Qiu Y, Xiong S, Liu G, Yuan S, Tang R. Curcumin/TGF-β1 siRNA loaded solid lipid nanoparticles alleviate cerebral injury after intracerebral hemorrhage by transnasal brain targeting. Colloids Surf B Biointerfaces 2024; 237:113857. [PMID: 38552289 DOI: 10.1016/j.colsurfb.2024.113857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Intracerebral hemorrhage (ICH) is a prevalent cerebrovascular disorder. The inflammation induced by cerebral hemorrhage plays a crucial role in the secondary injury of ICH and often accompanied by a poor prognosis, leading to disease exacerbation. However, blood-brain barrier (BBB) limiting the penetration of therapeutic drugs to the brain. In this paper, our primary objective is to develop an innovative, non-invasive, safe, and targeted formulation. This novel approach aims to synergistically harness the combined therapeutic effects of drugs to intervene in inflammation via a non-injectable route, thereby significantly mitigating the secondary damage precipitated by inflammation following ICH. Thus, a novel "anti-inflammatory" cationic solid lipid nanoparticles (SLN) with targeting ability were constructed, which can enhance the stability of curcumin(CUR) and siRNA. We successfully developed SLN loaded with TGF-β1 siRNA and CUR (siRNA/CUR@SLN) that adhere to the requirements of drug delivery system by transnasal brain targeting. Through the characterization of nanoparticle properties, cytotoxicity assessment, in vitro pharmacological evaluation, and brain-targeting evaluation after nasal administration, siRNA/CUR@SLN exhibited a nearly spherical structure with a particle size of 125.0±1.93 nm, low cytotoxicity, high drug loading capacity, good sustained release function and good stability. In vitro anti-inflammatory results showcasing its remarkable anti-inflammatory activity. Moreover, in vivo pharmacological studies revealed that siRNA/CUR@SLN can be successfully delivered to brain tissue. Furthermore, it also elicited an effective anti-inflammatory response, alleviating brain inflammation. These results indicated that favorable brain-targeting ability and anti-inflammatory effects of siRNA/CUR@SLN in ICH model mice. In conclusion, our designed siRNA/CUR@SLN showed good brain targeting and anti-inflammatory effect ability after nasal administration, which lays the foundation for the treatment of inflammation caused by ICH and offers a novel approach for brain-targeted drug delivery and brings new hope.
Collapse
Affiliation(s)
- Munire Abudurexiti
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China; College of Pharmacy, Southwest Minzu University, Chendu 610041, China
| | - Jun Xue
- Department of Neurosurgery Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Xianzhe Li
- College of Pharmacy, Southwest Minzu University, Chendu 610041, China
| | - Xiaofeng Zhang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyi Qiu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Senjie Xiong
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Guojing Liu
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Sangui Yuan
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrui Tang
- Department of Neurosurgery, University-Town Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Zaryczańska K, Pawlukowska W, Nowacki P, Zwarzany Ł, Bagińska E, Kot M, Masztalewicz M. Statins and 90-Day Functional Performance and Survival in Patients with Spontaneous Intracerebral Hemorrhage. J Clin Med 2023; 12:6608. [PMID: 37892746 PMCID: PMC10607334 DOI: 10.3390/jcm12206608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The neuroprotective effect of statins has become a focus of interest in spontaneous intracerebral hemorrhage (sICH). The purpose of this study was: (1) to evaluate the effect of statin use by the analyzed patients with sICH in the period preceding the onset of hemorrhage on their baseline neurological status and baseline neuroimaging of the head; (2) to evaluate the effect of statin use in the acute period of hemorrhage on the course and prognosis in the in-hospital period, taking into account whether the statin was taken before the hemorrhage or only after its onset; (3) to evaluate the effect of continuing statin treatment after in-hospital treatment on the functional performance and survival of patients up to 90 days after the onset of sICH symptoms, taking into account whether the statin was taken before the onset of sICH. MATERIAL AND METHODS A total of 153 patients diagnosed with sICH were analyzed, where group I were not previously taking a statin and group II were taking a statin before sICH onset. After lipidogram assessment, group I was divided into patients without dyslipidemia and without statin treatment (Ia) and patients with dyslipidemia who received de novo statin treatment during hospitalization (Ib). Group II patients continued taking statin therapy. We evaluated the effect of prior statin use on the severity of hemorrhage; the effect of statin use during the acute period of sICH on its in-hospital course; and the effect of statin treatment on the severity of neurological deficit, functional capacity and survival of patients up to 90 days after the onset of sICH symptoms. RESULTS There was no effect of prior statin use on the severity of hemorrhage as assessed clinically and by neuroimaging of the head. At in-hospital follow-up, subgroup Ia was the least favorable in terms of National Institutes of Health Stroke Scale (NIHSS) score. This subgroup had the highest percentage of deaths during hospitalization. In the post-hospital period, the greatest number of patients with improvement in the NIHSS, modified Rankin Scale (mRS) and Barthel scales were among those taking statins, especially group II patients. At 90-day follow-up, survival analysis fell significantly in favor of subgroup Ib and group II. CONCLUSIONS 1. The use of statins in the pre-sICH period did not adversely affect the patients' baseline neurological status or the results of baseline neuroimaging studies. 2. Continued statin therapy prior to the onset of sICH or the inclusion of statins in acute treatment in patients with sICH and dyslipidemia does not worsen the course of the disease and the in-hospital prognosis. Statin therapy should not be discontinued during the acute phase of sICH. 3. To conclude the eventual beneficial effect on the functional performance and survival of patients after sICH onset, comparability of the analyzed groups in terms of clinical, radiological and other prognostic factors in spontaneous intracerebral hemorrhage would be needed. Future studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Karolina Zaryczańska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.P.); (P.N.); (M.M.)
| | - Wioletta Pawlukowska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.P.); (P.N.); (M.M.)
| | - Przemysław Nowacki
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.P.); (P.N.); (M.M.)
| | - Łukasz Zwarzany
- Department of Diagnostic Imaging and Interventional Radiology, Pomeranian Medical University, 71-252 Szczecin, Poland;
| | - Ewelina Bagińska
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.P.); (P.N.); (M.M.)
| | - Monika Kot
- Independent Researcher, 71-004 Szczecin, Poland;
| | - Marta Masztalewicz
- Department of Neurology, Pomeranian Medical University, 71-252 Szczecin, Poland; (W.P.); (P.N.); (M.M.)
| |
Collapse
|
5
|
Zhang W, Wu Q, Hao S, Chen S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front Neurosci 2023; 16:1117999. [PMID: 36711145 PMCID: PMC9877537 DOI: 10.3389/fnins.2022.1117999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most dangerous types of strokes with a high morbidity and mortality rate. Currently, the treatment of ICH is not well developed, mainly because its mechanisms are still unclear. Inflammation is one of the main types of secondary injury after ICH and catalyzes the adverse consequences of ICH. A large number of immune cells are involved in neuroinflammation, such as microglia, astrocytes, oligodendrocytes, lymphocytes, macrophages, and neutrophils. Nevertheless, the characteristics and crosstalk of immune cells have not been fully elucidated. In this review, we endeavor to delve into the respective characteristics of immune cells and their interactions in neuroimmune inflammation, and further elucidate favorable immunotherapeutic approaches regarding ICH, and finally present an outlook.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Medicine, Chongqing University, Chongqing, China,Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,*Correspondence: Shilei Hao,
| | - Shengli Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China,Shengli Chen,
| |
Collapse
|
6
|
Microglia and Cholesterol Handling: Implications for Alzheimer's Disease. Biomedicines 2022; 10:biomedicines10123105. [PMID: 36551857 PMCID: PMC9775660 DOI: 10.3390/biomedicines10123105] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Cholesterol is essential for brain function and structure, however altered cholesterol metabolism and transport are hallmarks of multiple neurodegenerative conditions, including Alzheimer's disease (AD). The well-established link between apolipoprotein E (APOE) genotype and increased AD risk highlights the importance of cholesterol and lipid transport in AD etiology. Whereas more is known about the regulation and dysregulation of cholesterol metabolism and transport in neurons and astrocytes, less is known about how microglia, the immune cells of the brain, handle cholesterol, and the subsequent implications for the ability of microglia to perform their essential functions. Evidence is emerging that a high-cholesterol environment, particularly in the context of defects in the ability to transport cholesterol (e.g., expression of the high-risk APOE4 isoform), can lead to chronic activation, increased inflammatory signaling, and reduced phagocytic capacity, which have been associated with AD pathology. In this narrative review we describe how cholesterol regulates microglia phenotype and function, and discuss what is known about the effects of statins on microglia, as well as highlighting areas of future research to advance knowledge that can lead to the development of novel therapies for the prevention and treatment of AD.
Collapse
|
7
|
Tajbakhsh A, Gheibihayat SM, Askari H, Savardashtaki A, Pirro M, Johnston TP, Sahebkar A. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238:108282. [DOI: 10.1016/j.pharmthera.2022.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
8
|
Beyond Lipid-Lowering: Effects of Statins on Cardiovascular and Cerebrovascular Diseases and Cancer. Pharmaceuticals (Basel) 2022; 15:ph15020151. [PMID: 35215263 PMCID: PMC8877351 DOI: 10.3390/ph15020151] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endothelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The preventive effect of statins on atherothrombotic stroke has been well established, but statins can influence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been well established; however, the effects of statins on cancer patients have not been fully elucidated and are still controversial. This review discusses the recent evidence on the effects of statins on cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering’.
Collapse
|
9
|
Liu X, Wu G, Tang N, Li L, Liu C, Wang F, Ke S. Glymphatic Drainage Blocking Aggravates Brain Edema, Neuroinflammation via Modulating TNF-α, IL-10, and AQP4 After Intracerebral Hemorrhage in Rats. Front Cell Neurosci 2022; 15:784154. [PMID: 34975411 PMCID: PMC8718698 DOI: 10.3389/fncel.2021.784154] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: The “Glymphatic” system, a network of perivascular tunnels wrapped by astrocyte endfeet, was reported to be closely associated with the diseases of the central nervous system. Here, we investigated the role of the glymphatic system in intracerebral hemorrhage (ICH) and its protective mechanism. Method: Experimental ICH model was induced by type IV collagenase in rats. Cerebral lymphatic blockage was induced by ligation and removal of cervical lymph nodes. The experimental rats were divided into sham-operated (SO) group, ICH group, and cerebral lymphatic blocking and ICH (ICH + CLB) group. Neurological scores were measured using the Garcia scoring system on the third and seventh day after ICH. Active caspase-3 was immunostained to evaluate neuronal apoptosis. Brain water content was calculated using the dry-wet specific gravity method. The expression of inflammatory factors TNF-α, IL-1β, and IL-10 were detected using ELISA. Aquaporins-4 (AQP-4) and glial fibrillary acidic protein (GFAP) were detected using western blot analysis. Results: The neurological scores of rats in the CLB + ICH group were significantly lower than those in the in ICH group. The number of active caspase-3 neurons was significantly higher in the CLB + ICH group compared to the ICH group. CLB significantly aggravated ICH-induced brain edema 3 d after ICH. There was an increase in the expression of TNF-α, IL-1β, IL-10, AQP-4, GFAP after ICH. The expression of TNF-α was significantly higher in the CLB + ICH group compared to ICH group 3 d after ICH while there was no difference 7 d after ICH. There was no statistical difference in the expression of IL-1β between the ICH group and CLB + ICH group. However, the expression of IL-10 in the CLB + ICH group was significantly lower than that in the ICH group. Lastly, AQP-4 expression was significantly lower in the CLB + ICH group compared to the ICH group while the expression of GFAP was higher in the CLB + ICH group compared to the ICH group. Conclusion: CLB exacerbated cerebral edema, neuroinflammation, neuronal apoptosis and caused neurological deficits in rats with ICH via down-regulating AQP-4, up-regulating inflammatory TNF-α and inhibiting IL-10 expression. The glymphatic drainage system protects against neurologic injury after ICH induction in rats under normal physiological conditions.
Collapse
Affiliation(s)
- Xichang Liu
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Gang Wu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Na Tang
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Li Li
- Department of Neurology, First People's Hospital of Yichang, Yichang, China
| | - Cuimin Liu
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Feng Wang
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shaofa Ke
- Department of Neurology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
10
|
Aronowski J, Sansing LH, Xi G, Zhang JH. Mechanisms of Damage After Cerebral Hemorrhage. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Nistal D, Ali M, Wei D, Mocco J, Kellner C. A Systematic Review and Meta-Analysis of Statins in Animal Models of Intracerebral Hemorrhage. World Neurosurg 2021; 155:32-40. [PMID: 34384917 DOI: 10.1016/j.wneu.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/01/2021] [Accepted: 08/02/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a severe form of stroke with limited treatment options. Statins have shown promise as a therapy for ICH in animal and human studies. We systematically reviewed and assessed the quality of preclinical studies exploring statin-use after ICH to guide clinical trial decision-making and design. METHODS We identified preclinical trials assessing the efficacy of statins in ICH via a systematic review of the literature according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In total, 16 studies were identified that described statin use in an animal model of ICH and assessed histological outcomes, behavioral scores, or both. Design characteristics were analyzed using Stroke Therapy Academic Industry Roundtable (STAIR) criteria modified for ICH. Meta-analysis was performed using a random effects model. RESULTS Behavioral outcomes were assessed in 12 of the studies with 100% (n = 12) reporting that statins significantly improved ICH recovery. Histologic hematoma volume and brain water content outcomes were analyzed in 10 of the studies, with 50% (n = 5) reporting significant improvement. The ratio of means between experimental and control cases for modified Neurological Severity Score was 0.63 (95% confidence interval 0.49-0.82). The ratio of means between experimental and control cases for hemorrhagic volume was 0.85 (95% confidence interval 0.70-1.03). There was heterogeneity between studies (P < 0.0001) but no evidence of publication bias (P = 0.89, P = 0.59, respectively). CONCLUSIONS Behavioral outcomes in ICH were found to consistently improve with administration of statins in preclinical studies suggesting that statin therapy may be suitable for randomized clinical trials in humans. In addition, the STAIR criteria can be modified to effectively evaluate preclinical studies in ICH.
Collapse
Affiliation(s)
- Dominic Nistal
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Muhammad Ali
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Daniel Wei
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J Mocco
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Neuroprotective Therapies for Spontaneous Intracerebral Hemorrhage. Neurocrit Care 2021; 35:862-886. [PMID: 34341912 DOI: 10.1007/s12028-021-01311-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/25/2021] [Indexed: 12/15/2022]
Abstract
Patients who survive the initial ictus of spontaneous intracerebral hemorrhage (ICH) remain vulnerable to subsequent injury of the perilesional parenchyma by molecular and cellular responses to the hematoma. Secondary brain injury after ICH, which contributes to long-term functional impairment and mortality, has emerged as an attractive therapeutic target. This review summarizes preclinical and clinical evidence for neuroprotective therapies targeting secondary injury pathways following ICH. A focus on therapies with pleiotropic antiinflammatory effects that target thrombin-mediated chemotaxis and inflammatory cell migration has led to studies investigating statins, anticholinergics, sphingosine-1-phosphate receptor modulators, peroxisome proliferator activated receptor gamma agonists, and magnesium. Attempts to modulate ICH-induced blood-brain barrier breakdown and perihematomal edema formation has prompted studies of nonsteroidal antiinflammatory agents, matrix metalloproteinase inhibitors, and complement inhibitors. Iron chelators, such as deferoxamine and albumin, have been used to reduce the free radical injury that ensues from erythrocyte lysis. Stem cell transplantation has been assessed for its potential to enhance subacute neurogenesis and functional recovery. Despite promising preclinical results of numerous agents, their outcomes have not yet translated into positive clinical trials in patients with ICH. Further studies are necessary to improve our understanding of the molecular events that promote damage and inflammation of the perihematomal parenchyma after ICH. Elucidating the temporal and pathophysiologic features of this secondary brain injury could enhance the clinical efficacy of neuroprotective therapies for ICH.
Collapse
|
13
|
Zi L, Zhou W, Xu J, Li J, Li N, Xu J, You C, Wang C, Tian M. Rosuvastatin Nanomicelles Target Neuroinflammation and Improve Neurological Deficit in a Mouse Model of Intracerebral Hemorrhage. Int J Nanomedicine 2021; 16:2933-2947. [PMID: 33907400 PMCID: PMC8068519 DOI: 10.2147/ijn.s294916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/01/2021] [Indexed: 02/05/2023] Open
Abstract
Background Intracerebral hemorrhage (ICH), a devastating subtype of stroke, has a poor prognosis. However, there is no effective therapy currently available due to its complex pathological progression, in which neuroinflammation plays a pivotal role in secondary brain injury. In this work, the use of statin-loaded nanomicelles to target the neuroinflammation and improve the efficacy was studied in a mouse model of ICH. Methods Rosuvastatin-loaded nanomicelles were prepared by a co-solvent evaporation method using polyethylene glycol-poly(ε-caprolactone) (PEG-PCL) copolymer as a carrier. The prepared nanomicelles were characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and then in vitro and in vivo studies were performed. Results TEM shows that the nanomicelles are spherical with a diameter of about 19.41 nm, and DLS shows that the size, zeta potential, and polymer dispersity index of the nanomicelles were 23.37 nm, −19.2 mV, and 0.221, respectively. The drug loading content is 8.28%. The in vivo study showed that the nanomicelles significantly reduced neuron degeneration, inhibited the inflammatory cell infiltration, reduced the brain edema, and improved neurological deficit. Furthermore, it was observed that the nanomicelles promoted the polarization of microglia/macrophages to M2 phenotype, and also the expression of the proinflammatory cytokines, such as IL-1β and TNF-α, was significantly down-regulated, while the expression of the anti-inflammatory cytokine IL-10 was significantly up-regulated. The related mechanism was proposed and discussed. Conclusion The nanomicelles treatment suppressed the neuroinflammation that might contribute to the promoted nerve functional recovery of the ICH mouse, making it potential to be applied in clinic.
Collapse
Affiliation(s)
- Liu Zi
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wencheng Zhou
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jiake Xu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan, People's Republic of China
| | - Ning Li
- Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianguo Xu
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chao You
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chengwei Wang
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Integrated Traditional and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Meng Tian
- Neurosurgery Research Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.,West China Brain Research Centre, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Bernstein JE, Browne JD, Savla P, Wiginton J, Patchana T, Miulli DE, Wacker MR, Duong J. Inflammatory Markers in Severity of Intracerebral Hemorrhage II: A Follow Up Study. Cureus 2021; 13:e12605. [PMID: 33585095 PMCID: PMC7872478 DOI: 10.7759/cureus.12605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Introduction Spontaneous intracerebral hemorrhage (ICH) results in significant morbidity and mortality. The pathogenesis of brain injury after ICH is thought to be due to mechanical damage followed by ischemic, cytotoxic, and inflammatory changes in the underlying and surrounding tissue. Various inflammatory and non-inflammatory biomarkers have been studied as predictors and potential therapeutic targets for intracerebral hemorrhage. Our prior study showed an association with low vascular endothelial growth factor (VEGF) levels and increased mortality. This current study looks to expand on our prior results and will look at the relationship between tumor necrosis factor alpha (TNFα), C-reactive protein (CRP), VEGF, Homocysteine (Hcy), and CRP to albumin ratio (CAR) in predicting outcomes and severity in spontaneous intracerebral hemorrhage. Methods We conducted a retrospective chart review of patients with spontaneous intracerebral hemorrhage with TNFα, CRP, VEGF, Hcy levels drawn on admission. Albumin and CRP levels on admission were used to calculate CAR. Ninety-nine patients were included in the study. Primary outcomes included death, early neurologic decline (END), and hemorrhage size. Secondary outcomes included late neurologic decline (LND), Glasgow Coma Scale (GCS) on admission, GCS on discharge, ICH score, change in hemorrhage size, need for surgical intervention, and length of ICU stay. Results A total of 99 patients were included in this study, with 42% requiring surgical intervention and an overall mortality of 16%. Basal ganglia hemorrhage was seen in 41% of patients. Hcy and CAR were significantly correlated with ICH size in basal ganglia patients (r-=0.36, p=0.03; r=0.43, p=0.03, respectively). CAR was significantly correlated with ICH score (r=0.33, p=0.007874). Admission VEGF levels less than 45 pg/ml had 8.4-fold increase in mortality (odds ratio [OR] 8.4545, p=0.0488). Patients with TNFα levels greater than 1.40 pg/ml had a 4.1-fold increase in mortality (OR 4.1, p=0.04) Conclusion Our study demonstrated that low levels (<45 pg/ml) of VEGF were associated with an 8.4-fold increase in mortality, supporting the neuroprotective effect of this protein. Elevated Hcy and CAR levels were associated with an increase in hemorrhage size in patients with basal ganglia hemorrhages. TNFα levels greater than 1.40 pg/ml were associated with a 4.1-fold increase in mortality, and this together with CAR being correlated with increased hemorrhage size and ICH score further demonstrate the inflammatory consequences after intracerebral hemorrhage. Future studies directed at lowering CRP, TNFα, and Hcy and/or increasing VEGF in intracerebral hemorrhage patients are needed and may be beneficial.
Collapse
Affiliation(s)
- Jacob E Bernstein
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Jonathan D Browne
- School of Medicine, California University of Science and Medicine, Colton, USA
| | - Paras Savla
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - James Wiginton
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Tye Patchana
- Neurosurgery, Riverside University Health System Medical Center, Moreno Valley, USA
| | - Dan E Miulli
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| | | | - Jason Duong
- Neurosurgery, Arrowhead Regional Medical Center, Colton, USA
| |
Collapse
|
15
|
Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation. Lancet Neurol 2020; 19:1023-1032. [DOI: 10.1016/s1474-4422(20)30364-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 09/12/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022]
|
16
|
Bagheri H, Ghasemi F, Barreto GE, Sathyapalan T, Jamialahmadi T, Sahebkar A. The effects of statins on microglial cells to protect against neurodegenerative disorders: A mechanistic review. Biofactors 2020; 46:309-325. [PMID: 31846136 DOI: 10.1002/biof.1597] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/22/2019] [Indexed: 12/28/2022]
Abstract
Microglia are the primary innate immune system cells in the central nervous system (CNS). They are crucial for the immunity, neurogenesis, synaptogenesis, neurotrophic support, phagocytosis of cellular debris, and maintaining the CNS integrity and homeostasis. Invasion by pathogens as well as in CNS injuries and damages results in activation of microglia known as microgliosis. The activated microglia have the capacity to release proinflammatory mediators leading to neuroinflammation. However, uncontrolled neuroinflammation can give rise to various neurological disorders (NDs), especially the neurodegenerative diseases including Parkinson's disease (PD) and related disorders, Alzheimer's disease (AD) and other dementias, multiple sclerosis (MS), Huntington's disease (HD), spinocerebellar ataxia (SCA), spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), and stroke. Statins (HMG-CoA reductase inhibitors) are among the most widely prescribed medications for the management of hypercholesterolemia worldwide. It can be used for primary prevention in healthy individuals who are at higher risk of cardiovascular and coronary heart diseases as well as the secondary prevention in patients with cardiovascular and coronary heart diseases disease. A growing body of evidence has indicated that statins have the potential to attenuate the proinflammatory mediators and subsequent NDs by controlling the microglial activation and consequent reduction in neuroinflammatory mediators. In this review, we have discussed the recent studies on the effects of statins on microglia activation and neuroinflammation.
Collapse
Affiliation(s)
- Hossein Bagheri
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Thozhukat Sathyapalan
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, Hull, UK
| | - Tannaz Jamialahmadi
- Halal Research Center of IRI, FDA, Tehran, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Hung YW, Wang Y, Lee SL. DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact. FASEB J 2020; 34:6950-6964. [PMID: 32246809 DOI: 10.1096/fj.201902818r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022]
Abstract
Dipeptidyl peptidase-4 inhibitors (or gliptins), a class of antidiabetic drugs, have recently been shown to have protective actions in the central nervous system. Their cellular and molecular mechanisms responsible for these effects are largely unknown. In the present study, two structurally different gliptins, sitagliptin and vildagliptin, were examined for their therapeutic actions in a controlled cortical impact (CCI) model of moderate traumatic brain injury (TBI) in mice. Early post-CCI treatment with sitagliptin, but not vildagliptin, significantly reduced body asymmetry, locomotor hyperactivity, and brain lesion volume. Sitagliptin attenuated post-CCI microglial deramification in the ipsilateral dorsolateral (DL) striatum, while vildagliptin had no effect. Sitagliptin also reduced striatal expression of galectin-3 and monocyte chemoattractant protein 1(MCP-1), and increased the cortical and striatal levels of the anti-inflammatory cytokine IL-10 on the ipsilateral side. These data support a differential protective effect of sitagliptin against TBI, possibly mediated by an anti-inflammatory effect in striatum to preserve connective network. Both sitagliptin and vildagliptin produced similar increases of active glucagon-like peptide-1 (GLP-1) in blood and brain. Increasing active GLP-1 may not be the sole molecular mechanisms for the neurotherapeutic effect of sitagliptin in TBI.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| | - Sheau-Ling Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, R.O.C
| |
Collapse
|
18
|
Bai Q, Xue M, Yong VW. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities. Brain 2020; 143:1297-1314. [PMID: 31919518 DOI: 10.1093/brain/awz393] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 01/24/2023] Open
Abstract
Abstract
The prognosis of intracerebral haemorrhage continues to be devastating despite much research into this condition. A prominent feature of intracerebral haemorrhage is neuroinflammation, particularly the excessive representation of pro-inflammatory CNS-intrinsic microglia and monocyte-derived macrophages that infiltrate from the circulation. The pro-inflammatory microglia/macrophages produce injury-enhancing factors, including inflammatory cytokines, matrix metalloproteinases and reactive oxygen species. Conversely, the regulatory microglia/macrophages with potential reparative and anti-inflammatory roles are outcompeted in the early stages after intracerebral haemorrhage, and their beneficial roles appear to be overwhelmed by pro-inflammatory microglia/macrophages. In this review, we describe the activation of microglia/macrophages following intracerebral haemorrhage in animal models and clinical subjects, and consider their multiple mechanisms of cellular injury after haemorrhage. We review strategies and medications aimed at suppressing the pro-inflammatory activities of microglia/macrophages, and those directed at elevating the regulatory properties of these myeloid cells after intracerebral haemorrhage. We consider the translational potential of these medications from preclinical models to clinical use after intracerebral haemorrhage injury, and suggest that several approaches still lack the experimental support necessary for use in humans. Nonetheless, the preclinical data support the use of deactivator or inhibitor of pro-inflammatory microglia/macrophages, whilst enhancing the regulatory phenotype, as part of the therapeutic approach to improve the prognosis of intracerebral haemorrhage.
Collapse
Affiliation(s)
- Qian Bai
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Chen CJ, Ding D, Ironside N, Buell TJ, Elder LJ, Warren A, Adams AP, Ratcliffe SJ, James RF, Naval NS, Worrall BB, Johnston KC, Southerland AM. Statins for neuroprotection in spontaneous intracerebral hemorrhage. Neurology 2019; 93:1056-1066. [PMID: 31712367 DOI: 10.1212/wnl.0000000000008627] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022] Open
Abstract
Statins, a common drug class for treatment of dyslipidemia, may be neuroprotective for spontaneous intracerebral hemorrhage (ICH) by targeting secondary brain injury pathways in the surrounding brain parenchyma. Statin-mediated neuroprotection may stem from downregulation of mevalonate and its derivatives, targeting key cell signaling pathways that control proliferation, adhesion, migration, cytokine production, and reactive oxygen species generation. Preclinical studies have consistently demonstrated the neuroprotective and recovery enhancement effects of statins, including improved neurologic function, reduced cerebral edema, increased angiogenesis and neurogenesis, accelerated hematoma clearance, and decreased inflammatory cell infiltration. Retrospective clinical studies have reported reduced perihematomal edema, lower mortality rates, and improved functional outcomes in patients who were taking statins before ICH. Several clinical studies have also observed lower mortality rates and improved functional outcomes in patients who were continued or initiated on statins after ICH. Subgroup analysis of a previous randomized trial has raised concerns of a potentially elevated risk of recurrent ICH in patients with previous hemorrhagic stroke who are administered statins. However, most statin trials failed to show an association between statin use and increased hemorrhagic stroke risk. Variable statin dosing, statin use in the pre-ICH setting, and selection biases have limited rigorous investigation of the effects of statins on post-ICH outcomes. Future prospective trials are needed to investigate the association between statin use and outcomes in ICH.
Collapse
Affiliation(s)
- Ching-Jen Chen
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA.
| | - Dale Ding
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Natasha Ironside
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Thomas J Buell
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Lori J Elder
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Amy Warren
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Amy P Adams
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Sarah J Ratcliffe
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Robert F James
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Neeraj S Naval
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Bradford B Worrall
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Karen C Johnston
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| | - Andrew M Southerland
- From the Department of Neurological Surgery (C.-J.C., N.I., T.J.B.), University of Virginia Health System, Charlottesville, VA; Department of Neurological Surgery (D.D., R.F.J.), University of Louisville School of Medicine, Louisville, KY; Clinical Trials Office (L.J.E., A.W.), University of Virginia School of Medicine; Department of Pharmacology (A.P.A.), University of Virginia Health System, Charlottesville, VA; Department of Public Health Sciences (S.J.R., B.B.W., A.M.S.), University of Virginia School of Medicine, Charlottesville, VA; Department of Neurosurgery (N.S.N.), Baptist Health, Jacksonville, FL; and Department of Neurology (B.B.W., K.C.J., A.M.S.), University of Virginia Health System, Charlottesville, VA
| |
Collapse
|
20
|
Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J. Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Prog Neurobiol 2019; 178:101610. [PMID: 30923023 DOI: 10.1016/j.pneurobio.2019.03.003] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/07/2019] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Intracerebral hemorrhage (ICH) is a common and severe cerebrovascular disease that has high mortality. Few survivors achieve self-care. Currently, patients receive only symptomatic treatment for ICH and benefit poorly from this regimen. Inflammatory cytokines are important participants in secondary injury after ICH. Increases in proinflammatory cytokines may aggravate the tissue injury, whereas increases in anti-inflammatory cytokines might be protective in the ICH brain. Inflammatory cytokines have been studied as therapeutic targets in a variety of acute and chronic brain diseases; however, studies on ICH are limited. This review summarizes the roles and functions of various pro- and anti-inflammatory cytokines in secondary brain injury after ICH and discusses pathogenic mechanisms and emerging therapeutic strategies and directions for treatment of ICH.
Collapse
Affiliation(s)
- Huimin Zhu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhiqiang Wang
- Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Jixu Yu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China; Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Xiuli Yang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feng He
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China
| | - Zhenchuan Liu
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, Shandong 276003, China; Central laboratory, Linyi People's Hospital, Linyi, Shandong 276003, China.
| | - Xuemei Chen
- Department of Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, Henan, China
| | - Honglei Ren
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Michael Hong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
21
|
Bobinger T, Burkardt P, B Huttner H, Manaenko A. Programmed Cell Death after Intracerebral Hemorrhage. Curr Neuropharmacol 2018; 16:1267-1281. [PMID: 28571544 PMCID: PMC6251052 DOI: 10.2174/1570159x15666170602112851] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 06/01/2017] [Indexed: 01/01/2023] Open
Abstract
Background: Intracerebral hemorrhage (ICH) accounts for up to 15% of all strokes and is characterized by high rates of mortality and morbidity. The post-ICH brain injury can be distinguished in 1) primary, which are caused by disrup-tion and mechanical deformation of brain tissue due to hematoma growth and 2) secondary, which are induced by microglia activation, mitochondrial dysfunction, neurotransmitter and inflammatory mediator release. Although these events typically lead to necrosis, the occurrence of programmed cell death has also been reported after ICH. Methods: We reviewed recent publications describing advance in pre- and clinic ICH research. Results: At present, treatment of ICH patients is based on oral anticoagulant reversal, management of blood pressure and other medical complications. Several pre-clinical studies showed promising results and demonstrated that anti-oxidative and anti-inflammatory treatments reduced neuronal cell death, however, to date, all of these attempts have failed in randomized controlled clinical trials. Yet, the time frame of administration may be crucial in translation from animal to clinical studies. Furthermore, the latest pre-clinical research points toward the existence of other, apoptosis-unrelated forms kinds of pro-grammed cell death. Conclusion: Our review summarizes current knowledge of pathways leading to programmed cell death after ICH in addition to data from clinical trials. Some of the pre-clinical results have not yet demonstrated clinical confirmation, however they sig-nificantly contribute to our understanding of post-ICH pathology and can contribute to development of new therapeutic ap-proaches, decreasing mortality and improving ICH patients’ quality of life.
Collapse
Affiliation(s)
- Tobias Bobinger
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Petra Burkardt
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| | - Anatol Manaenko
- Department of Neurology, University of Erlangen-Nuremberg, Schwabachanlage 6, Erlangen 91054, Germany
| |
Collapse
|
22
|
Gang X, Han Q, Zhao X, Liu Q, Wang Y. Dynamic Changes in Toll-Like Receptor 4 in Human Perihematoma Tissue after Intracerebral Hemorrhage. World Neurosurg 2018; 118:e593-e600. [DOI: 10.1016/j.wneu.2018.06.247] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 01/26/2023]
|
23
|
Lan X, Han X, Li Q, Yang QW, Wang J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 2017; 13:420-433. [PMID: 28524175 PMCID: PMC5575938 DOI: 10.1038/nrneurol.2017.69] [Citation(s) in RCA: 612] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracerebral haemorrhage (ICH) is the most lethal subtype of stroke but currently lacks effective treatment. Microglia are among the first non-neuronal cells on the scene during the innate immune response to ICH. Microglia respond to acute brain injury by becoming activated and developing classic M1-like (proinflammatory) or alternative M2-like (anti-inflammatory) phenotypes. This polarization implies as yet unrecognized actions of microglia in ICH pathology and recovery, perhaps involving microglial production of proinflammatory or anti-inflammatory cytokines and chemokines. Furthermore, alternatively activated M2-like microglia might promote phagocytosis of red blood cells and tissue debris, a major contribution to haematoma clearance. Interactions between microglia and other cells modulate microglial activation and function, and are also important in ICH pathology. This Review summarizes key studies on modulators of microglial activation and polarization after ICH, including M1-like and M2-like microglial phenotype markers, transcription factors and key signalling pathways. Microglial phagocytosis, haematoma resolution, and the potential crosstalk between microglia and T lymphocytes, neurons, astrocytes, and oligodendrocytes in the ICH brain are described. Finally, the clinical and translational implications of microglial polarization in ICH are presented, including the evidence that therapeutic approaches aimed at modulating microglial function might mitigate ICH injury and improve brain repair.
Collapse
Affiliation(s)
- Xi Lan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Xiaoning Han
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qian Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| | - Qing-Wu Yang
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, 183 Xinqiao Main Street, Shapingba District, Chongqing 400037, China
| | - Jian Wang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Building 370B, Baltimore, Maryland 21205, USA
| |
Collapse
|
24
|
Garcia JM, Stillings SA, Leclerc JL, Phillips H, Edwards NJ, Robicsek SA, Hoh BL, Blackburn S, Doré S. Role of Interleukin-10 in Acute Brain Injuries. Front Neurol 2017; 8:244. [PMID: 28659854 PMCID: PMC5466968 DOI: 10.3389/fneur.2017.00244] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/17/2017] [Indexed: 12/23/2022] Open
Abstract
Interleukin-10 (IL-10) is an important anti-inflammatory cytokine expressed in response to brain injury, where it facilitates the resolution of inflammatory cascades, which if prolonged causes secondary brain damage. Here, we comprehensively review the current knowledge regarding the role of IL-10 in modulating outcomes following acute brain injury, including traumatic brain injury (TBI) and the various stroke subtypes. The vascular endothelium is closely tied to the pathophysiology of these neurological disorders and research has demonstrated clear vascular endothelial protective properties for IL-10. In vitro and in vivo models of ischemic stroke have convincingly directly and indirectly shown IL-10-mediated neuroprotection; although clinically, the role of IL-10 in predicting risk and outcomes is less clear. Comparatively, conclusive studies investigating the contribution of IL-10 in subarachnoid hemorrhage are lacking. Weak indirect evidence supporting the protective role of IL-10 in preclinical models of intracerebral hemorrhage exists; however, in the limited number of clinical studies, higher IL-10 levels seen post-ictus have been associated with worse outcomes. Similarly, preclinical TBI models have suggested a neuroprotective role for IL-10; although, controversy exists among the several clinical studies. In summary, while IL-10 is consistently elevated following acute brain injury, the effect of IL-10 appears to be pathology dependent, and preclinical and clinical studies often paradoxically yield opposite results. The pronounced and potent effects of IL-10 in the resolution of inflammation and inconsistency in the literature regarding the contribution of IL-10 in the setting of acute brain injury warrant further rigorously controlled and targeted investigation.
Collapse
Affiliation(s)
- Joshua M Garcia
- College of Medicine, University of Florida, Gainesville, FL, United States
| | | | - Jenna L Leclerc
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Harrison Phillips
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States
| | - Nancy J Edwards
- Department of Neurology, University of California, San Francisco, CA, United States.,Department of Neurosurgery, University of California, San Francisco, CA, United States
| | - Steven A Robicsek
- Department of Anesthesiology, University of Florida, Gainesville, FL, United States.,Department of Neurosurgery, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| | - Brian L Hoh
- Department of Neurosurgery, University of Florida, Gainesville, FL, United States
| | - Spiros Blackburn
- Department of Neurosurgery, University of Texas, Houston, TX, United States
| | - Sylvain Doré
- Department of Anesthesiology, College of Medicine, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States.,Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States.,Department of Neurology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychology, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Psychiatry, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Department of Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
25
|
Zhu Y, Liu C, Sun Z. Early Combined Therapy with Pharmacologically Induced Hypothermia and Edaravone Exerts Neuroprotective Effects in a Rat Model of Intracerebral Hemorrhage. Cell Biochem Biophys 2017; 73:581-587. [PMID: 27352357 DOI: 10.1007/s12013-015-0584-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In present study, we evaluated acute neuroprotective effects of combined therapy with pharmacologically induced hypothermia and edaravone in a rat model of intracerebral hemorrhage (ICH). ICH was caused by injection of 0.5 U of collagenase VII to the caudate nucleus of male Sprague-Dawley rats. Sham-treated animals receive injections of normal saline instead of collagenase VII. All animals were randomly divided into five groups: sham group, ICH group, hypothermia group, edavarone (10 mg/kg) group, and combined hypothermia + edavarone group. Hypothermia was induced by injection of the second-generation neurotensin receptor agonist HPI-201 (2 mg/kg at 1 h after ICH; 1 mg/kg at 4 and 7 h after ICH). Hypothermia was sustained for at least 6 h. The study outcomes were the extent of brain edema, permeability of the blood-brain barrier (Evan's blue dye), expression of matrix metalloproteinase-9 and inflammatory cytokines (IL-1β, IL-4, IL-6, and TNF-α), and expression of apoptosis-related proteins (caspase-3, cytochrome C, Bcl-2, and Bax). Brain edema, permeability of the blood-brain barrier, and expression of metalloproteinase-9 were increased, while expression of caspase-3 and Bcl-2 was decreased by ICH. We observed that the combined therapy was significantly more potent in reverting the above negative trends induced by ICH. In conclusion, our results indicate that a combination of pharmacologically induced hypothermia and edavarone leads to potentiation of their respective neuroprotective effects.
Collapse
Affiliation(s)
- Yonglin Zhu
- Department of Geriatrics, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450014, Henan, China.
| | - Chunling Liu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhikun Sun
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
26
|
Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation 2016; 13:297. [PMID: 27881137 PMCID: PMC5121946 DOI: 10.1186/s12974-016-0763-8] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022] Open
Abstract
Background The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology. Main body The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders. Conclusion The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.
Collapse
Affiliation(s)
- Diogo Lobo-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Guilhermina M Carriche
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - A Gil Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Susana Roque
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, Braga, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal. .,IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
27
|
Mittal MK, LacKamp A. Intracerebral Hemorrhage: Perihemorrhagic Edema and Secondary Hematoma Expansion: From Bench Work to Ongoing Controversies. Front Neurol 2016; 7:210. [PMID: 27917153 PMCID: PMC5116572 DOI: 10.3389/fneur.2016.00210] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a medical emergency, which often leads to severe disability and death. ICH-related poor outcomes are due to primary injury causing structural damage and mass effect and secondary injury in the perihemorrhagic region over several days to weeks. Secondary injury after ICH can be due to hematoma expansion (HE) or a consequence of repair pathway along the continuum of neuroinflammation, neuronal death, and perihemorrhagic edema (PHE). This review article is focused on PHE and HE and will cover the animal studies, related human studies, and clinical trials relating to these mechanisms of secondary brain injury in ICH patients.
Collapse
Affiliation(s)
- Manoj K Mittal
- Department of Neurology, University of Kansas Medical Center , Kansas City, KS , USA
| | - Aaron LacKamp
- Department of Anesthesiology, University of Kansas Medical Center , Kansas City, KS , USA
| |
Collapse
|
28
|
Liu XC, Jing LY, Yang MF, Wang K, Wang Y, Fu XY, Fang J, Hou YJ, Sun JY, Li DW, Zhang ZY, Mao LL, Tang YM, Fu XT, Fan CD, Yang XY, Sun BL. Enhanced Neuroprotection of Minimally Invasive Surgery Joint Local Cooling Lavage against ICH-induced Inflammation Injury and Apoptosis in Rats. Cell Mol Neurobiol 2016; 36:647-55. [PMID: 26224360 PMCID: PMC11482297 DOI: 10.1007/s10571-015-0245-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
Abstract
Hypothermia treatment is one of the neuroprotective strategies that improve neurological outcomes effectively after brain damage. Minimally invasive surgery (MIS) has been an important treatment of intracerebral hemorrhage (ICH). Herein, we evaluated the neuroprotective effect and mechanism of MIS joint local cooling lavage (LCL) treatment on ICH via detecting the inflammatory responses, oxidative injury, and neuronal apoptosis around the hematoma cavity in rats. ICH model was established by type IV collagenase caudatum infusion. The rats were treated with MIS 6 h after injection, and then were lavaged by normothermic (37 °C) and hypothermic (33 °C) normal saline in brain separately. The results indicated that MIS joint LCL treatment showed enhanced therapeutic effects against ICH-induced inflammation injury and apoptosis in rats, as convinced by the decline of TUNEL-positive cells, followed by the decrease of IL-1β and LDH and increase of IL-10 and SOD. This study demonstrated that the strategy of using MIS joint LCL may achieve enhanced neuroprotection against ICH-induced inflammation injury and apoptosis in rats with potential clinic application.
Collapse
Affiliation(s)
- Xi-Chang Liu
- Department of Neurology, Shandong University School of Medicine, Jinan, 250012, Shandong, China
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Li-Yan Jing
- Taian Chinese Medicine Hospital, Taian, 271000, Shandong, China
| | - Ming-Feng Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Kun Wang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
- Taishan Vocational College of Nursing, Taian, 271000, Shandong, China
| | - Yuan Wang
- Shandong Provincial Hospital Affiliated To Shandong University, Jinan, 250012, Shandong, China
| | - Xiao-Yan Fu
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jie Fang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Ya-Jun Hou
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Jing-Yi Sun
- School of Basic Medicine, Taishan Medical University, Taian, 271000, Shandong, China
| | - Da-Wei Li
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Zong-Yong Zhang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Lei-Lei Mao
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - You-Mei Tang
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Xiao-Ting Fu
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Cun-Dong Fan
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
| | - Xiao-Yi Yang
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China
| | - Bao-Liang Sun
- Department of Neurology, Shandong University School of Medicine, Jinan, 250012, Shandong, China.
- Key Lab of Cerebral Microcirculation in Universities of Shandong, Taishan Medical University, Taian, 271000, Shandong, China.
- Affiliated Hospital of Taishan Medical University, Taian, 271000, Shandong, China.
| |
Collapse
|
29
|
Askenase MH, Sansing LH. Stages of the Inflammatory Response in Pathology and Tissue Repair after Intracerebral Hemorrhage. Semin Neurol 2016; 36:288-97. [PMID: 27214704 DOI: 10.1055/s-0036-1582132] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a major health concern, with high rates of mortality and morbidity and no highly effective clinical interventions. Basic research in animal models of ICH has provided insight into its complex pathology, in particular revealing the role of inflammation in driving neuronal death and neurologic deficits after hemorrhage. The response to ICH occurs in four distinct phases: (1) initial tissue damage and local activation of inflammatory factors, (2) inflammation-driven breakdown of the blood-brain barrier, (3) recruitment of circulating inflammatory cells and subsequent secondary immunopathology, and (4) engagement of tissue repair responses that promote tissue repair and restoration of neurologic function. The development of CNS inflammation occurs over many days after initial hemorrhage and thus may represent an ideal target for treatment of the disease, but further research is required to identify the mechanisms that promote engagement of inflammatory versus anti-inflammatory pathways. In this review, the authors examine how experimental models of ICH have uncovered critical mediators of pathology in each of the four stages of the inflammatory response, and focus on the role of the immune system in these processes.
Collapse
Affiliation(s)
- Michael H Askenase
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Lauren H Sansing
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
30
|
Intracerebral Hemorrhage, Oxidative Stress, and Antioxidant Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1203285. [PMID: 27190572 PMCID: PMC4848452 DOI: 10.1155/2016/1203285] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/20/2015] [Accepted: 03/28/2016] [Indexed: 12/20/2022]
Abstract
Hemorrhagic stroke is a common and severe neurological disorder and is associated with high rates of mortality and morbidity, especially for intracerebral hemorrhage (ICH). Increasing evidence demonstrates that oxidative stress responses participate in the pathophysiological processes of secondary brain injury (SBI) following ICH. The mechanisms involved in interoperable systems include endoplasmic reticulum (ER) stress, neuronal apoptosis and necrosis, inflammation, and autophagy. In this review, we summarized some promising advances in the field of oxidative stress and ICH, including contained animal and human investigations. We also discussed the role of oxidative stress, systemic oxidative stress responses, and some research of potential therapeutic options aimed at reducing oxidative stress to protect the neuronal function after ICH, focusing on the challenges of translation between preclinical and clinical studies, and potential post-ICH antioxidative therapeutic approaches.
Collapse
|
31
|
Mechanisms of Cerebral Hemorrhage. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Neuronal tumour necrosis factor-α and interleukin-1β expression in a porcine model of intracerebral haemorrhage: Modulation by U-74389G. Brain Res 2015; 1615:98-105. [PMID: 25916578 DOI: 10.1016/j.brainres.2015.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) are important mediators of intracerebral haemorrhage (ICH) inflammatory response. Lazaroids, established antioxidants and neuroprotectants, have been studied in several brain pathologies. The present study was designed to investigate: a) TNF-α and IL-1β changes, in neurons and b) U-74389G effects, 4 and 24h after haematoma induction in a porcine model of intracerebral haemorrhage. In twenty male landrace pigs (swines) aged 135-150 days old, autologous whole blood was injected around the right basal ganglia territory; in ten of the pigs the lazaroid compound U-74389G was administered. Brain TNF-α and IL-1β immunopositive neurons were determined by immunoarray techniques at 4 and 24h timepoints. After the haematoma induction the number of TNF-α immunopositive neurons ipsilateral to the haematoma was significantly higher compared to the contralateral site at 4h (p<0.0005), while U-74389G significantly reduced the number of TNF-α immunopositive neurons, ipsilateral to the haematoma, at 4h (p=0.002); at 24h, TNF-α immunopositive neurons were found significantly lower in the control group ipsilateral to the haematoma in comparison to 4h timepoint(p<0.0005). The number of IL-1β immunopositive neurons at 4h after the hematoma induction was significantly higher ipsilateral to the haematoma site (p<0.0005). U-74389G had no statistical significant effect. TNF-α and IL-1β, increase in neurons, 4h after the haematoma induction, ipsilateral to the haematoma site. The administration of the antioxidant compound U-74389G, results in early (at 4h) decrease of TNF-α immunopositive neurons but shows no statistical significant effect to IL-1β immunopossitive neurons.
Collapse
|
33
|
Kathirvelu B, Carmichael ST. Intracerebral hemorrhage in mouse models: therapeutic interventions and functional recovery. Metab Brain Dis 2015; 30:449-59. [PMID: 24810632 PMCID: PMC4226812 DOI: 10.1007/s11011-014-9559-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/28/2014] [Indexed: 12/11/2022]
Abstract
There has been strong pre-clinical research on mechanisms of initial cell death and tissue injury in intracerebral hemorrhage (ICH). This data has led to the evaluation of several therapeutics for neuroprotection or the mitigation of early tissue damage. Most of these studies have been done in the rat. Also, there has been little study of the mechanisms of tissue repair and recovery. This review examines the testing of candidate therapeutics in mouse models of ICH for their effect on tissue protection and repair. This review will help the readers compare it to the extensively researched rat model of ICH and thus enhance work that are pending in mouse model.
Collapse
Affiliation(s)
- Balachandar Kathirvelu
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | |
Collapse
|
34
|
Churchward MA, Todd KG. Statin treatment affects cytokine release and phagocytic activity in primary cultured microglia through two separable mechanisms. Mol Brain 2014; 7:85. [PMID: 25424483 PMCID: PMC4247600 DOI: 10.1186/s13041-014-0085-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/08/2014] [Indexed: 12/14/2022] Open
Abstract
Background As the primary immune cells of the central nervous system, microglia contribute to development, homeostasis, and plasticity of the central nervous system, in addition to their well characterized roles in the foreign body and inflammatory responses. Increasingly, inappropriate activation of microglia is being reported as a component of inflammation in neurodegenerative and neuropsychiatric disorders. The statin class of cholesterol-lowering drugs have been observed to have anti-inflammatory and protective effects in both neurodegenerative diseases and ischemic stroke, and are suggested to act by attenuating microglial activity. Results We sought to investigate the effects of simvastatin treatment on the secretory profile and phagocytic activity of primary cultured rat microglia, and to dissect the mechanism of action of simvastatin on microglial activity. Simvastatin treatment altered the release of cytokines and trophic factors from microglia, including interleukin-1-β, tumour necrosis factor-α, and brain derived neurotrophic factor in a cholesterol-dependent manner. Conversely, simvastatin inhibited phagocytosis in microglia in a cholesterol-independent manner. Conclusions The disparity in cholesterol dependence of cytokine release and phagocytosis suggests the two effects occur through distinct molecular mechanisms. These two pathways may provide an opportunity for further refinement of pharmacotherapies for neuroinflammatory, neurodegenerative, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Matthew A Churchward
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| | - Kathryn G Todd
- Neurochemical Research Unit, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Department of Psychiatry, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3. .,Neuroscience and Mental Health Institute, University of Alberta Faculty of Medicine, Edmonton, AB, Canada, T6G 2R3.
| |
Collapse
|
35
|
Majid A. Neuroprotection in stroke: past, present, and future. ISRN NEUROLOGY 2014; 2014:515716. [PMID: 24579051 PMCID: PMC3918861 DOI: 10.1155/2014/515716] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023]
Abstract
Stroke is a devastating medical condition, killing millions of people each year and causing serious injury to many more. Despite advances in treatment, there is still little that can be done to prevent stroke-related brain damage. The concept of neuroprotection is a source of considerable interest in the search for novel therapies that have the potential to preserve brain tissue and improve overall outcome. Key points of intervention have been identified in many of the processes that are the source of damage to the brain after stroke, and numerous treatment strategies designed to exploit them have been developed. In this review, potential targets of neuroprotection in stroke are discussed, as well as the various treatments that have been targeted against them. In addition, a summary of recent progress in clinical trials of neuroprotective agents in stroke is provided.
Collapse
Affiliation(s)
- Arshad Majid
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385A Glossop Road, Sheffield S10 2HQ, UK
- Department of Neurology and Manchester Academic Health Sciences Centre, Salford Royal Hospital, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|