1
|
Carballo-Pedrares N, Ponti F, Lopez-Seijas J, Miranda-Balbuena D, Bono N, Candiani G, Rey-Rico A. Non-viral gene delivery to human mesenchymal stem cells: a practical guide towards cell engineering. J Biol Eng 2023; 17:49. [PMID: 37491322 PMCID: PMC10369726 DOI: 10.1186/s13036-023-00363-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
In recent decades, human mesenchymal stem cells (hMSCs) have gained momentum in the field of cell therapy for treating cartilage and bone injuries. Despite the tri-lineage multipotency, proliferative properties, and potent immunomodulatory effects of hMSCs, their clinical potential is hindered by donor variations, limiting their use in medical settings. To address this challenge, gene delivery technologies have emerged as a promising approach to modulate the phenotype and commitment of hMSCs towards specific cell lineages, thereby enhancing osteochondral repair strategies. This review provides a comprehensive overview of current non-viral gene delivery approaches used to engineer MSCs, highlighting key factors such as the choice of nucleic acid or delivery vector, transfection strategies, and experimental parameters. Additionally, it outlines various protocols and methods for qualitative and quantitative evaluation of their therapeutic potential as a delivery system in osteochondral regenerative applications. In summary, this technical review offers a practical guide for optimizing non-viral systems in osteochondral regenerative approaches. hMSCs constitute a key target population for gene therapy techniques. Nevertheless, there is a long way to go for their translation into clinical treatments. In this review, we remind the most relevant transfection conditions to be optimized, such as the type of nucleic acid or delivery vector, the transfection strategy, and the experimental parameters to accurately evaluate a delivery system. This survey provides a practical guide to optimizing non-viral systems for osteochondral regenerative approaches.
Collapse
Affiliation(s)
- Natalia Carballo-Pedrares
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Federica Ponti
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering & Research Center of CHU de Quebec, Division of Regenerative Medicine, Laval University, Quebec City, QC, Canada
| | - Junquera Lopez-Seijas
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Diego Miranda-Balbuena
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain
| | - Nina Bono
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy
| | - Gabriele Candiani
- genT_LΛB, Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico Di Milano, 20131, Milan, Italy.
| | - Ana Rey-Rico
- Gene & Cell Therapy Research Group (G-CEL). Centro Interdisciplinar de Química y Biología - CICA, Universidade da Coruña, As Carballeiras, S/N. Campus de Elviña, 15071 A, Coruña, Spain.
| |
Collapse
|
2
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
3
|
Ultrasound-targeted microbubble destruction (UTMD)-mediated miR-150-5p attenuates oxygen and glucose deprivation-induced cardiomyocyte injury by inhibiting TTC5 expression. Mol Biol Rep 2022; 49:6041-6052. [PMID: 35357625 DOI: 10.1007/s11033-022-07392-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Cardiomyocyte injury is a typical feature in cardiovascular diseases. Changes in cardiomyocytes strongly affect the progression of cardiovascular diseases. This work aimed to investigate the biological function and potential mechanism of action of miR-150-5p in cardiomyocytes. METHODS AND RESULTS A myocardial ischemia (MI) injury rat model was constructed to detect miR-150-5p and tetratricopeptide repeat domain 5 (TTC5) expression during heart ischemia injury. Primary cardiomyocytes were isolated for in vitro study. CCK-8 assays were used to detect cardiomyocyte viability. Western blots were used to detect TTC5 and P53 expression. qPCR was utilized to measure RNA expression of miR-150-5p and TTC5. The TUNEL assay was used to determine cell apoptosis. ELISA was used to determine cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels in heart tissues and cell culture supernatants. A dual-luciferase reporter assay was carried out to verify the binding ability between miR-150-5p and TTC5. Oxygen-glucose deprivation (OGD) treatment significantly inhibited cell viability. Ultrasound-targeted microbubble destruction (UTMD)-mediated uptake of miR-150-5p inverted these results. Additionally, UTMD-mediated uptake of miR-150-5p retarded the effects of OGD treatment on cell apoptosis. Besides, UTMD-mediated uptake of miR-150-5p counteracted the effects of OGD treatment on the inflammatory response by regulating cytokine (TNF-α, IL-1β, IL-6, and IL-8) levels. For the mechanism of the protective effect on the heart, we predicted and confirmed that miR-150-5p bound to TTC5 and inhibited TTC5 expression. CONCLUSIONS UTMD-mediated uptake of miR-150-5p attenuated OGD-induced primary cardiomyocyte injury by inhibiting TTC5 expression. This discovery contributes toward further understanding the progression of primary cardiomyocyte injury.
Collapse
|
4
|
Wei X, Zheng Y, Zhang W, Tan J, Zheng H. Ultrasound‑targeted microbubble destruction‑mediated Galectin‑7‑siRNA promotes the homing of bone marrow mesenchymal stem cells to alleviate acute myocardial infarction in rats. Int J Mol Med 2020; 47:677-687. [PMID: 33416139 PMCID: PMC7797467 DOI: 10.3892/ijmm.2020.4830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) are accepted as a form of cellular therapy to improve cardiac function following acute myocardial infarction (AMI). The present study was performed to investigate the synergistic effect of ultrasound-targeted microbubble destruction (UTMD)-mediated Galectin-7-small interfering (si)RNA with the homing of BMSCs for AMI. The rat model of AMI was established, followed by identification of BMSCs. Rats with AMI received BMSC transplantation, BMSC transplantation + UTMD + siRNA negative control, or BMSC transplantation + UTMD + Galectin-7-siRNA. The cardiac function, hemodynamics indexes, degree of myocardial fiber injury and expression of apoptosis-related proteins in myocardial tissues of rats were detected. The homing of BMSCs was observed, and the indexes of myocardial microenvironment and the TGF-β/Smads pathway-related proteins in myocardial tissues were determined. AMI rats treated with UTMD-mediated Galectin-7-siRNA exhibited improved cardiac function and hemodynamics-related indices, decreased myocardial fiber injury and apoptotic cells, as well as enhanced homing ability of BMSCs, improved myocardial microenvironment, and suppressed TGF-β1/Smads pathway activation. In conclusion, the present study demonstrated that UTMD-mediated Galectin-7-siRNA treatment could enhance the homing ability of BMSCs, thus alleviating AMI in rats.
Collapse
Affiliation(s)
- Xin Wei
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Yan Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Weilin Zhang
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| | - Jing Tan
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Hong Zheng
- Department of Ultrasound, People's Hospital of Deyang City, Deyang, Sichuan 618000, P.R. China
| |
Collapse
|
5
|
Fu JW, Lin YS, Gan SL, Li YR, Wang Y, Feng ST, Li H, Zhou GF. Multifunctionalized Microscale Ultrasound Contrast Agents for Precise Theranostics of Malignant Tumors. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:3145647. [PMID: 31360144 PMCID: PMC6642784 DOI: 10.1155/2019/3145647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/26/2019] [Accepted: 06/10/2019] [Indexed: 11/17/2022]
Abstract
In ultrasonography, ultrasound contrast agents (UCAs) that possess high acoustic impedance mismatch with the bulk medium are frequently employed to highlight the borders between tissues by enhanced ultrasound scattering in a clinic. Typically, the most common UCA, microbubble, is generally close in size to a red blood cell (<∼10 μm). These microscale UCAs cannot be directly entrapped into the target cells but generate several orders of magnitude stronger echo signals than the nanoscale ones. And their large containment and high ultrasound responsiveness also greatly facilitate to perform combined treatments, e.g., drug delivery and other imaging techniques. So multifunctionalized microscale UCAs appear on this scene and keep growing toward a promising direction for precise theranostics. In this review, we systematically summarize the new advances in the principles and preparations of multifunctionalized microscale UCAs and their medical applications for malignant tumors.
Collapse
Affiliation(s)
- Jia-Wei Fu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yi-Sheng Lin
- Department of Radiology, The First Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510405, China
| | - Sheng-Long Gan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yong-Rui Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| | - Guo-Fu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
6
|
Ding SSL, Subbiah SK, Khan MSA, Farhana A, Mok PL. Empowering Mesenchymal Stem Cells for Ocular Degenerative Disorders. Int J Mol Sci 2019; 20:E1784. [PMID: 30974904 PMCID: PMC6480671 DOI: 10.3390/ijms20071784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have been employed in numerous pre-clinical and clinical settings for various diseases. MSCs have been used in treating degenerative disorders pertaining to the eye, for example, age-related macular degeneration, glaucoma, retinitis pigmentosa, diabetic retinopathy, and optic neuritis. Despite the known therapeutic role and mechanisms of MSCs, low cell precision towards the targeted area and cell survivability at tissue needing repair often resulted in a disparity in therapeutic outcomes. In this review, we will discuss the current and feasible strategy options to enhance treatment outcomes with MSC therapy. We will review the application of various types of biomaterials and advances in nanotechnology, which have been employed on MSCs to augment cellular function and differentiation for improving treatment of visual functions. In addition, several modes of gene delivery into MSCs and the types of associated therapeutic genes that are important for modulation of ocular tissue function and repair will be highlighted.
Collapse
Affiliation(s)
- Shirley Suet Lee Ding
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohammed Safwan Ali Khan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas University, College Station, Texas 77843, USA.
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, P.O. Box 2014, Aljouf Province, Saudi Arabia.
| |
Collapse
|
7
|
Du J, Zhao X, Li B, Mou Y, Wang Y. DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids Surf B Biointerfaces 2017; 161:279-287. [PMID: 29096372 DOI: 10.1016/j.colsurfb.2017.10.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/30/2022]
Abstract
The microbubble is a kind of clinically applied ultrasound contrast agent in disease diagnosis that can also rupture under sonication to increase membrane permeability and promote gene entry into targeted cells. However, the development of ultrasound-mediated gene delivery might be restricted because genes and microbubbles were separated and would not reach the targeted cells simultaneously. Herein, a kind of crosslinked positive microbubbles (CPMBs) were prepared to load DNA as gene vectors to promote gene delivery efficiency. The BSA shell of the CPMBs was crosslinked with disulfide bonds, which obviously enhanced the stability of the CPMBs. Furthermore, the CPMBs revealed sonoporation effects comparable to those of clinically applied SonoVue microbubbles. As DNA and CPMBs were electrostatically linked as an entirety, they would reach cells simultaneously. Thus, with the aid of ultrasound, these DNA-loaded microbubbles promoted DNA entry into cytoplasm more effectively and obtained higher cellular uptake efficiency and better transfection efficiency than DNA-mixed microbubbles. Confocal microscopy results showed that rupturing of the CPMBs/DNA entire microbubbles under sonication could carry DNA directly into the cytoplasm or nucleus. All results indicated that the cytocompatible DNA-loaded microbubbles have promising prospects in ultrasound-mediated gene delivery.
Collapse
Affiliation(s)
- Jianwei Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Xiao Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Bangbang Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Yun Mou
- Echocardiography and Vascular Ultrasound Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China.
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
8
|
Cao S, Zhou Q, Chen JL, Jiang N, Wang YJ, Deng Q, Hu B, Guo RQ. Enhanced effect of nuclear localization signal peptide during ultrasound‑targeted microbubble destruction‑mediated gene transfection. Mol Med Rep 2017; 16:565-572. [PMID: 28586046 PMCID: PMC5482142 DOI: 10.3892/mmr.2017.6661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/03/2017] [Indexed: 11/06/2022] Open
Abstract
Ultrasound‑targeted microbubble destruction (UTMD) can promote the entry of plasmid DNA (pDNA) into the cell cytoplasm, by increasing the permeability of the cell membrane. But the transfection efficiency remains low due to inability of the pDNA to enter the nucleus. Various methods have been explored to improve the UTMD transfection efficiency, but with little success. In cells, the classic nuclear localization signal (cNLS) peptide is an amino acid sequence that signals proteins that are due for nuclear transport. The present study aimed to investigate whether binding of a cNLS peptide to the pDNA may improve the transfection efficiency of UTMD. Four experimental groups were analyzed: Control group (UTMD + pDNA), group with cNLS (UTMD + pDNA + cNLS), group with mutated NLS (mNLS; UTMD + pDNA + mNLS), and group with cNLS and the nuclear import blocker, wheat germ agglutinin (WGA; UTMD + pDNA + cNLS + WGA). The NLS was labeled by fluorescein isothiocyanate, whereas pDNA was labeled with Cy3. Different molar ratios were tested for the NLS and pDNA combination in order to achieve optimal binding of the two molecules. Human umbilical vein endothelial cells were then transfected using the optimum ultrasonic irradiation parameters and NLS/pDNA molar ratio. At 6 h post‑transfection, the rates of Cy3‑labeled pDNA inside the cells and their nuclei were detected by flow cytometry and laser confocal microscopy, and the cellular vs. nuclear uptake of pDNA was calculated. In order to further evaluate the effect of NLS on UTMD‑mediated gene transfection, the transfection efficiency and relative expression levels of mRNA and protein were detected at 48 h post‑transfection. The results demonstrated that the optimal molar ratio of NLS with pDNA was 104:1. The rates of pDNA successful entry into the cell and nucleus were significantly higher in the cNLS group compared with the control group. The transfection efficiency, and relative expression levels of mRNA and protein from the plasmid were significantly increased in the cNLS group compared with the control group. The mNLS group displayed no significant difference compared with the control group, while the WGA group exhibited significant inhibition in most indicators of transfection efficiency compared to the cNLS group. These results suggest that combining a cNLS peptide with pDNA during UTMD‑mediated transfection significantly improved transfection efficiency. Thus, a cNLS peptide may be an important mediator and a new strategy in enhancing the efficiency of UTMD‑mediated gene transfection.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jin-Ling Chen
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Nan Jiang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi-Jia Wang
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Deng
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo Hu
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Rui-Qiang Guo
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Ultrasound-Mediated Mesenchymal Stem Cells Transfection as a Targeted Cancer Therapy Platform. Sci Rep 2017; 7:42046. [PMID: 28169315 PMCID: PMC5294424 DOI: 10.1038/srep42046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) hold tremendous potential as a targeted cell-based delivery platform for inflammatory and cancer therapy. Genetic manipulation of MSCs, however, is challenging, and therefore, most studies using MSCs as therapeutic cell carriers have utilized viral vectors to transduce the cells. Here, we demonstrate, for the first time, an alternative approach for the efficient transfection of MSCs; therapeutic ultrasound (TUS). Using TUS with low intensities and moderate frequencies, MSCs were transfected with a pDNA encoding for PEX, a protein that inhibits tumor angiogenesis, and studied as a cell vehicle for in vivo tumor therapy. TUS application did not alter the MSCs' stemness or their homing capabilities, and the transfected MSCs transcribed biologically active PEX. Additionally, in a mouse model, 70% inhibition of prostate tumor growth was achieved following a single I.V. administration of MSCs that were TUS-transfected with pPEX. Further, the repeated I.V. administration of TUS-pPEX transfected-MSCs enhanced tumor inhibition up to 84%. Altogether, these results provide a proof of concept that TUS-transfected MSCs can be effectively used as a cell-based delivery approach for the prospective treatment of cancer.
Collapse
|
10
|
Hypoxic Preconditioning Combined with Microbubble-Mediated Ultrasound Effect on MSCs Promote SDF-1/CXCR4 Expression and its Migration Ability: An In Vitro Study. Cell Biochem Biophys 2017; 73:749-57. [PMID: 27259320 DOI: 10.1007/s12013-015-0698-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Our objective is to investigate the promoting effect of hypoxic preconditioning combined with microbubble (MB)-mediated ultrasound (US) on the SDF-1/CXCR4 expression and the migration ability of mesenchymal stem cells (MSCs). Based on the uniform design, the parameters of MB-mediated US, such as the total treatment time (T), acoustic intensity (Q), and the dosage of MBs, were optimized firstly. The results were assessed by regression analysis. Using the optimum irradiation parameters, the concentration of SDF-1 in the supernatant, the expression levels of membrane CXCR4, and the cell viability of hypoxic MSCs or normoxic MSCs were compared. The in vitro transwell migration assay was performed as well. The best combination of parameters for more SDF-1 secretion and less MSCs death was T = 30 s, A = 0.6 W/cm(2), and MB = 10(6)/ml. After 24 h of hypoxic preconditioning, the expression of SDF-1 and surface CXCR4 was increased in the hypoxic MSC group as compared to the normoxic MSC group (P < 0.05). On the basis of that, MB-mediated US could further upregulate the expression of SDF-1/CXCR4 with the optimum parameters (P < 0.05), while the cell viability was only decreased by about 9-10 % compared to the untreated groups. The number of successfully migrated cells was also the largest in the hypoxic preconditioning combined with MB-mediated US group than all the other groups. The results obtained indicate the combination of hypoxic preconditioning, and MB-mediated US can upregulate the SDF-1/CXCR4 expression and improve the migration ability in MSCs.
Collapse
|
11
|
Yadav PS, Khan MP, Prashar P, Duggal S, Rath SK, Chattopadhyay N, Bandyopadhyay A. Characterization of BMP signaling dependent osteogenesis using a BMP depletable avianized bone marrow stromal cell line (TVA-BMSC). Bone 2016; 91:39-52. [PMID: 27424936 DOI: 10.1016/j.bone.2016.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 06/22/2016] [Accepted: 07/14/2016] [Indexed: 01/08/2023]
Abstract
Adipogenesis, chondrogenesis and osteogenesis are BMP signaling dependent differentiation processes. However, the molecular networks operating downstream of BMP signaling to bring about these distinct fates are yet to be fully elucidated. We have developed a novel Bone Marrow Stromal Cell (BMSC) derived mouse cell line as a powerful in vitro platform to conduct such experiments. This cell line is a derivative of BMSCs isolated from a tamoxifen inducible Bmp2 and Bmp4 double conditional knock-out mouse strain. These BMSCs are immortalized and stably transfected with avian retroviral receptor TVA (TVA-BMSCs), enabling an easy method for stable transduction of multiple genes in these cells. In TVA-BMSCs multiple components of BMP signaling pathway can be manipulated simultaneously. Using this cell line we have demonstrated that for osteogenesis, BMP signaling is required only for the first three days. We have further demonstrated that Klf10, an osteogenic transcription factor which is transcribed in developing bones in a BMP signaling dependent manner, can largely compensate for the loss of BMP signaling during osteogenesis of BMSCs. TVA-BMSCs can undergo chondrogenesis and adipogenesis, and hence may be used for dissection of the molecular networks downstream of BMP signaling in these differentiation processes as well.
Collapse
Affiliation(s)
- Prem Swaroop Yadav
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Mohd Parvez Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Paritosh Prashar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Shivali Duggal
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Srikanta Kumar Rath
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Naibedya Chattopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Amitabha Bandyopadhyay
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
12
|
Wang G, Zhang Q, Zhuo Z, Wu S, Xu Y, Zou L, Gan L, Tan K, Xia H, Liu Z, Gao Y. Enhanced Homing of CXCR-4 Modified Bone Marrow-Derived Mesenchymal Stem Cells to Acute Kidney Injury Tissues by Micro-Bubble-Mediated Ultrasound Exposure. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:539-548. [PMID: 26610714 DOI: 10.1016/j.ultrasmedbio.2015.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/04/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
Although the curative effects of bone marrow stromal cells (BMSCs) for acute kidney injury (AKI) have been recognized, their in vivo reparative capability is limited by the low levels of targeted homing and retention of intravenous injected cells. Stromal cell-derived factor-1 (SDF-1) plays an important role in stem cell homing and retention through interaction with its specific functional receptor, CXCR4, which is presumably related to the poor homing in AKI therapy. However, most of the functional CXCR4 chemokine receptors are lost upon in vitro culturing. Ultrasound-targeted micro-bubble destruction (UTMD) has become one of the most promising strategies for the targeted delivery of drugs and genes. To improve BMSC homing to AKI kidneys, we isolated and cultured rat BMSCs to third passage and enhanced CXCR-4 transfection efficiency in vitro by applying UTMD and polyethylenimine. Transwell migration assay showed that the migration ability of CXCR4-modified BMSCs was nine-fold higher than controls. Then, mercuric chloride-induced AKI rats were injected with transfected BMSCs through their tail veins. We showed that enhanced homing and retention of BMSCs were observed in the CXCR-4 modified group compared with other groups at 1, 2 and 3 d post-treatment. Collectively, our data indicated that UTMD was an effective method to increase BMSCs' engraftment to AKI kidney tissues by increasing CXCR-4 expression.
Collapse
Affiliation(s)
- Gong Wang
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Qian Zhang
- Department of Nephropathy, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Zhongxiong Zhuo
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Shengzheng Wu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Linru Zou
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Ling Gan
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Kaibin Tan
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Xia
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Yunhua Gao
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing, China.
| |
Collapse
|
13
|
|
14
|
Nowakowski A, Walczak P, Janowski M, Lukomska B. Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine. Stem Cells Dev 2015; 24:2219-42. [PMID: 26140302 DOI: 10.1089/scd.2015.0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
Collapse
Affiliation(s)
- Adam Nowakowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| | - Piotr Walczak
- 2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,4 Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Miroslaw Janowski
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland .,2 Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland.,3 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Barbara Lukomska
- 1 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences , Warsaw, Poland
| |
Collapse
|
15
|
Zhang L, Sun Z, Ren P, Lee RJ, Xiang G, Lv Q, Han W, Wang J, Ge S, Xie M. Ultrasound-targeted microbubble destruction (UTMD) assisted delivery of shRNA against PHD2 into H9C2 cells. PLoS One 2015; 10:e0134629. [PMID: 26267649 PMCID: PMC4534091 DOI: 10.1371/journal.pone.0134629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/11/2015] [Indexed: 12/23/2022] Open
Abstract
Gene therapy has great potential for human diseases. Development of efficient delivery systems is critical to its clinical translation. Recent studies have shown that microbubbles in combination with ultrasound (US) can be used to facilitate gene delivery. An aim of this study is to investigate whether the combination of US-targeted microbubble destruction (UTMD) and polyethylenimine (PEI) (UTMD/PEI) can mediate even greater gene transfection efficiency than UTMD alone and to optimize ultrasonic irradiation parameters. Another aim of this study is to investigate the biological effects of PHD2-shRNA after its transfection into H9C2 cells. pEGFP-N1 or eukaryotic shPHD2-EGFP plasmid was mixed with albumin-coated microbubbles and PEI to form complexes for transfection. After these were added into H9C2 cells, the cells were exposed to US with various sets of parameters. The cells were then harvested and analyzed for gene expression. UTMD/PEI was shown to be highly efficient in gene transfection. An US intensity of 1.5 W/cm2, a microbubble concentration of 300μl/ml, an exposure time of 45s, and a plasmid concentration of 15μg/ml were found to be optimal for transfection. UTMD/PEI-mediated PHD2-shRNA transfection in H9C2 cells significantly down regulated the expression of PHD2 and increased expression of HIF-1α and downstream angiogenesis factors VEGF, TGF-β and bFGF. UTMD/PEI, combined with albumin-coated microbubbles, warrants further investigation for therapeutic gene delivery.
Collapse
Affiliation(s)
- Li Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Pingping Ren
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Robert J. Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, Ohio, 43210, United States of America
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Wei Han
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
| | - Shuping Ge
- The Heart Center, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (SG); (MXX)
| | - Mingxing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, PR China
- * E-mail: (SG); (MXX)
| |
Collapse
|
16
|
Li L, Wu S, Liu Z, Zhuo Z, Tan K, Xia H, Zhuo L, Deng X, Gao Y, Xu Y. Ultrasound-Targeted Microbubble Destruction Improves the Migration and Homing of Mesenchymal Stem Cells after Myocardial Infarction by Upregulating SDF-1/CXCR4: A Pilot Study. Stem Cells Int 2015; 2015:691310. [PMID: 26074977 PMCID: PMC4436519 DOI: 10.1155/2015/691310] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy shows considerable promise for the treatment of myocardial infarction (MI). However, the inefficient migration and homing of MSCs after systemic infusion have limited their therapeutic applications. Ultrasound-targeted microbubble destruction (UTMD) has proven to be promising to improve the homing of MSCs to the ischemic myocardium, but the concrete mechanism remains unclear. We hypothesize that UTMD promotes MSC homing by upregulating SDF-1/CXCR4, and this study was aimed at exploring this potential mechanism. We analyzed SDF-1/CXCR4 expression after UTMD treatment in vitro and in vivo and counted the number of homing MSCs in MI areas. The in vitro results demonstrated that UTMD not only led to elevated secretion of SDF-1 but also resulted in an increased proportion of MSCs that expressed surface CXCR4. The in vivo findings show an increase in the number of homing MSCs and higher expression of SDF-1/CXCR4 in the UTMD combined with MSCs infusion group compared to other groups. In conclusion, UTMD can increase SDF-1 expression in the ischemic myocardium and upregulate the expression of surface CXCR4 on MSCs, which provides a molecular mechanism for the homing of MSCs assisted by UTMD via SDF-1/CXCR4 axis.
Collapse
Affiliation(s)
- Lu Li
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Shengzheng Wu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Zhongxiong Zhuo
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Kaibin Tan
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Hongmei Xia
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Lisha Zhuo
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Xiaojun Deng
- Department of Blood Transfusion, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yunhua Gao
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037, China
| |
Collapse
|
17
|
Zeghimi A, Novell A, Thépault RA, Vourc'h P, Bouakaz A, Escoffre JM. Serum influence on in-vitro gene delivery using microbubble-assisted ultrasound. J Drug Target 2014; 22:748-60. [PMID: 24878379 DOI: 10.3109/1061186x.2014.921922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Plasmid DNA (pDNA) is attractive molecule for gene therapy. pDNA-targeted delivery by efficient and safe methods is required to enhance its intra-tissue bioavailability. Among non-viral methods, sonoporation has become a promising method for in-vitro and in-vivo pDNA delivery. The efficiency of non-viral delivery methods of pDNA is generally limited by the presence of serum. PURPOSE The aim of this study was to evaluate the influence of serum on in-vitro pDNA delivery using microbubble-assisted ultrasound. METHODS The effects of a range of serum concentrations (0-50%) on efficiency of in-vitro pDNA delivery by sonoporation were determined on human glioblastoma cells. Furthermore, the influence of the serum on cell viability, membrane permeabilization, microbubble destruction, and pDNA topology were also assessed. RESULTS In-vitro results showed that a low serum concentration (i.e. ≤1%) induced a significant increase in transfection level through an increase in cell viability. However, a high serum concentration (i.e. ≥5%) resulted in a significant decrease in cell transfection, which was not associated with a decrease in membrane permeabilization or loss in cell viability. This decrease in transfection level was in fact positively correlated to changes in pDNA topology. CONCLUSION Serum influences the efficiency of in-vitro pDNA delivery by sonoporation through change in pDNA topology.
Collapse
Affiliation(s)
- Aya Zeghimi
- UMR Inserm U930, Université François-Rabelais de Tours , Tours , France
| | | | | | | | | | | |
Collapse
|