1
|
Abstract
Persistent hepatitis B virus (HBV) infection of hepatocytes is associated with a covalently closed circular DNA (cccDNA) episome. Although serologic hepatitis B surface antigen tests are negative, the presence of cccDNA is obviously increased in HBeAg-positive patients compared with that in HBeAg-negative patients, inactive carriers and patients. Moreover, trace cccDNA levels can also be found in the liver cells of patients with resolved hepatitis B infections. Therefore, clearance of cccDNA in hepatocytes could be an effective cure for HBV. In this review, we summarize the strategies that have been employed to eliminate cccDNA in recent years and discuss the future development of treatments for chronic hepatitis B.
Collapse
|
2
|
Crouchet E, Saad R, Affolter-Zbaraszczuk C, Ogier J, Baumert TF, Schuster C, Meyer F. Composite vector formulation for multiple siRNA delivery as a host targeting antiviral in a cell culture model of hepatitis C virus (HCV) infection. J Mater Chem B 2017; 5:858-865. [PMID: 32263854 PMCID: PMC7613424 DOI: 10.1039/c6tb01718e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease and cancer worldwide. RNA interference (RNAi)-based gene therapies have emerged recently as a promising tool to treat chronic viral infections. Indeed, small interfering RNAs (siRNAs) provide an opportunity to target host factors required for the viral life cycle. In this study, we evaluated a novel nanovector-based approach for siRNA delivery in a model of chronically infected hepatic cells. We designed original composite nanoparticles by coating the calcium phosphate core with siRNAs targeting HCV host-factors and pyridylthiourea-grafted polyethyleneimine (πPEI). Using combinations of different siRNAs, we observed an efficient and prolonged decrease of HCV replication. Moreover, we showed that the layer-by-layer technique of coating applied to our nanoparticles triggers a sequential release of siRNAs acting on different steps of the HCV life cycle. Together, our results demonstrate the efficacy of these nanoparticles for siRNA delivery and open new perspectives for antiviral therapies.
Collapse
Affiliation(s)
- E. Crouchet
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - R. Saad
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | | | - J. Ogier
- Université de Strasbourg
- 67000 Strasbourg
- France
- Inserm
- U1121
| | - T. F. Baumert
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - C. Schuster
- Inserm
- U1110
- Institut de Recherche sur les Maladies Virales et Hépatiques
- 67000 Strasbourg
- France
| | - F. Meyer
- Université de Strasbourg
- 67000 Strasbourg
- France
- Inserm
- U1121
| |
Collapse
|
3
|
Chin WX, Ang SK, Chu JJH. Recent advances in therapeutic recruitment of mammalian RNAi and bacterial CRISPR-Cas DNA interference pathways as emerging antiviral strategies. Drug Discov Today 2017; 22:17-30. [DOI: 10.1016/j.drudis.2016.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 01/01/2023]
|
4
|
Meng ZJ, Yang YD. Potential strategies for "cure" of hepatitis B. Shijie Huaren Xiaohua Zazhi 2016; 24:4438-4449. [DOI: 10.11569/wcjd.v24.i33.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B is a worldwide health problem and the main cause of liver cirrhosis, liver failure, and liver cancer. The steady state of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in HBV infected hepatocytes and virus specific immune tolerance contribute to the chronic persistent infection and hard-to-cure of hepatitis B. The presently available therapeutics for hepatitis B can control viral replication, but rarely eliminate HBV surface antigen (HBsAg) or HBV cccDNA. The "cure" of hepatitis B, which is characterized by the HBsAg loss or HBsAg seroconversion, and cccDNA clearance, has been the goal of researchers for years. In recent years, with the robust progress in understanding the HBV pathogenesis and the rapid development of gene editing technology, the "cure" of hepatitis B becomes prospective. This paper aims to summarize the potential strategies for the "cure" of hepatitis B.
Collapse
|
5
|
Jia H, Liu C, Yang Y, Zhu H, Chen F, Liu J, Zhou L. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro. Exp Ther Med 2015; 10:1697-1703. [PMID: 26640539 PMCID: PMC4665119 DOI: 10.3892/etm.2015.2757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 07/10/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro.
Collapse
Affiliation(s)
- Hongyu Jia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Changhong Liu
- Department of Gastroenterology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, P.R. China
| | - Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Feng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Jihong Liu
- Department of Medical Oncology, The First People's Hospital of Hangzhou, Hangzhou, Zhejiang 310009, P.R. China
| | - Linfu Zhou
- Department of Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310038, P.R. China
| |
Collapse
|
6
|
Qian F, Li M, Zhu CW. Impact of antiviral agents on levels of hepatitis B virus covalently closed circular DNA. Shijie Huaren Xiaohua Zazhi 2015; 23:3495-3504. [DOI: 10.11569/wcjd.v23.i22.3495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis caused by hepatitis B virus (HBV) infection remains an incurable disease at present, which is mainly because the approved antiviral agents, such as interferon-alpha and nucleos(t)ide analogues, cannot effectively eradicate intrahepatic hepatitis B virus covalently closed circular DNA (cccDNA). And thus a suboptimal efficacy of antiviral agents and relapse after therapy occur very commonly. Therefore, novel drugs and treatment strategies remain to be developed on the basis of further theoretical and clinical research of HBV infection to achieve the ultimate goal of eradication of HBV cccDNA in the future. In this paper, we discuss multiple agents and therapeutic regimens influencing cccDNA levels, in order to help clinicians comprehensively understand the present situation in the research of the clearance of HBV cccDNA.
Collapse
|
7
|
Phyo WW, Soh AYS, Lim SG, Lee GH. Search for a cure for chronic hepatitis B infection: How close are we? World J Hepatol 2015; 7:1272-1281. [PMID: 26019743 PMCID: PMC4438502 DOI: 10.4254/wjh.v7.i9.1272] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/19/2014] [Accepted: 02/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B (CHB) remains a significant unmet medical need, with 240 million chronically infected persons worldwide. It can be controlled effectively with either nucleoside/nucleotide-based or interferon-based therapies. However, most patients receiving these therapies will relapse after treatment withdrawal. During recent years, the advances in molecular biology and immunology have enabled a better understanding of the viral-host interaction and inspired new treatment approaches to achieve either elimination of the virus from the liver or durable immune control of the infection. This review aims to provide a brief overview on the potential new therapies that may overcome the challenge of persistent CHB infection in the near future.
Collapse
|
8
|
Pozzuto T, Röger C, Kurreck J, Fechner H. Enhanced suppression of adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble adenovirus receptor trap sCAR-Fc and cidofovir. Antiviral Res 2015; 120:72-8. [PMID: 26026665 DOI: 10.1016/j.antiviral.2015.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 01/04/2023]
Abstract
Adenoviruses (Ad) generally induce mild self-limiting respiratory or intestinal infections but can also cause serious disease with fatal outcomes in immunosuppressed patients. Antiviral drug therapy is an important treatment for adenoviral infections but its efficiency is limited. Recently, we have shown that gene silencing by RNA interference (RNAi) is a promising new approach to inhibit adenoviral infection. In the present in vitro study, we examined whether the efficiency of an RNAi-based anti-adenoviral therapy can be further increased by combination with a virus receptor trap sCAR-Fc and with the antiviral drug cidofovir. Initially, three siRNAs, siE1A_4, siIVa2_2 and Pol-si2, targeting the adenoviral E1A, IVa2 and DNA polymerase mRNAs, respectively, were used for gene silencing. Replication of the Ad was inhibited in a dose dependent manner by each siRNA, but the efficiency of inhibition differed (Pol-si2>siIVa2_2>siE1A_4). Double or triple combinations of the siRNAs compared with single siRNAs did not result in a measurably higher suppression of Ad replication. Combination of the siRNAs (alone or mixes of two or three siRNAs) with sCAR-Fc markedly increased the suppression of adenoviral replication compared to the same siRNA treatment without sCAR-Fc. Moreover, the triple combination of a mix of all three siRNAs, sCAR-Fc and cidofovir was about 23-fold more efficient than the combination of siRNAs mix/sCAR-Fc and about 95-fold more efficient than the siRNA mix alone. These data demonstrate that co-treatment of cells with sCAR-Fc and cidofovir is suitable to increase the efficiency of anti-adenoviral siRNAs.
Collapse
Affiliation(s)
- Tanja Pozzuto
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Carsten Röger
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| |
Collapse
|