1
|
Cao P, Gu J, Liu M, Wang Y, Chen M, Jiang Y, Wang X, Zhu S, Gao X, Li S. BRMS1L confers anticancer activity in non-small cell lung cancer by transcriptionally inducing a redox imbalance in the GPX2-ROS pathway. Transl Oncol 2024; 41:101870. [PMID: 38262108 PMCID: PMC10832508 DOI: 10.1016/j.tranon.2023.101870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Low expression levels of breast cancer metastasis suppressor 1 like (BRMS1L) have been associated with the growth of cancer cells. However, the mechanisms underlying the role of BRMS1L as an antitumour transcription factor in the progression of NSCLC have not been explored. Herein, we reveal that BRMS1L plays a key role as a tumour suppressor in inhibiting NSCLC proliferation and metastasis. Mechanistically, BRMS1L overexpression results in the downregulation of glutathione peroxidase 2 (GPX2) expression and consequently causes abnormal glutathione metabolism and increased levels of reactive oxygen species (ROS) in cells, inducing oxidative stress injury and apoptosis. Furthermore, overexpression of GPX2 enhances the growth advantage and oxidative stress repair conferred by knockdown of BRMS1L. Importantly, we show that low expression of BRMS1L in NSCLC cells causes relatively high levels of antioxidant accumulation to maintain cell redox balance and renders cancer cells more sensitive to treatment with piperlongumine as an ROS inducer both in vitro and in vivo. These findings offer new insights into the role of BRMS1L as a transcriptional repressor in NSCLC and suggest that the BRMS1L expression level may be a potential biomarker for predicting the therapeutic response to small molecule ROS inducers, providing new ideas for targeted therapy.
Collapse
Affiliation(s)
- Penglong Cao
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Juebin Gu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Mulin Liu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yingxin Wang
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Mingying Chen
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Yizhu Jiang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xiaoyan Wang
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Siqi Zhu
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China
| | - Xue Gao
- Department of Pathology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Shijun Li
- Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Road, Dalian, Liaoning 116011, China.
| |
Collapse
|
2
|
Gelman IH. Metastasis suppressor genes in clinical practice: are they druggable? Cancer Metastasis Rev 2023; 42:1169-1188. [PMID: 37749308 PMCID: PMC11629483 DOI: 10.1007/s10555-023-10135-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023]
Abstract
Since the identification of NM23 (now called NME1) as the first metastasis suppressor gene (MSG), a small number of other gene products and non-coding RNAs have been identified that suppress specific parameters of the metastatic cascade, yet which have little or no ability to regulate primary tumor initiation or maintenance. MSG can regulate various pathways or cell biological functions such as those controlling mitogen-activated protein kinase pathway mediators, cell-cell and cell-extracellular matrix protein adhesion, cytoskeletal architecture, G-protein-coupled receptors, apoptosis, and transcriptional complexes. One defining facet of this gene class is that their expression is typically downregulated, not mutated, in metastasis, such that any effective therapeutic intervention would involve their re-expression. This review will address the therapeutic targeting of MSG, once thought to be a daunting task only facilitated by ectopically re-expressing MSG in metastatic cells in vivo. Examples will be cited of attempts to identify actionable oncogenic pathways that might suppress the formation or progression of metastases through the re-expression of specific metastasis suppressors.
Collapse
Affiliation(s)
- Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| |
Collapse
|
3
|
Feldheim J, Kessler AF, Feldheim JJ, Schmitt D, Oster C, Lazaridis L, Glas M, Ernestus RI, Monoranu CM, Löhr M, Hagemann C. BRMS1 in Gliomas-An Expression Analysis. Cancers (Basel) 2023; 15:cancers15112907. [PMID: 37296870 DOI: 10.3390/cancers15112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
The metastatic suppressor BRMS1 interacts with critical steps of the metastatic cascade in many cancer entities. As gliomas rarely metastasize, BRMS1 has mainly been neglected in glioma research. However, its interaction partners, such as NFκB, VEGF, or MMPs, are old acquaintances in neurooncology. The steps regulated by BRMS1, such as invasion, migration, and apoptosis, are commonly dysregulated in gliomas. Therefore, BRMS1 shows potential as a regulator of glioma behavior. By bioinformatic analysis, in addition to our cohort of 118 specimens, we determined BRMS1 mRNA and protein expression as well as its correlation with the clinical course in astrocytomas IDH mutant, CNS WHO grade 2/3, and glioblastoma IDH wild-type, CNS WHO grade 4. Interestingly, we found BRMS1 protein expression to be significantly decreased in the aforementioned gliomas, while BRMS1 mRNA appeared to be overexpressed throughout. This dysregulation was independent of patients' characteristics or survival. The protein and mRNA expression differences cannot be finally explained at this stage. However, they suggest a post-transcriptional dysregulation that has been previously described in other cancer entities. Our analyses present the first data on BRMS1 expression in gliomas that can provide a starting point for further investigations.
Collapse
Affiliation(s)
- Jonas Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Almuth F Kessler
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Julia J Feldheim
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Neurosurgery, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Dominik Schmitt
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
- Department of Nuclear Medicine, University of Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Christoph Oster
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Lazaros Lazaridis
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Martin Glas
- Division of Clinical Neurooncology, Department of Neurology, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45131 Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45131 Essen, Germany
| | - Ralf-Ingo Ernestus
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Camelia M Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Mario Löhr
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| | - Carsten Hagemann
- Section Experimental Neurosurgery, Department of Neurosurgery, University of Würzburg, Josef-Schneider-Str. 11, 97080 Würzburg, Germany
| |
Collapse
|
4
|
Du Y, Yang F, Lv D, Zhang Q, Yuan X. MiR-147 inhibits cyclic mechanical stretch-induced apoptosis in L6 myoblasts via ameliorating endoplasmic reticulum stress by targeting BRMS1. Cell Stress Chaperones 2019; 24:1151-1161. [PMID: 31628639 PMCID: PMC6882977 DOI: 10.1007/s12192-019-01037-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
Functional orthopedic treatment is effective for the correction of malformation. Studies demonstrated myoblasts undergo proliferation and apoptosis on certain stretch conditions. MicroRNAs (miRNAs) function in RNA silencing and post-transcriptional regulation of gene expression, and participate in various biological processes, including proliferation and apoptosis. One hypothesis suggested that miRNA was involved into the procedure via suppressing its target genes then triggered endoplasmic reticulum stress-induced apoptosis. Therefore, miRNAs play important roles in the regulation of the proliferation and apoptosis of myoblasts. In our study, the miR-147 has been explored. A cyclic mechanical stretch model was established to observe the features of rat L6 myoblasts. The detection of mRNA and protein levels was performed by qRT-PCR and western blot. L6 cell proliferation/apoptosis was checked by CCK-8 assay, DNA fragmentation assay, and caspase-3 activity assay. MiRNA transfections were performed as per the manufacturer's suggestions: (1) cyclic mechanical stretch induced apoptosis of L6 myoblasts and inhibition of miR-147; (2) miR-147 attenuated cyclic mechanical stretch-induced apoptosis of L6 myoblasts; (3) miR-147 attenuated cyclic mechanical stretch-induced L6 myoblast endoplasmic reticulum stress; (4) BRMS1 was a direct target of miR-147 in L6 myoblasts; (5) miR-147/BRMS1 axis participated in the regulation of cyclic mechanical stress on L6 myoblasts. MiR-147 attenuates endoplasmic reticulum stress by targeting BRMS1 to inhibit cyclic mechanical stretch-induced apoptosis of L6 myoblasts.
Collapse
Affiliation(s)
- Yanxiao Du
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Di Lv
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Qiang Zhang
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Yuan
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
5
|
Wu Y, Wang H, Zhi J, Hu L, Hou X, Ruan X, Zheng X, Liu H, Gao M. BRMS1 downregulation is a poor prognostic biomarker in anaplastic thyroid carcinoma patients. Onco Targets Ther 2019; 12:6937-6945. [PMID: 31695409 PMCID: PMC6718127 DOI: 10.2147/ott.s219506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/10/2019] [Indexed: 12/29/2022] Open
Abstract
Background Anaplastic thyroid carcinoma (ATC) is the most aggressive cancer in humans with no optimal treatment strategy available. The molecular mechanisms of ATC remain unclear. The aim of this study was to investigate the prognostic value and role of BRMS1 in the progression of ATC. Methods BRMS1 expression was examined in thyroid cell lines using Western blot analysis. Immunohistochemistry was also performed to assess BRMS1 expression in ATC and papillary thyroid cancer (PTC) tissue. Cell proliferation assays, colony formation analysis, cell migration assays, cell apoptosis analysis, and animal studies were used to examine the effects of BRMS1 expression on ATC progression. Results The expression of BRMS1 was significantly lower in ATC than in PTC and was associated with poor prognosis in ATC patients. Downregulation of BRMS1 expression promoted the proliferation and migration of 8505C cells and decreased their expression of CX43. Over-expressed BRMS1 promoted the apoptosis and impaired the proliferation and migration of CAL-62 cells via upregulated CX43. In vivo, BRMS1 significantly promoted apoptosis and impaired cell proliferation. Conclusion Taken together, these findings demonstrate that decreased expression of BRMS1 is a poor prognostic biomarker in ATC patients. BRMS1 significantly promoted apoptosis and impaired cell proliferation via CX43 and P53. Loss of BRMS1 expression is therefore, one of the key pathomechanisms in ATC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, People's Republic of China
| | - Huijuan Wang
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Jingtai Zhi
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Linfei Hu
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Xiukun Hou
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Xianhui Ruan
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| | - Hui Liu
- Department of Head and Neck Surgery, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian 350014, People's Republic of China
| | - Ming Gao
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China.,Department of Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin 300600, People's Republic of China
| |
Collapse
|
6
|
Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, Zhang C, Qi Y, Zhao S. Long noncoding RNA PART1 promotes progression of non-small cell lung cancer cells via JAK-STAT signaling pathway. Cancer Med 2019; 8:6064-6081. [PMID: 31436388 PMCID: PMC6792487 DOI: 10.1002/cam4.2494] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022] Open
Abstract
Non‐small cell lung cancer (NSCLC), the major type of lung cancer, becomes the greatest threat to the life of people. Growing evidence shows prostate androgen‐regulated transcript 1 (PART1) is considered as effective markers for prostate cancer, and has been shown to be associated with poor prognosis of NSCLC. However, the tumorigenic mechanism of PART1 in NSCLC remains to be investigated. In this study, we found that the expression of PART1 was robustly induced in NSCLC tissues and cell lines. Functional studies established that overexpression of PART1 could promote NSCLC cell proliferation, migration, and invasion, while interference of PART1 inhibited NSCLC progression. Our results also identified miR‐635 as a novel target of PART1, whose expression was inhibited by PART1 in NSCLC cell lines. Moreover, gain‐ and loss‐of‐function studies revealed that PART1 could sponge miR‐635 and increase the expression of Janus kinase (JAK) and signal transducer and activator of transcription proteins (STATs). Finally, we deciphered the molecular mechanism by which PART1 contributed to promotion of NSCLC cell progression via phosphorylation and activation of JAK‐STAT signaling pathway. The animal experiment further confirmed that interference of NSCLC could suppress in vivo tumorigenic ability of NSCLC with favorable pharmacological activity via inactivation of JAK‐STAT signaling pathway. In conclusion, our findings clarified the biologic significance of PART1/miR‐635/JAK‐STAT axis in NSCLC progression and provided novel evidence that PART1 may be a new potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Dengyan Zhu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- Department of Thoracic Surgery, Henan Medical Association, Zhengzhou, China
| | - Kai Wu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Donglei Liu
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunyang Zhang
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| | - Song Zhao
- Department of Thoracic Surgery, The First Affiliate Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Cao Y, Tan S, Tu Y, Zhang G, Liu Y, Li D, Xu S, Le Z, Xiong J, Zou W, Gong P, Li Z, Jie Z. MicroRNA-125a-5p inhibits invasion and metastasis of gastric cancer cells by targeting BRMS1 expression. Oncol Lett 2018; 15:5119-5130. [PMID: 29552146 DOI: 10.3892/ol.2018.7983] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 09/07/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating studies have demonstrated microRNAs (miRNAs/miRs) have an important role in multiple processes of human malignant tumor development and progression. Decreased expression of miR-125a-5p has been observed in several types of cancer, including gastric cancer (GC). However, the mechanism and exact function of miR-125a-5p in GC have not been largely elucidated. In the present study, reverse transcription-quantitative polymerase chain reaction indicated that the expression of miR-125a-5p was downregulated in GC tissues and cell lines compared with matched normal tissues (P<0.01) and normal gastric mucosa cell lines (P<0.01), respectively. Moreover, clinical pathological characteristics and Kaplan-Meier analysis indicated that a low expression of miR-125a-5p was not only associated with lymph metastasis, peritoneal dissemination and advanced tumor-node metastasis stage but also affected the prognosis of GC patients. Compared with miR-control-transfected GC cells, markedly decreased migration and invasion was observed in GC cells that overexpress miR-125a-5p. By contrast, increased metastasis and invasion were observed in miR-125a-5p-knocked down cells compared with the control. Furthermore, luciferase reporter assays indicated that breast cancer metastasis suppressor 1 (BRMS1) was a direct target of miR-125a-5p. Notably, a positive correlation between the levels of BRMS1 and miR-125a-5p in GC tissues was observed, and BRMS1 expression was indicated to be regulated by miR-125a-5p in GC cells. In conclusion, miR-125a-5p may act as a tumor suppressor by targeting the metastasis-inhibitory gene, BRMS1. The data suggesting that BRMS1 is a potential target gene of miR-125a-5p, may provide novel insight into miRNA regulation of human gene expression, and a useful target for gene therapy of GC.
Collapse
Affiliation(s)
- Yi Cao
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shengxing Tan
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Tu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Guoyang Zhang
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Liu
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Daojiang Li
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Shan Xu
- Department of Pathology, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhibiao Le
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbo Xiong
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenyu Zou
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Peitao Gong
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhengrong Li
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhigang Jie
- Department of General Surgery, First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
8
|
Zhang SJ, Yao J, Shen BZ, Li GB, Kong SS, Bi DD, Pan SH, Cheng BL. Role of piwi-interacting RNA-651 in the carcinogenesis of non-small cell lung cancer. Oncol Lett 2017; 15:940-946. [PMID: 29399156 PMCID: PMC5772788 DOI: 10.3892/ol.2017.7406] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/04/2017] [Indexed: 12/28/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs/piRs) are small non-coding RNAs that can serve important roles in genome stability by silencing transposable genetic elements. piR651, one of these novel piRNAs, regulates a number of biological functions, as well as carcinogenesis. Previous studies have reported that piR651 is overexpressed in human gastric cancer tissues and in several cancer cell lines, including non-small cell lung cancer (NSCLC) cell lines. However, the role of piRNAs in carcinogenesis has not been clearly defined. In the present study, a small interfering RNA inhibitor of piR651 was transfected into the NSCLC A549 and HCC827 cell lines to evaluate the effect of piR651 on cell growth. The association between piR651 expression and apoptosis was evaluated by flow cytometry and western blot analysis. Wound-healing and Transwell migration and invasion assays were used to determine the effect of piR651 on the migration and invasion of NSCLC cell lines. The results revealed that inhibition of piR651 inhibited cell proliferation and significantly increased the apoptotic rate compared with the negative control (NC), as well as altering the expression of apoptosis-associated proteins. There were fewer migrating and invading cells in the piR651-inhibited group than in the NC group in the Transwell assays. Furthermore, in the wound-healing assay, the wound remained wider in the piR651 inhibitor group, suggesting decreased cell migration compared with that in the NC group. The results of the present study demonstrate that piR651 potentially regulates NSCLC tumorigenic behavior by inhibiting cell proliferation, migration and invasion and by inducing apoptosis. Therefore, piR651 is a potential cancer diagnosis marker.
Collapse
Affiliation(s)
- Shu-Jun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jie Yao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Bao-Zhong Shen
- Department of Medical Imaging, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Guang-Bo Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shan-Shan Kong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Dan-Dan Bi
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Shang-Ha Pan
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Bing-Lin Cheng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
9
|
BRMS1 gene expression may be associated with clinico-pathological features of breast cancer. Biosci Rep 2017; 37:BSR20170672. [PMID: 28533425 PMCID: PMC5563535 DOI: 10.1042/bsr20170672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 01/17/2023] Open
Abstract
Our aim is to investigate whether or not the breast cancer metastasis suppressor 1 (BRMS1) gene expression is directly linked to clinico-pathological features of breast cancer. Following a stringent inclusion and exclusion criteria, case–control studies with associations between BRMS1 and breast cancer were selected from articles obtained by way of searches conducted through an electronic database. All statistical analyses were performed with Stata 12.0 (Stata Corp, College Station, TX, U.S.A.). Ultimately, 1,263 patients with breast cancer were found in a meta-analysis retrieved from a total that included 12 studies. Results of our meta-analysis suggested that BRMS1 protein in breast cancer tissues was significantly lower in comparison with normal breast tissues (odds ratio, OR = 0.08, 95% confidence interval (CI) = 0.04–0.15). The BRMS1 protein in metastatic breast cancer tissue was decreased than from that was found in non-metastatic breast cancer tissue (OR = 0.20, 95%CI = 0.13–0.29), and BRMS1 protein in tumor-node-metastasis (TNM) stages 1 and 2 was found to be higher than TNM stages 3 and 4 (OR = 4.62, 95%CI = 2.77–7.70). BRMS1 protein in all three major types of breast cancer was lower than that of control tissues respectively. We also found strong correlations between BRMS1 mRNA levels and TNM stage and tumor size. The results our meta-analysis showed that reduction in BRMS1 expression level was linked directly to clinico-pathological features of breast cancer significantly; therefore, suggesting the loss of expression or reduced levels of BRMS1 is potentially a strong indicator of the metastatic capacity of breast cancer with poor prognosis.
Collapse
|
10
|
Ma H, Gollahon LS. ERα Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMS1. Int J Mol Sci 2016; 17:ijms17020158. [PMID: 26821020 PMCID: PMC4783892 DOI: 10.3390/ijms17020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/13/2016] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Recently, estrogen has been reported as putatively inhibiting cancer cell invasion and motility. This information is in direct contrast to the paradigm of estrogen as a tumor promoter. However, data suggests that the effects of estrogen are modulated by the receptor isoform with which it interacts. In order to gain a clearer understanding of the role of estrogen in potentially suppressing breast cancer metastasis, we investigated the regulation of estrogen and its receptor on the downstream target gene, breast cancer metastasis suppressor 1 (BRMS1) in MCF-7, SKBR3, TTU-1 and MDA-MB-231 breast cancer cells. Our results showed that estrogen increased the transcription and expression of BRMS1 in the ERα positive breast cancer cell line, MCF-7. Additionally, the ERα specific agonist PPT also induced the transcription and expression of BRMS1. However, the two remaining estrogen receptor (ER) subtype agonists had no effect on BRMS1 expression. In order to further examine the influence of ERα on BRMS1 expression, ERα expression was knocked down using siRNA (siERα). Western blot analysis showed that siERα reduced estrogen-induced and PPT-induced BRMS1 expression. In summary, this study demonstrates estrogen, via its α receptor, positively regulates the expression of BRMS1, providing new insight into a potential inhibitory effect of estrogen on metastasis suppression.
Collapse
Affiliation(s)
- Hongtao Ma
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| | - Lauren S Gollahon
- Department of Biological Sciences, Texas Tech University, 2901 Main St. Suite 108, Lubbock, TX 79409, USA.
| |
Collapse
|
11
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
12
|
Effect of BRMS1 expression on proliferation, migration and adhesion of mouse forestomach carcinoma. ASIAN PAC J TROP MED 2015; 8:724-30. [DOI: 10.1016/j.apjtm.2015.07.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/20/2015] [Accepted: 07/20/2015] [Indexed: 11/22/2022] Open
|