1
|
Liu S, Du N, Ge K, Hu J, Zhang W. NMN Supplementation Inhibits Endothelial Cell ROS-Mediated Src/Pi3k/Akt Signaling Pathway to Protect High-Altitude Blood-Retinal Barrier. Invest Ophthalmol Vis Sci 2025; 66:51. [PMID: 40249604 PMCID: PMC12013676 DOI: 10.1167/iovs.66.4.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 03/19/2025] [Indexed: 04/19/2025] Open
Abstract
Purpose High-altitude retinopathy (HAR) is primarily caused by hypobaric hypoxia, leading to hemodynamic changes in the retina and disruption of the blood-retinal barrier (BRB), which results in vasogenic edema. Currently, treatment strategies for this condition are limited. In this study, we investigated the protective effect of nicotinamide mononucleotide (NMN) against high-altitude hypoxia-induced BRB disruption and its potential molecular mechanisms. Methods We established a mouse model of high-altitude BRB injury using a simulated high-altitude environment chamber. Vascular leakage was observed through the Evans Blue dye leakage assay, and retinal Nicotinamide adenine dinucleotide (NAD+) levels were measured using the WST-8 assay. Human umbilical vein endothelial cells (HUVECs) were cultured in a hypoxic chamber, and the permeability of a confluent monolayer to FITC-dextran was monitored. With or without NMN intervention, VE-cadherin expression or phosphorylation at cell junctions was analyzed by Western blot and/or immunofluorescence. Apoptosis levels were assessed via Western blot, TUNEL staining, or flow cytometry, whereas reactive oxygen species (ROS) levels were observed using DCFH-DA, MitoSOX, or DHE probes. DNA damage levels were measured using 8-Oxoguanine immunofluorescence staining, and phosphorylation levels of the Src/Pi3k/Akt signaling pathway were analyzed via Western blot. Results High-altitude hypoxia led to increased retinal cell apoptosis and significant phosphorylation of VE-cadherin in endothelial cells, which resulted in a marked increase in BRB permeability. Both in vitro and in vivo experiments showed that NMN intervention reduced endothelial cell apoptosis and permeability. Additionally, NMN protected the endothelial barrier by regulating ROS levels in endothelial cells, inhibiting Src phosphorylation, and downregulating the downstream Pi3k/Akt signaling pathway. Conclusions These findings establish the role of NMN and the ROS-mediated Src/Pi3k/Akt signaling pathway in protecting the endothelial barrier, and identify a potential therapeutic strategy for protecting against hypoxia-related BRB leakage.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ning Du
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Keke Ge
- Department of Ophthalmology, Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jiayue Hu
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenfang Zhang
- Department of Ophthalmology, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
2
|
Kou D, Chen Q, Wang Y, Xu G, Lei M, Tang X, Ni H, Zhang F. The application of extracorporeal shock wave therapy on stem cells therapy to treat various diseases. Stem Cell Res Ther 2024; 15:271. [PMID: 39183302 PMCID: PMC11346138 DOI: 10.1186/s13287-024-03888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
In the last ten years, stem cell (SC) therapy has been extensively used to treat a range of conditions such as degenerative illnesses, ischemia-related organ dysfunction, diabetes, and neurological disorders. However, the clinical application of these therapies is limited due to the poor survival and differentiation potential of stem cells (SCs). Extracorporeal shock wave therapy (ESWT), as a non-invasive therapy, has shown great application potential in enhancing the proliferation, differentiation, migration, and recruitment of stem cells, offering new possibilities for utilizing ESWT in conjunction with stem cells for the treatment of different systemic conditions. The review provides a detailed overview of the advances in using ESWT with SCs to treat musculoskeletal, cardiovascular, genitourinary, and nervous system conditions, suggesting that ESWT is a promising strategy for enhancing the efficacy of SC therapy for various diseases.
Collapse
Affiliation(s)
- Dongyan Kou
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Qingyu Chen
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Yujing Wang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China
| | - Xiaobin Tang
- Department of Rehabilitation Medicine, CNPC Central Hospital, Langfang, 065000, PR China
| | - Hongbin Ni
- Department of Neurosurgery, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, Hebei, 050051, PR China.
| |
Collapse
|
3
|
Shi Y, Zhang Z, Wang B, Wang Y, Kong X, Sun Y, Li A, Cui Y, Zhang Y, Li J, Huo Y, Huang H. Effect of plateletcrit and methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on folic acid efficacy in stroke prevention. Signal Transduct Target Ther 2024; 9:110. [PMID: 38724491 PMCID: PMC11082186 DOI: 10.1038/s41392-024-01817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Previous studies have shown that low platelet count combined with high plasma total homocysteine (tHcy) increased stroke risk and can be lowered by 73% with folic acid. However, the combined role of other platelet activation parameters and the methylenetetrahydrofolate reductase (MTHFR) C677T genotypes on stroke risk and folic acid treatment benefit remain to be examined. This study aimed to investigate if platelet activation parameters and MTHFR genotypes jointly impact folic acid treatment efficacy in first stroke prevention. Data were derived from the China Stroke Primary Prevention Trial. This study includes a total of 11,185 adult hypertensive patients with relevant platelet activation parameters and MTHFR genotype data. When simultaneously considering both platelet activation parameters (plateletcrit, platelet count, mean platelet volume, platelet distribution width) and MTHFR genotypes, patients with both low plateletcrit (Q1) and the TT genotype had the highest stroke incidence rate (5.6%) in the enalapril group. This subgroup significantly benefited from folic acid treatment, with a 66% reduction in first stroke (HR: 0.34; 95% CI: 0.14-0.82; p = 0.016). Consistently, the subgroup with low plateletcrit (Q1) and the CC/CT genotype also benefited from folic acid treatment (HR: 0.40; 95% CI: 0.23-0.70; p = 0.001). In Chinese hypertensive adults, low plateletcrit can identify those who may greatly benefit from folic acid treatment, in particular, those with the TT genotype, a subpopulation known to have the highest stroke risk.
Collapse
Grants
- This work was supported by the National Nature Science Foundation of China (82061160372, 82270771), the National Key Research and Development Program (2020YFC2004405), the Shenzhen Key Laboratory of Precision Prevention and Control of Major Chronic Diseases and Metabolic Research (ZDSYS20220606100801004), the Central Military Commission Key Project of Basic Research for Application (BWJ21J003), the Regional Joint Funding Key Project of Guangdong Basic Research and Basic Research for Application (2021B1515120083), the Key Project of Sustainable Development Science and Technology of Shenzhen Science and Technology Innovation Committee (KCXFZ20211020163801002), the Sun Yat-sen University-Shenzhen TAILORED Medical Ltd. Postgraduate joint training base, the Futian District Public Health Scientific Research Project of Shenzhen (FTWS2022001), the Chinese Association of Integrative Medicine-Shanghai Hutchison Pharmaceuticals Fund (HMPE202202), and the Shenzhen Key Medical Discipline Construction Fund (SZXK002) to Hui Huang. The fifth "333" high-level talent training project of Jiangsu Province (BRA2019247). Medical Research Project of Jiangsu Provincial Health Commission in 2020 (ZDA2020018).
Collapse
Affiliation(s)
- Yuncong Shi
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Zhengzhipeng Zhang
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yu Wang
- Shenzhen Tailored Medical Laboratory, Shenzhen, China
| | - Xiangyi Kong
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Sun
- Department of Neurosurgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Aimin Li
- Department of Neurosurgery, The First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Hui Huang
- Cardiovascular Department, The Eighth Affiliated Hospital, Joint Laboratory of Guangdong-Hong Kong-Macao Universities for Nutritional Metabolism and Precise Prevention and Control of Major Chronic Diseases, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
4
|
Gallego-López MDC, Ojeda ML, Romero-Herrera I, Rua RM, Carreras O, Nogales F. Folic acid antioxidant supplementation to binge drinking adolescent rats improves hydric-saline balance and blood pressure, but fails to increase renal NO availability and glomerular filtration rate. FASEB J 2024; 38:e23341. [PMID: 38031982 DOI: 10.1096/fj.202301609r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 11/15/2023] [Indexed: 12/01/2023]
Abstract
Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.
Collapse
Affiliation(s)
| | - María Luisa Ojeda
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Inés Romero-Herrera
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Rui Manuel Rua
- Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Olimpia Carreras
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Fátima Nogales
- Department of Physiology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
5
|
Abstract
Folate, a pteroylglutamic acid derivative, participates in fundamental cellular metabolism. Homocysteine, an amino acid, serves as an intermediate of the methionine cycle and can be converted back to methionine. Hyperhomocysteinemia is a recognized risk factor for atherosclerotic and cardiovascular diseases. In recent decades, elevated plasma homocysteine levels and low folate status have been observed in many patients with retinal vascular diseases, such as retinal vascular occlusions, diabetic retinopathy, and age-related degeneration. Homocysteine-induced toxicity toward vascular endothelial cells might participate in the formation of retinal vascular diseases. Folate is an important dietary determinant of homocysteine. Folate deficiency is the most common cause of hyperhomocysteinemia. Folate supplementation can eliminate excess homocysteine in plasma. In in vitro experiments, folic acid had a protective effect on vascular endothelial cells against high glucose. Many studies have explored the relationship between folate and various retinal vascular diseases. This review summarizes the most important findings that lead to the conclusion that folic acid supplementation might be a protective treatment in patients with retinal vascular diseases with high homocysteine or glucose status. More research is still needed to validate the effect of folate and its supplementation in retinal vascular diseases.
Collapse
Affiliation(s)
- Jinyue Gu
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Chunyan Lei
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Meixia Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Research Laboratory of Macular Disease, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
6
|
Wu R, Zhong J, Song L, Zhang M, Chen L, Zhang L, Qiu Z. Untargeted metabolomic analysis of ischemic injury in human umbilical vein endothelial cells reveals the involvement of arginine metabolism. Nutr Metab (Lond) 2023; 20:17. [PMID: 36998018 DOI: 10.1186/s12986-023-00737-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
OBJECTIVE In this study, differentially expressed metabolites of vascular endothelial cells were examined to further understand the metabolic regulation of ischemic injury by untargeted metabolomics. METHOD Human umbilical vein endothelial cells (HUVECs) were selected to construct an ischemia model using oxygen-glucose deprivation (OGD) and 0, 3, 6, and 9 h of treatment. After that, cell survival levels were determined by CCK8 detection. Flow cytometry, ROS detection, JC-1 detection, and western blotting were used to measure apoptosis and oxidative stress in cells. Then, combined with UPLC Orbitrap/MS, we verified the impacted metabolism pathways by western blotting and RT‒PCR. RESULTS CCK8 assays showed that the survival of HUVECs was decreased with OGD treatment. Flow cytometry and the expression of cleaved caspase 3 showed that the apoptosis levels of HUVECs increased following OGD treatment. The ROS and JC-1 results further suggested that oxidative stress injury was aggravated. Then, combined with the heatmap, KEGG and IPA, we found that arginine metabolism was differentially altered during different periods of OGD treatment. Furthermore, the expression of four arginine metabolism-related proteins, ASS1, ARG2, ODC1 and SAT1, was found to change during treatment. CONCLUSION Arginine metabolism pathway-related proteins were significantly altered by OGD treatment, which suggests that they may have a potential role in ischemic injury.
Collapse
Affiliation(s)
- Ruihao Wu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Jiayin Zhong
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Lei Song
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Min Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Lulu Chen
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China
| | - Li Zhang
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Zhaohui Qiu
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No. 1111, Xianxia Road, Changning District, Shanghai, 200336, China.
| |
Collapse
|
7
|
Wu ZX, Chen SS, Lu DY, Xue WN, Sun J, Zheng L, Wang YL, Li C, Li YJ, Liu T. Shenxiong glucose injection inhibits oxidative stress and apoptosis to ameliorate isoproterenol-induced myocardial ischemia in rats and improve the function of HUVECs exposed to CoCl 2. Front Pharmacol 2023; 13:931811. [PMID: 36686658 PMCID: PMC9849394 DOI: 10.3389/fphar.2022.931811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Shenxiong Glucose Injection (SGI) is a traditional Chinese medicine formula composed of ligustrazine hydrochloride and Danshen (Radix et rhizoma Salviae miltiorrhizae; Salvia miltiorrhiza Bunge, Lamiaceae). Our previous studies and others have shown that SGI has excellent therapeutic effects on myocardial ischemia (MI). However, the potential mechanisms of action have yet to be elucidated. This study aimed to explore the molecular mechanism of SGI in MI treatment. Methods: Sprague-Dawley rats were treated with isoproterenol (ISO) to establish the MI model. Electrocardiograms, hemodynamic parameters, echocardiograms, reactive oxygen species (ROS) levels, and serum concentrations of cardiac troponin I (cTnI) and cardiac troponin T (cTnT) were analyzed to explore the protective effect of SGI on MI. In addition, a model of oxidative damage and apoptosis in human umbilical vein endothelial cells (HUVECs) was established using CoCl2. Cell viability, Ca2+ concentration, mitochondrial membrane potential (MMP), apoptosis, intracellular ROS, and cell cycle parameters were detected in the HUVEC model. The expression of apoptosis-related proteins (Bcl-2, Caspase-3, PARP, cytoplasmic and mitochondrial Cyt-c and Bax, and p-ERK1/2) was determined by western blotting, and the expression of cleaved caspase-3 was analyzed by immunofluorescence. Results: SGI significantly reduced ROS production and serum concentrations of cTnI and cTnT, reversed ST-segment elevation, and attenuated the deterioration of left ventricular function in ISO-induced MI rats. In vitro, SGI treatment significantly inhibited intracellular ROS overexpression, Ca2+ influx, MMP disruption, and G2/M arrest in the cell cycle. Additionally, SGI treatment markedly upregulated the expression of anti-apoptotic protein Bcl-2 and downregulated the expression of pro-apoptotic proteins p-ERK1/2, mitochondrial Bax, cytoplasmic Cyt-c, cleaved caspase-3, and PARP. Conclusion: SGI could improve MI by inhibiting the oxidative stress and apoptosis signaling pathways. These findings provide evidence to explain the pharmacological action and underlying molecular mechanisms of SGI in the treatment of MI.
Collapse
Affiliation(s)
- Zhong-Xiu Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Shuai-Shuai Chen
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Ding-Yan Lu
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| | - Wei-Na Xue
- School of Medicine and Health Management, Guizhou Medical University, Guiyang, China
| | - Jia Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Yong-Lin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Chun Li
- School of Pharmacy, Guizhou Medical University, Guiyang, China
| | - Yong-Jun Li
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education) and State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants and Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China,*Correspondence: Yong-Jun Li, ; Ting Liu,
| |
Collapse
|
8
|
T Lymphocyte-Derived Exosomes Transport MEK1/2 and ERK1/2 and Induce NOX4-Dependent Oxidative Stress in Cardiac Microvascular Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2457687. [PMID: 36211827 PMCID: PMC9534701 DOI: 10.1155/2022/2457687] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/23/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022]
Abstract
Background Activation of endothelial cells by inflammatory mediators secreted by CD4+ T lymphocytes plays a key role in the inflammatory response. Exosomes represent a specific class of signaling cues transporting a mixture of proteins, nucleic acids, and other biomolecules. So far, the impact of exosomes shed by T lymphocytes on cardiac endothelial cells remained unknown. Methods and Results Supernatants of CD4+ T cells activated with anti-CD3/CD28 beads were used to isolate exosomes by differential centrifugation. Activation of CD4+ T cells enhanced exosome production, and these exosomes (CD4-exosomes) induced oxidative stress in cardiac microvascular endothelial cells (cMVECs) without affecting their adhesive properties. Furthermore, CD4-exosome treatment aggravated the generation of mitochondrial reactive oxygen species (ROS), reduced nitric oxide (NO) levels, and enhanced the proliferation of cMVECs. These effects were reversed by adding the antioxidant apocynin. On the molecular level, CD4-exosomes increased NOX2, NOX4, ERK1/2, and MEK1/2 in cMVECs, and ERK1/2 and MEK1/2 proteins were found in CD4-exosomes. Inhibition of either MEK/ERK with U0126 or ERK with FR180204 successfully protected cMVECs from increased ROS levels and reduced NO bioavailability. Treatment with NOX1/4 inhibitor GKT136901 effectively blocked excessive ROS and superoxide production, reversed impaired NO levels, and reversed enhanced cMVEC proliferation triggered by CD4-exosomes. The siRNA-mediated silencing of Nox4 in cMVECs confirmed the key role of NOX4 in CD4-exosome-induced oxidative stress. To address the properties of exosomes under inflammatory conditions, we used the mouse model of CD4+ T cell-dependent experimental autoimmune myocarditis. In contrast to exosomes obtained from control hearts, exosomes obtained from inflamed hearts upregulated NOX2, NOX4, ERK1/2, MEK1/2, increased ROS and superoxide levels, and reduced NO bioavailability in treated cMVECs, and these changes were reversed by apocynin. Conclusion Our results point to exosomes as a novel class of bioactive factors secreted by CD4+ T cells in immune response and represent potential important triggers of NOX4-dependent endothelial dysfunction. Neutralization of the prooxidative aspect of CD4-exosomes could open perspectives for the development of new therapeutic strategies in inflammatory cardiovascular diseases.
Collapse
|
9
|
Zhang J, Hui Y, Liu F, Yang Q, Lu Y, Chang Y, Liu Q, Ding Y. Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling. Front Pharmacol 2022; 13:890202. [PMID: 35677431 PMCID: PMC9168427 DOI: 10.3389/fphar.2022.890202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/29/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular remodeling due to hypertension is one of the major health challenges facing countries around the world. Neohesperidin, a flavonoid glycoside found in citrus fruits, is an antioxidant. Neohesperidin has been studied for a variety of diseases in addition to hypertension. In this study, angiotensin II was used to induce hypertension in mice (490 ng/kg/min, 14 days). We used H&E, Masson, immunofluorescence, dihydroethidine and qPCR to evaluate the effect of Nehesperidin (50 mg/kg/day, 16 days) on pathological hypertension in mice. Estimating the effect of Nehesperidin on human umbilical vein endothelial cells and vascular smooth muscle cells stimulated by angiotensin II. We found that neohesperidin inhibited angiotensin II-induced hypertension in mice. Neohesperidin reduced angiotensin II-induced vascular hypertrophy, fibrosis, inflammation and oxidative stress in vivo. Neohesperidin inhibited angiotensin II-induced ROS and DNA damage in human umbilical vein endothelial cells. Neohesperidin inhibited angiotensin II-induced migration of vascular smooth muscle cells. The results showed that Nehesperidin acts as an antioxidant and could significantly inhibit angiotensin II induced hypertension and vascular remodeling in vitro and in vivo.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuanshu Hui
- Department of Heart Function Examination, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fengyi Liu
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qian Yang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yi Lu
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yeting Chang
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinlong Liu
- Department of Hepatobiliary Pancreatic Surgery II, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yanchun Ding
- Department of Cardiology II, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
10
|
Chen L, Cai T, Zhao C, Bai S, Shu G, Wen C, Xu Q, Peng X. Atmospheric Ammonia Causes Histopathological Lesions, Cell Cycle Blockage and Apoptosis of Spleen in Chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1139/cjas-2021-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The experiment was conducted to investigate the effect of atmospheric ammonia (NH3) on histological changes, cell cycle distribution, and apoptosis of spleen in chickens. 240 chickens were randomly allocated to control group (without NH3 challenge) and NH3 group (70±5 ppm NH3). The experiment lasted for eight days. The results showed that NH3 exposure caused the decreased relative weight (P<0.05), dysplasia of lymphatic follicle, up-regulation of G0G1 phase cells, excessive apoptosis, and increase of reactive oxygen spcecies (ROS) activated cells (P<0.05) in the spleen. The mechanisms of cell cycle blockage were closely related to the upregulation of p53, p21 gene (P<0.05), the downregulation of cyclinD1, cdk6 gene (P<0.05), and the decrease of Proliferating Cell Nuclear Antigen (PCNA) protein (P<0.05). The activated apoptosis could resulted from the increased gene and protein expressions of bax and caspase-3 (P<0.05), and the decreased gene and protein expressions of bcl-2 (P<0.05). The results suggested that 70±5 ppm NH3 caused the spleen dysplasia, which were closely related to the cell cycle arrest and mitochondria apoptotic pathway activation.
Collapse
Affiliation(s)
- Lin Chen
- Chengdu University, 74707, Biological Engineering, Chengdu, China, 610106
| | - Tong Cai
- Sichuan Youngster Technology Co Ltd, Wenjiang District, China, 611130
| | - Cuiyan Zhao
- Shaoguan University, 47888, Shaoguan, Guangdong Province, China, 512005
| | - Shiping Bai
- Sichuan Agricultural University - Chengdu Campus, 506176, Chengdu, China, 611130
| | - Gang Shu
- Sichuan Agricultural University, 12529, Yaan, China, 625014
| | - Changlin Wen
- Chengdu University, 74707, Chengdu, China, 610106
| | - Qinkun Xu
- Shaoguan University, 47888, Shaoguan, Guangdong Province, China, 512005
| | - Xi Peng
- Chengdu University, 74707, Chengdu, China, 610106
| |
Collapse
|
11
|
Gallego-Lopez MDC, Ojeda ML, Romero-Herrera I, Nogales F, Carreras O. Folic Acid Homeostasis and Its Pathways Related to Hepatic Oxidation in Adolescent Rats Exposed to Binge Drinking. Antioxidants (Basel) 2022; 11:antiox11020362. [PMID: 35204242 PMCID: PMC8868551 DOI: 10.3390/antiox11020362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Chronic ethanol consumption and liver disease are intimately related to folic acid (FA) homeostasis. Despite the fact that FA decreases lipid oxidation, its mechanisms are not yet well elucidated. Lately, adolescents have been practising binge drinking (BD), consisting of the intake of a high amount of alcohol in a short time; this is a particularly pro-oxidant form of consumption. The aim of this study is to examine, for the first time, FA homeostasis in BD adolescent rats and its antioxidant properties in the liver. We used adolescent rats, including control rats and rats exposed to an intermittent intraperitoneal BD model, supplemented with or without FA. Renal FA reabsorption and renal FA deposits were increased in BD rats; hepatic deposits were decreased, and heart and serum levels remained unaffected. This depletion in the liver was accompanied by higher transaminase levels; an imbalance in the antioxidant endogenous enzymatic system; lipid and protein oxidation; a decrease in glutathione (GSH) levels; hyper-homocysteinemia (HHcy); an increase in NADPH oxidase (NOX) 1 and NOX4 enzymes; an increase in caspase 9 and 3; and a decrease in the anti-apoptotic metallopeptidase inhibitor 1. Furthermore, BD exposure increased the expression of uncoupled endothelial nitric oxide synthase (eNOS) by increasing reactive nitrogen species generation and the nitration of tyrosine proteins. When FA was administered, hepatic FA levels returned to normal levels; transaminase and lipid and protein oxidation also decreased. Its antioxidant activity was due, in part, to the modulation of superoxide dismutase activity, GSH synthesis and NOX1, NOX4 and caspase expression. FA reduced HHcy and increased the expression of coupled eNOS by increasing tetrahydrobiopterin expression, avoiding nitrosative stress. In conclusion, FA homeostasis and its antioxidant properties are affected in BD adolescent rats, making it clear that this vitamin plays an important role in the oxidative, nitrosative and apoptotic hepatic damage generated by acute ethanol exposure. For this, FA supplementation becomes a potential BD therapy for adolescents, preventing future acute alcohol-related harms.
Collapse
|
12
|
Saini S, Sharma V, Ansari S, Kumar A, Thakur A, Malik H, Kumar S, Malakar D. Folate supplementation during oocyte maturation positively impacts the folate-methionine metabolism in pre-implantation embryos. Theriogenology 2022; 182:63-70. [DOI: 10.1016/j.theriogenology.2022.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/23/2022] [Accepted: 01/23/2022] [Indexed: 01/30/2023]
|
13
|
Wang F, Bao Y, Shen X, Zengin G, Lyu Y, Xiao J, Weng Z. Niazirin from Moringa oleifera Lam. attenuates high glucose-induced oxidative stress through PKCζ/Nox4 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153066. [PMID: 31447278 DOI: 10.1016/j.phymed.2019.153066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/04/2019] [Accepted: 08/04/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic complications-coronary atherosclerosis is closely related to the increased reactive oxygen species (ROS) induced by hyperglycemia. ROS are reported to induce the abnormal proliferation of vascular smooth muscle cells (VSMCs) under high glucose conditions. Leaf and seed extracts from Moringa oleifera are found to exhibit antioxidant activity. However, few studies are evaluating the antioxidant activities of chemical compounds isolated from the M. oleifera especially in cardiovascular field. PURPOSE The aim of this study is to explore the antioxidative effect during hyperglycemia of niazirin from M. oleifera. STUDY DESIGN A cell model was applied. METHODS After the taking the in vitro antioxidant experiment including ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) assay and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. Cell viability was carried out using high glucose-induced VSMCs model. ROS production was tested by 2',7'-dichlorofluorescein diacetate (DCF-DA) assay. The protein kinase C zeta (PKCζ) and NADPH oxidase 4 (Nox 4) expression in vitro and in vivo were measured by western blot analysis. RESULTS Niazirin showed good free radical scavenging activity. Niazirin significantly attenuated the proliferation of high glucose-induced VSMCs. Furthermore, it could decrease the ROS and malondialdehyde (MDA) productions, while increased total antioxidant capacity (T-AOC), superoxide dismutase (SOD) as well as glutathione peroxidase (GPx) levels in high glucose-induced VSMCs and streptozotocin-induced mice. In addition, niazirin could eliminate the high glucose-induced PKCζ activation, indicated by Thr410 phosphorylation and inhibition of the Nox4 protein expression in vitro and in vivo. CONCLUSION Niazirin from M. oleifera exhibited notably antioxidant activities and could be utilized as a potential natural antioxidant in preventing diabetic atherosclerosis.
Collapse
Affiliation(s)
- Fang Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yifan Bao
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinchun Shen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Yi Lyu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | - Zebin Weng
- Basic Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
14
|
Xiang H, Song R, Ouyang J, Zhu R, Shu Z, Liu Y, Wang X, Zhang D, Zhao J, Lu H. Organelle dynamics of endothelial mitochondria in diabetic angiopathy. Eur J Pharmacol 2021; 895:173865. [PMID: 33460616 DOI: 10.1016/j.ejphar.2021.173865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Diabetes, a chronic non-communicable disease, has become one of the most serious and critical public health problems with increasing incidence trends. Chronic vascular complications are the major causes of disability and death in diabetic patients with endothelial dysfunction. Diabetes is intimately associated with endothelial mitochondrial dysfunction, indicated by increased oxidative stress, decreased biogenesis, increased DNA damage, and weakened autophagy in mitochondria. All these morphological and functional changes of mitochondria play important roles in diabetic endothelial dysfunction. Herein, we reviewed the roles and mechanisms of endothelial mitochondrial dysfunction, particularly mitochondrial dynamics in the vascular complications of diabetes and summarized the potential mitochondria-targeted therapies in diabetic vascular complications.
Collapse
Affiliation(s)
- Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruipeng Song
- Department of Endocrinology, The Third People's Provincial Hospital of Henan Province, Zhengzhou, 450000, Henan, China
| | - Jie Ouyang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Ruifang Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihao Shu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Yulan Liu
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Xuewen Wang
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China
| | - Dongtao Zhang
- Department of Geriatrics, Tongxu Hospital of Traditional Chinese Medicine, Kaifeng, Henan, 475400, China
| | - Jiangwei Zhao
- Department of Internal Medicine 3, People's Hospital of Weihui, Xinxiang, Henan, 453100, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
15
|
Soriente A, Amodio SP, Fasolino I, Raucci MG, Demitri C, Engel E, Ambrosio L. Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111420. [DOI: 10.1016/j.msec.2020.111420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 01/20/2023]
|
16
|
Cai ZL, Liu C, Yao Q, Xie QW, Hu TT, Wu QQ, Tang QZ. The pro-migration and anti-apoptosis effects of HMGA2 in HUVECs stimulated by hypoxia. Cell Cycle 2020; 19:3534-3545. [PMID: 33315504 DOI: 10.1080/15384101.2020.1850970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-mobility group AT-hook2 (HMGA2), serving as an architectural transcription factor, participates in plenty of biological processes. Our study is aimed at illustrating the effect of HMGA2 on hypoxia-induced HUVEC injury and the underlying mechanism. To induce hypoxia-related cell injury, HUVECs were exposed to hypoxic condition for 12-24 h. Molecular expression was determined by Western blot analysis, real-time PCR and immunofluorescence staining. Cell migration was monitored by wound healing assay and Transwell chamber assay. Cell proliferation and apoptosis were measured by MTT assay kits and TUNEL staining. In this study, we discovered that HMGA2 was upregulated in hypoxia-induced HUVECs. Overexpression of HMGA2 promoted cell migration, decreased the apoptosis ratio in response to hypoxia stimulation, while HMGA2 knockdown inhibited cell migration and accelerated apoptosis in HUVECs under hypoxic condition. Mechanistically, we found that HMGA2 induced increased expression of HIF-1α,VEGF, eNOS and AKT. eNOS knockdown significantly reduced HMGA2-mediated pro-migration effects, and AKT knockdown strikingly counteracted HMGA2-mediated anti-apoptotic effect. Hence, our data indicated that HMGA2 promoted cell migration by regulating HIF-1α/VGEF/eNOS signaling and prevented cell apoptosis by activating HIF-1α/VGEF/AKT signaling in HUVECs.
Collapse
Affiliation(s)
- Zhu-Lan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Chen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Qing-We Xie
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Tong-Tong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University , Wuhan, RP China.,Hubei Key Laboratory of Metabolic and Chronic Diseases , Wuhan, RP China
| |
Collapse
|
17
|
Wei A, Xiao H, Xu G, Yu X, Guo J, Jing Z, Shi S, Song Y. Hyperoside Protects Human Umbilical Vein Endothelial Cells Against Anticardiolipin Antibody-Induced Injury by Activating Autophagy. Front Pharmacol 2020; 11:762. [PMID: 32508661 PMCID: PMC7253676 DOI: 10.3389/fphar.2020.00762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022] Open
Abstract
Anticardiolipin antibody (aCL), an important characterization of antiphospholipid syndrome, shows an intense association with vascular endothelial injury. Hyperoside is a flavonoid extracted from medicinal plants traditionally used in Chinese medicines, displaying anti-inflammatory, anti-cancer, and anti-oxidative properties in various diseases. Recent studies have shifted the focus on the protective effects of hyperoside on vascular endothelial injury. However, little is known about the mechanisms involved. In the present study, we investigated the effect of hyperoside on aCL-induced injury of human umbilical vein endothelial cells (HUVECs) in vitro. Our data illustrated that aCL induced HUVEC injury via inhibiting autophagy. Hyperoside reduced aCL-induced secretion of proinflammatory cytokines IL-1β and IL-8 and endothelial adhesion cytokines TF, ICAM1, and VCAM1 in HUVECs. Additionally, hyperoside activated autophagy and suppressed the mTOR/S6K and TLR4/Myd88/NF-κB signaling transduction pathways in aCL-induced HUVECs. To the best of our knowledge, this is the first study to investigate the effect of hyperoside on aCL-induced injury, as well as offer insights into the involved mechanisms, which is of great significance for the treatment of antiphospholipid syndrome.
Collapse
Affiliation(s)
- Aiwu Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Huidongzi Xiao
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guangli Xu
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xile Yu
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Jingjing Guo
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhuqing Jing
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shaoqi Shi
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanli Song
- Department of Reproductive Medicine, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
18
|
Sharma J, Krupenko SA. Folate pathways mediating the effects of ethanol in tumorigenesis. Chem Biol Interact 2020; 324:109091. [PMID: 32283069 DOI: 10.1016/j.cbi.2020.109091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/02/2020] [Indexed: 02/08/2023]
Abstract
Folate and alcohol are dietary factors affecting the risk of cancer development in humans. The interaction between folate status and alcohol consumption in carcinogenesis involves multiple mechanisms. Alcoholism is typically associated with folate deficiency due to reduced dietary folate intake. Heavy alcohol consumption also decreases folate absorption, enhances urinary folate excretion and inhibits enzymes pivotal for one-carbon metabolism. While folate metabolism is involved in several key biochemical pathways, aberrant DNA methylation, due to the deficiency of methyl donors, is considered as a common downstream target of the folate-mediated effects of ethanol. The negative effects of low intakes of nutrients that provide dietary methyl groups, with high intakes of alcohol are additive in general. For example, low methionine, low-folate diets coupled with alcohol consumption could increase the risk for colorectal cancer in men. To counteract the negative effects of alcohol consumption, increased intake of nutrients, such as folate, providing dietary methyl groups is generally recommended. Here mechanisms involving dietary folate and folate metabolism in cancer disease, as well as links between these mechanisms and alcohol effects, are discussed. These mechanisms include direct effects on folate pathways and indirect mediation by oxidative stress, hypoxia, and microRNAs.
Collapse
Affiliation(s)
- Jaspreet Sharma
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA
| | - Sergey A Krupenko
- Nutrition Research Institute and Department of Nutrition, University of North Carolina, Chapel Hill, USA; Department of Nutrition, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
19
|
Liu H, Shi C, Deng Y. MALAT1 affects hypoxia-induced vascular endothelial cell injury and autophagy by regulating miR-19b-3p/HIF-1α axis. Mol Cell Biochem 2020; 466:25-34. [PMID: 31933110 DOI: 10.1007/s11010-020-03684-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease has become the leading cause of death in the world. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays an important role in cardiovascular disease, such as stroke. However, the role of MALAT1 in hypoxia (HYP)-induced vascular endothelial cells (VECs) remains unclear. In the present study, HYP-treated human umbilical vein endothelial cells (HUVECs) were utilized to simulate HYP-induced VEC injury. It was found that after HYP treatment, the levels of MALAT1 and hypoxia-induced factor-1 (HIF-1α) in HUVECs were upregulated, while the level of miR-19b-3p was downregulated. Knockdown of MALAT1 with siRNA significantly reduced the HIF-1α level induced by HYP. In addition, MALAT1 knockdown inhibited HYP-induced HUVECs apoptosis, autophagy and inflammation. The overexpression of HIF-1α overcame the effect of MALAT1 knockdown. Mechanism analysis showed that MALAT1-targeted miR-19b-3p and then regulated downstream HIF-1α. MALAT1 knockdown increased the level of miR-19b-3p in cells, and increased miR-19b-3p further inhibited the expression of HIF-1α, thereby reducing the HYP-induced HUVECs apoptosis, autophagy and inflammation. Taken together, these results suggest that MALAT1 may be a potential target for mitigating HYP-induced endothelial cell injury.
Collapse
Affiliation(s)
- Huzi Liu
- Department of Cardiothoracic Surgery, The Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
| | - Chunli Shi
- Department of Outpatient, Shanxi Cardiovascular Hospital (Institute), The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030024, China
| | - Yongzhi Deng
- Department of Cardiovascular Surgery, Shanxi Cardiovascular Hospital (Institute), The Affiliated Cardiovascular Hospital of Shanxi Medical University, Shanxi Medical University, No. 18, Yifen Street, Wanbailin District, Taiyuan, 030024, Shanxi, China.
| |
Collapse
|
20
|
Guo Y, Zhang Q, Chen H, Jiang Y, Gong P. The protective role of calcitonin gene-related peptide (CGRP) in high-glucose-induced oxidative injury in rat aorta endothelial cells. Peptides 2019; 121:170121. [PMID: 31386894 DOI: 10.1016/j.peptides.2019.170121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction is considered to be an initial indicator in diabetes-induced macrovascular complications. Evidence has shown that CGRP is an important neuropeptide active in vascular system, especially in vasorelaxation. This study aimed to investigate the role of CGRP in high-glucose-induced endothelial dysfunction in rat aorta endothelial cells (RAECs). Quantitative-real time PCR and western blots were used to determine the efficiency of overexpression and interference of CGRP. After incubation with normal glucose (5.5 mM) or high glucose (33 mM), the cell viability and cell apoptosis were tested. Afterwards, the Nitric Oxide (NO) production, the mRNA expression of inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS) and angiotensin II (Ang II) and the level of reactive oxygen species (ROS) were determined. The involvement of ERK1/2-NOX4 was determined through western blots and the translocation of p47phox was also observed via cell immunofluorescence. CGRP alleviated the high-glucose-induced cell apoptosis while CGRP did not have an obvious impact on cell viability. Meanwhile, CGRP increased the NO production as well as the eNOS mRNA expression and reversely decreased the stimulated expression of iNOS and Ang II by high glucose. In addition, CGRP attenuated the high-glucose-stimulated intracellular ROS production by ERK1/2-NOX4 and the translocation of p47phox. These results indicated the protective role of CGRP in high-glucose-induced oxidative injury in RAECs possibly through inhibiting ERK1/2-NOX4. Our findings might help to further understand the potential role and possible mechanism of CGRP in endothelial dysfunction caused by high glucose.
Collapse
Affiliation(s)
- Yanjun Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Huilu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixuan Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Pirouzpanah S, Varshosaz P, Fakhrjou A, Montazeri V. The contribution of dietary and plasma folate and cobalamin to levels of angiopoietin-1, angiopoietin-2 and Tie-2 receptors depend on vascular endothelial growth factor status of primary breast cancer patients. Sci Rep 2019; 9:14851. [PMID: 31619709 PMCID: PMC6795805 DOI: 10.1038/s41598-019-51050-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 09/20/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to determine the association of dietary folate and cobalamin with plasma levels of Angiopoietins (ANG), vascular endothelial growth factor-C (VEGF-C) and tyrosine kinase receptor-2 (Tie-2) of primary breast cancer patients. Women (n = 177), aged 30 to 75 years diagnosed with breast cancer were recruited from an ongoing case series study. Dietary intake of nutrients was estimated by using a validated food frequency questionnaire. Enzyme-linked immunosorbent assay was applied to measure biomarkers. MCF-7 cell cultures were supplemented with folic acid (0–40 μM) for 24 h to measure cell viability and fold change of expression by the real-time reverse transcriptase-polymerase chain reaction. Structural equation modeling was applied to analyze the structural relationships between the measured variables of nutrients and Angiopoietins. Dietary intake of folate and cobalamin showed a significant inverse correlation with plasma ANG-1 and ANG-2 (P < 0.05), particularly in subjects with estrogen-receptor positive tumors or low plasma VEGF-C. Plasma folate was positively associated with the ratio of ANG-1/ANG-2 (P < 0.05). Residual intake levels of total cobalamin were inversely associated with plasma ANG-1 when plasma stratum of VEGF-C was high (P < 0.05). Structural equation modeling identified a significant inverse contribution of folate profiles on the latent variable of Angiopoietins (coefficient β = −0.99, P < 0.05). Folic acid treatment resulted in dose-dependent down-regulations on ANGPT1 and ANGPT1/ANGPT2 ratio but VEGF and ANGPT2/VEGF were upregulated at folic acid >20 μM. Studying the contributing role of dietary folate to pro-angiogenic biomarkers in breast cancer patients can infer the preventive role of folate in the ANGs/VEGF-C-dependent cascade of tumor metastasis. By contrast, high concentrations of folic acid in vitro supported VEGF-C-dependent ANGPT2 overexpression might potentiate micro-lymphatic vessel development to support malignant cell dissemination.
Collapse
Affiliation(s)
- Saeed Pirouzpanah
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.
| | - Parisa Varshosaz
- Drug Applied Research Center/ and also Department of Biochemistry and Dietetics, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, 5166614711, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
| | - Ashraf Fakhrjou
- Department of Pathology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, 5156913193, Iran
| | - Vahid Montazeri
- Department of Thoracic Surgery, Faculty of Medicine, Surgery Ward, Tabriz University of Medical Sciences, and also Nour-Nejat Hospital, Tabriz, 5138665793, Iran
| |
Collapse
|
22
|
Yuan T, Zhang H, Chen D, Chen Y, Lyu Y, Fang L, Du G. Puerarin protects pulmonary arteries from hypoxic injury through the BMPRII and PPARγ signaling pathways in endothelial cells. Pharmacol Rep 2019; 71:855-861. [PMID: 31408784 DOI: 10.1016/j.pharep.2019.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent evidence indicates that Puerarin has a protective effect on pulmonary arteries. In the present study, we aimed to investigate whether Puerarin could protect pulmonary arterial endothelial cells from hypoxic injury and determine its potential targets. METHODS In our study, human pulmonary arterial endothelial cells (HPAECs) were injured by hypoxic (1% O2) incubation. Cell viability was detected by a cell counting kit (CCK8). The production of nitric oxide (NO) was detected by Griess reagent and endothelin-1 (ET-1) was detected by the ELISA method. Oxidative stress was measured by a fluorescence microscope via the fluorescent probe DCFH-DA. Western blotting was employed for studying the mechanism. RESULTS The results show that Puerarin protects HPAECs from hypoxia-induced apoptosis and slightly improves cell viability. Puerarin increases NO and decreases ET-1 to prevent the imbalance between vasoactive substances induced by hypoxia in HPAECs. Puerarin also inhibits the oxidative stress induced by hypoxia. The results from the Western blot show that Puerarin activates the BMPRII/Smad and PPARγ/PI3K/Akt signaling pathways. CONCLUSION In conclusion, Puerarin protects HPAECs from hypoxic injury through the inhibition of oxidative stress and the activation of the BMPRII and PPARγ signaling pathways. This work provides insight into the development of Puerarin as a treatment for hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Tianyi Yuan
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Huifang Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Di Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Yucai Chen
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China
| | - Yang Lyu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Polymorphic Drugs, Beijing, China
| | - Lianhua Fang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Beijing, China; Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Beijing, China.
| |
Collapse
|
23
|
Hypoxia destroys the microstructure of microtubules and causes dysfunction of endothelial cells via the PI3K/Stathmin1 pathway. Cell Biosci 2019; 9:20. [PMID: 30820314 PMCID: PMC6380067 DOI: 10.1186/s13578-019-0283-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022] Open
Abstract
Background Endothelial cells (EC) are sensitive to changes in the microenvironment, including hypoxia and ischemia. Disruption of the microtubular network has been reported in cases of ischemia. However, the signaling pathways involved in hypoxia-induced microtubular disruption are unknown. The purpose of this study was to investigate the molecular mechanisms involved in hypoxia-induced microtubular disassembly in human umbilical vein endothelial cells (HUVECs). Results HUVECs were cultured under normoxic or hypoxic conditions and pretreated with or without colchicine or paclitaxel. The MTT assay, Transwell assay, trans-endothelial permeability assay, and 5-bromo-2′-deoxy-uridine staining were used to test the survival rate, migration, permeability, and proliferation of cells, respectively. Transmission electron microscopy and phalloidin staining were used to observe the microstructure and polymerization of microtubules. The results show that the functions of HUVECs and the microtubular structure were destroyed by hypoxia, but were protected by paclitaxel and a reactive oxygen species (ROS) inhibitor. We further used western blot, a luciferase assay, and co-immunoprecipitation to describe a non-transcription-independent mechanism for PI3K activation-inhibited microtubular stability mediated by Stathmin1, a PI3K interactor that functions in microtubule depolymerization. Finally, we determined that hypoxia and ROS blocked the interaction between PI3K and Stathmin1 to activate disassembly of microtubules. Conclusion Thus, our data demonstrate that hypoxia induced the production of ROS and damaged EC function by destroying the microtubular structure through the PI3K/stathmin1 pathway.
Collapse
|
24
|
Wang Y, Zhang S, Zhao Y, Xu P. Effect of solvent type on antioxidant activities and protective capacity on HUVEC cells from damage induced by Na
2
S
2
O
3
of Jiuqu Hongmei tea extracts. J Food Biochem 2018. [DOI: 10.1111/jfbc.12693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yuefei Wang
- Department of Tea Science Zhejiang University Hangzhou China
| | - Shuping Zhang
- Department of Tea Science Zhejiang University Hangzhou China
| | - Yueling Zhao
- Department of Tea Science Zhejiang University Hangzhou China
| | - Ping Xu
- Department of Tea Science Zhejiang University Hangzhou China
| |
Collapse
|
25
|
Yang S, Yin J, Hou X. Inhibition of miR-135b by SP-1 promotes hypoxia-induced vascular endothelial cell injury via HIF-1α. Exp Cell Res 2018; 370:31-38. [PMID: 29883713 DOI: 10.1016/j.yexcr.2018.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/24/2022]
Abstract
Myocardial hypoxia-induced endothelial cell apoptosis contributes to cardiac dysfunction, such as myocardial infarction (MI), myocardial ischemia, and heart failure. Thus, it is important to investigate the molecular mechanisms of vascular endothelial cells (VECs) during exposure to hypoxia. SP-1 is an important regulator of cytokines associated with cell functions. We found that SP-1 expression increased in human umbilical vein endothelial cells (HUVECs) exposed to hypoxia by western blot. Then the SP-1 siRNA was transfected into HUVECs under hypoxic condition. MTT assay showed that hypoxia reduced the cell proliferation, but SP-1 siRNA reversed that. Transfection with si-SP-1 also reversed cell apoptosis and reactive oxygen species (ROS) production increased by hypoxia treatment. Moreover, inflammatory phenotype were increased in hypoxia induced HUVECs, including ICAM-1,VCAM-1 levels as well as TNFα, IL-6 and IL-1β secretion, and the si-SP-1 also reversed this effect of hypoxia. Additionally, si-SP-1 increased expression of miR-135b and reduced expression of hypoxia-inducible factor 1-α (HIF-1α), which is the target gene of miR-135b. To investigate the underlying mechanism of SP-1 on hypoxia induced HUVECs injury, the anti-miR-135b or HIF-1α agonist (CoCl2) were used. Finally, the result indicated that both anti-miR-135b or CoCl2 treatment reversed the effects of SP-1 siRNA under hypoxia. In conclusion, the SP-1/miR-135b/HIF-1α axis may play a critical role in hypoxia-induced vascular endothelial injury. Our study thus provides novel insights into the role of this transcription factor and miRNAs in the pathogenesis of hypoxia-induced cardiac dysfunctions.
Collapse
Affiliation(s)
- Songbai Yang
- Department of Vascular surgery, China-Japan Union Hospital, Jilin University, Changchun, 130000 Jilin, China
| | - Jian Yin
- Department of Vascular surgery, China-Japan Union Hospital, Jilin University, Changchun, 130000 Jilin, China
| | - Xuhui Hou
- Department of Vascular surgery, China-Japan Union Hospital, Jilin University, Changchun, 130000 Jilin, China.
| |
Collapse
|
26
|
Guo X, Jiang H, Chen J, Zhang BF, Hu Q, Yang S, Yang J, Zhang J. RP105 ameliorates hypoxia̸reoxygenation injury in cardiac microvascular endothelial cells by suppressing TLR4̸MAPKs̸NF-κB signaling. Int J Mol Med 2018; 42:505-513. [PMID: 29693119 DOI: 10.3892/ijmm.2018.3621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/05/2017] [Indexed: 11/10/2022] Open
Abstract
The radioprotective 105 kDa protein (RP105) has been implicated in the pathological process of multiple cardiovascular diseases through its functional and physical interactions with Toll‑like receptor 4 (TLR4). However, the effects of RP105 on cardiac microvascular endothelial cells (CMECs) in response to hypoxia̸reoxygenation (H̸R) injury have not been extensively investigated. The aim of the present study was to elucidate the potential roles of RP105 in the protection of CMECs against H̸R injury, and investigate the underlying mechanisms. CMECs isolated from Sprague‑Dawley rats were transduced with adenoviral vectors encoding RP105 or green fluorescent protein (GFP). At 48 h post‑transfection, CMECs were subjected to hypoxia for 4 h and reoxygenation for 2 h (H̸R) to simulate the in vivo ischemia̸reperfusion model. The mRNA and protein levels of RP105 were detected by reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. The effects of RP105 on CMEC proliferation, migration and apoptosis were measured by GFP‑8, Transwell chamber and flow cytometry assays, respectively. The secretion of interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α in the culture medium was measured by ELISA. Moreover, the expression level of TLR4, p38 mitogen‑activated protein kinase (MAPK), extracellular-signal-regulated kinase 1̸2, c-Jun N-terminal kinase, nuclear factor (NF)‑κB̸p65, IL‑6, TNF‑α and intercellular adhesion melecule‑1 was evaluated by western blot analysis. The results demonstrated that RP105 was minimally expressed in CMECs subjected to H̸R injury. Overexpression of RP105 via adenoviral vectors was able to significantly protect CMECs against H̸R injury, as evidenced by the promotion of cell proliferation and migration, as well as the amelioration of inflammation and apoptosis. These beneficial effects were at least partly mediated through inhibition of TLR4̸MAPKs̸NF‑κB signaling. Therefore, RP105 may be a promising candidate for prevention against CMECs‑associated H̸R injury.
Collapse
Affiliation(s)
- Xin Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jing Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bo-Fang Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qi Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Shuo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jian Yang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| | - Jing Zhang
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
27
|
Folic acid supplementation repressed hypoxia-induced inflammatory response via ROS and JAK2/STAT3 pathway in human promyelomonocytic cells. Nutr Res 2018; 53:40-50. [PMID: 29685624 DOI: 10.1016/j.nutres.2018.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 01/15/2018] [Accepted: 03/15/2018] [Indexed: 12/16/2022]
Abstract
Hypoxia is associated with inflammation and various chronic diseases. Folic acid is known to ameliorate inflammatory reactions, but the metabolism of folic acid protecting against hypoxia-induced injury is still unclear. In our study, we examined the inflammatory signal transduction pathway in human promyelomonocytic cells (THP-1 cells) with or without treatment with folic acid under hypoxic culture conditions. Our results indicated that supplementation with folic acid significantly reduced the levels of interleukin-1β and tumor necrosis factor-α in hypoxic conditions. Treating THP-1 cells with folic acid suppressed oxidative stress and hypoxia-inducible factor-1α in a dose-dependent manner. Folic acid targeted the activation of Janus kinase 2, downregulated the phosphorylation of signal transducer and activator of transcription 3, and decreased the expression of nuclear factor-κB p65 protein in cells. However, the absence of folic acid did not make cells more vulnerable under hypoxic conditions. In conclusion, folic acid efficiently inhibited the inflammatory response of THP-1 cells under hypoxic conditions by inhibiting reactive oxygen species production and the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway. Our study supports a basis for treatment with folic acid for chronic inflammation, which correlated with hypoxia.
Collapse
|
28
|
The effect of oxidative stress induced by tert-butylhydroperoxide under distinct folic acid conditions: An in vitro study using cultured human trophoblast-derived cells. Reprod Toxicol 2018; 77:33-42. [PMID: 29425713 DOI: 10.1016/j.reprotox.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
Preeclampsia is a pregnancy disorder characterized by high maternal blood pressure, fetal growth restriction and intrauterine hypoxia. Folic acid is a vitamin required during pregnancy. In this work, we investigated the relationship between preeclampsia and the intake of distinct doses of folic acid during pregnancy. Considering that preeclampsia is associated with increased placental oxidative stress levels, we investigated the effect of oxidative stress induced by tert-butylhydroperoxide (TBH) in human trophoblast-derived cells cultured upon deficient/low, physiological and supra-physiological folic acid levels. The negative effect of TBH upon thiobarbituric acid reactive substances (TBARS), total, reduced and oxidized glutathione, cell viability, cell proliferation, culture growth and cell migration was more marked under folic acid excess. This study suggests more attention on the dose administered, and ultimately, on the overall folic acid levels during pregnancy, in the context of preeclampsia risk.
Collapse
|
29
|
Protective effect of Cordyceps sinensis extract on rat brain microvascular endothelial cells injured by oxygen–glucose deprivation. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2017.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Baldea I, Teacoe I, Olteanu DE, Vaida-Voievod C, Clichici A, Sirbu A, Filip GA, Clichici S. Effects of different hypoxia degrees on endothelial cell cultures-Time course study. Mech Ageing Dev 2017; 172:45-50. [PMID: 29155057 DOI: 10.1016/j.mad.2017.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/01/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Exposure of the endothelial cells to hypoxia, the decrease in oxygen supply can trigger an endothelial response. This response is involved in inflammatory diseases, tumorigenesis, and also with the micro vascular damage associated with aging. The aim of our study was to determine the hypoxia/re-oxygenation induced response in vitro, using human umbilical vein endothelial cells (HUVEC) cultures, at different time points with focus on cell viability, apoptosis oxidative stress and angiogenesis stimulation. MATERIALS AND METHODS Cells were exposed to 10%, 5% or 0% O2 for 6h, 12h, and 24h. Viability was measured through colorimetry, apoptosis - annexin V-FITC staining, DNA lesions (γH2AX), endothelial activation (sICAM1), angiogenesis (HIF1α), oxidative stress (malondialdehyde, superoxidismutase and NFκB activation) were determined by ELISA, Western Blot and spectrophotometry. RESULTS AND DISCUSSION Hypoxia decreased viability, increased apoptosis, oxidative stress, endothelial activation and angiogenesis, depending on O2 concentration and time exposure. Short exposures to 5% and 10% O2, efficiently activated anti-apoptotic mechanisms through NFκB activation, HIF1α and γH2AX related DNA damage repair pathways. However, severe hypoxia and longer exposures to mild hypoxia induced high oxidative stress related damage and eventually led to apoptosis, through strong increases of HIF1α and accumulating DNA lesions.
Collapse
Affiliation(s)
- Ioana Baldea
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Ioana Teacoe
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Diana Elena Olteanu
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Cristina Vaida-Voievod
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Andra Clichici
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania
| | - Alexandru Sirbu
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania
| | - Gabriela Adriana Filip
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| | - Simona Clichici
- University of Medicine and Pharmacy, Department of Physiology, Clinicilor 1, Cluj-Napoca, Romania.
| |
Collapse
|
31
|
Yuan T, Chen Y, Zhang H, Fang L, Du G. Salvianolic Acid A, a Component of Salvia miltiorrhiza, Attenuates Endothelial-Mesenchymal Transition of HPAECs Induced by Hypoxia. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1185-1200. [PMID: 28893092 DOI: 10.1142/s0192415x17500653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salvianolic acid A (SAA), a polyphenols acid, is a bioactive ingredient from a traditional Chinese medicine called Dan shen (Salvia Miltiorrhiza Bunge). According to previous studies, it was shown to have various effects such as anti-oxidative stress, antidiabetic complications and antipulmonary hypertension. This study aimed to investigate the effect of SAA on pulmonary arterial endothelial-mesenchymal transition (EndoMT) induced by hypoxia and the underlying mechanisms. Primary cultured human pulmonary arterial endothelial cells (HPAECs) were exposed to 1% O2 for 48[Formula: see text]h with or without SAA treatment. SAA treatment improved the morphology of HPAECs and inhibited the cytoskeleton remodeling. A total of 3[Formula: see text][Formula: see text]M SAA reduced migration distances from 262.2[Formula: see text][Formula: see text]m to 198.4[Formula: see text][Formula: see text]m at 24[Formula: see text]h and 344.8[Formula: see text][Formula: see text]m to 109.3[Formula: see text][Formula: see text]m at 48[Formula: see text]h. It was observed that the production of ROS in cells was significantly reduced by the treatment of 3[Formula: see text][Formula: see text]M SAA. Meanwhile, SAA alleviated the loss of CD31 and slightly inhibited the expression of [Formula: see text]-SMA. The mechanisms study shows that SAA treatment increased the phosphorylation levels of Smad1/5, but inhibited that of Smad2/3. Furthermore, SAA attenuated the phosphorylation levels of ERK and Cofilin, which were enhanced by hypoxia. Based on these results, our study indicated that SAA treatment can protect HPAECs from endoMT induced by hypoxia, which may perform via the inhibition on ROS production and further through the downstream effectors of BMPRs or TGF[Formula: see text]R including Smads, ERK and ROCK/cofilin pathways.
Collapse
Affiliation(s)
- Tianyi Yuan
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Yucai Chen
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Huifang Zhang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China
| | - Lianhua Fang
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- * Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Union Medical College, Beijing 100050, China.,† Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
32
|
The Cardiovascular Effect of Systemic Homocysteine Is Associated with Oxidative Stress in the Rostral Ventrolateral Medulla. Neural Plast 2017; 2017:3256325. [PMID: 29098089 PMCID: PMC5643037 DOI: 10.1155/2017/3256325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022] Open
Abstract
It has been demonstrated that homocysteine (HCY) is a significant risk factor of hypertension, which is characterized by overactivity of sympathetic tone. Excessive oxidative stress in the rostral ventrolateral medulla (RVLM), a key region for control of sympathetic outflow, contributes to sympathetic hyperactivity in hypertension. Therefore, the goal of the present study is to determine the effect of systemic HCY on production of reactive oxygen species (ROS) in the RVLM. In the rat model of the diet-induced hyperhomocysteinemia (L-methionine, 1 g/kg/day, 8 weeks), we found that the HCY resulted in a significant increase (≈3.7-fold, P < 0.05) in ROS production in the RVLM, which was paralleled with enhanced sympathetic tone and blood pressure (BP). Compared to the vehicle group, levels of BP and basal renal sympathetic nerve activity in the HCY group were significantly (P < 0.05, n = 5) increased by an average of 27 mmHg and 31%, respectively. Furthermore, the rats treated with L-methionine (1 g/kg/day, 8 weeks) showed an upregulation of NADPHase (NOX4) protein expression and a downregulation of superoxide dismutase protein expression in the RVLM. The current data suggest that central oxidative stress induced by systemic HCY plays an important role in hypertension-associated sympathetic overactivity.
Collapse
|
33
|
Liang Y, Zhen X, Wang K, Ma J. Folic acid attenuates cobalt chloride-induced PGE 2 production in HUVECs via the NO/HIF-1alpha/COX-2 pathway. Biochem Biophys Res Commun 2017. [PMID: 28624453 DOI: 10.1016/j.bbrc.2017.06.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prostaglandin E2 (PGE2), an important lipid inflammatory mediator involved in the progression of vascular diseases, can be induced by hypoxia in many cell types. While folic acid has been shown to protect against inflammation in THP-1 cells during hypoxia and hypoxia-induced endothelial cell injury, whether it might do so by attenuating PGE2 production remains unclear. To investigate this we constructed a hypoxia-induced injury model by treating human umbilical vein endothelial cells (HUVECs) with cobalt chloride (CoCl2), which mimics the effects of hypoxia. In CoCl2-treated HUVECs, folic acid significantly attenuated PGE2 production and increased vasoprotective nitric oxide (NO) content. Folic acid also decreased cyclooxygenase-2 (COX-2) and hypoxia-inducible factor 1-alpha (HIF-1α) expression and altered endothelial nitric oxide synthase (eNOS) signaling by increasing p-eNOS(Ser1177) and decreasing p-eNOS(Thr495) in a dose-dependent manner. Further investigation of the pathway demonstrated that treatment with 2-Methoxyestradiol (2-MeOE2) and celecoxib both decreased CoCl2-induced COX-2 expression but only 2-MeOE2 decreased HIF-1α expression. The ability of folic acid to down-regulate HIF-1α and COX-2 protein levels was dramatically abrogated by L-NAME treatment, which also decreased eNOS mRNA and NO production. The NO donor sodium nitroprusside also dose-dependently down-regulated HIF-1α and COX-2 protein levels. Overall, these findings suggest a novel application for folic acid in attenuating CoCl2-induced PGE2 production in HUVECs via regulation of the NO/HIF-1α/COX-2 pathway.
Collapse
Affiliation(s)
- Yuming Liang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Xiaozhou Zhen
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Kaiwen Wang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China
| | - Jing Ma
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
34
|
He QS, Zhang L, Fan ZY, Feng G, Wang FJ, Liu ZQ, Tang T, Kuang SX. RETRACTED: Protective effects of total flavonoids in Caragana against hypoxia/reoxygenation-induced injury in human brain microvascular endothelial cells. Biomed Pharmacother 2017; 89:316-322. [PMID: 28236705 DOI: 10.1016/j.biopha.2017.01.106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/10/2016] [Accepted: 01/02/2017] [Indexed: 12/25/2022] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. An Expression of Concern for this article was previously published while an investigation was conducted (see related editorial: https://doi.org/10.1016/j.biopha.2022.113812). This retraction notice supersedes the Expression of Concern published earlier. Concern was raised about the reliability of the Transwell assay images shown in Figure 4A, which appear to contain similar features to those found in other publications, as detailed here: https://pubpeer.com/publications/FE1B7461C358F48E6838BF1622C291; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. An additional suspected image duplication within Figure 5A was also identified. The journal requested the corresponding author comment on these concerns and provide the associated raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Qian-Song He
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Li Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Zi-Yuan Fan
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Guo Feng
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Fu-Jiang Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Zheng-Qi Liu
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Ting Tang
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China
| | - Shi-Xiang Kuang
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| |
Collapse
|
35
|
Zhang LC, Jin X, Huang Z, Yan ZN, Li PB, Duan RF, Feng H, Jiang JH, Peng H, Liu W. Protective effects of choline against hypoxia-induced injuries of vessels and endothelial cells. Exp Ther Med 2017; 13:2316-2324. [PMID: 28565844 PMCID: PMC5443310 DOI: 10.3892/etm.2017.4276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/06/2017] [Indexed: 01/08/2023] Open
Abstract
The current study aimed to lay a theoretical foundation for further development of choline as an anti-hypoxia damage drug. Wild-type, 3- to 5-month-old male Sprague-Dawley rats, weighing 180-220 g, were used in this study. The rats were randomly divided into a normoxic control group (n=16) and a chronic intermittent hypoxia (CIH) group (n=16). The effects of CIH on acetylcholine (ACh)-mediated endothelium-dependent vasodilatation in the rat cerebral basilar arterioles and mesenteric arterioles, as well as the protective effects of choline on the arterioles damaged by hypoxia were observed. Moreover, the effects of choline on endothelial cell proliferation during hypoxia were observed, and choline's functional mechanism further explored. The ACh-mediated vasodilatation of rat cerebral basilar and mesenteric arterioles significantly reduced during hypoxia (P<0.01). Choline significantly increased dilation in the rat cerebral basilar (P<0.01) and mesenteric arterioles (P<0.05) damaged by CIH compared with those in the control group. In addition, under hypoxic conditions, choline significantly promoted the proliferation of rat aortic endothelial cells (P<0.05) and significantly reduced lactate dehydrogenase activity in the cell culture supernatant in vitro (P<0.05). Furthermore, the effect of choline could be related to its ability to significantly increase the secretion of vascular endothelial growth factor (P<0.01) and activation of α7 non-neuronal nicotinic acetylcholine receptors under hypoxia (P<0.01). This study demonstrated that choline could have protective effects against hypoxic injuries.
Collapse
Affiliation(s)
- Lian-Cheng Zhang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Xin Jin
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Zhao Huang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Zhen-Nan Yan
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Pei-Bing Li
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Rui-Feng Duan
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hong Feng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin University of Sport, Tianjin 300381, P.R. China
| | - Jian-Hua Jiang
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Hui Peng
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| | - Wei Liu
- Department of Environment and Pharmacy, Tianjin Institute of Health and Environmental Medicine, Tianjin 300050, P.R. China
| |
Collapse
|
36
|
Liu B, Ren KD, Peng JJ, Li T, Luo XJ, Fan C, Yang JF, Peng J. Suppression of NADPH oxidase attenuates hypoxia-induced dysfunctions of endothelial progenitor cells. Biochem Biophys Res Commun 2017; 482:1080-1087. [PMID: 27913300 DOI: 10.1016/j.bbrc.2016.11.161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
NADPH oxidases (NOX) - derived reactive oxygen species (ROS) contribute to oxidative injury in hypoxia-induced pulmonary arterial hypertension. This study aims to evaluate the status of NOX in endothelial progenitor cells (EPCs) under hypoxic condition and to determine whether NOX inhibitors could attenuate hypoxia-induced dysfunctions of EPCs. EPCs were isolated from peripheral blood of SD rats and subjected to hypoxia (O2/N2/CO2, 1/94/5) for 24 h. The cells were collected for β-galactosidase or Hoechst staining, or for functional analysis (migration, adhesion and tube formation). The NOX expression, activity and H2O2 content in EPCs were measured. The results showed that hypoxia treatment promoted EPC senescence and apoptosis, accompanied by the deteriorated functions of EPCs (the reduced abilities in adhesion, migration and tube formation), as well as an increase in NOX2 and NOX4 expression, NOX activity and H2O2 production, these phenomena were attenuated by NOX inhibitors. Furthermore, administration of catalase could also improve the functions of hypoxia-treated EPCs. Based on these observations, we conclude that NOX-derived ROS contributes to the dysfunctions of EPCs under hypoxic condition. Thus, suppression of NOX may provide a novel strategy to improve endothelial functions in hypoxia-relevant diseases.
Collapse
Affiliation(s)
- Bin Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Kai-Di Ren
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jing-Jie Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Tao Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China
| | - Jin-Fu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, 410011, Changsha, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|