1
|
Alenkina IV, Oshtrakh MI. Control of the Iron State in Pharmaceuticals Used for Treatment and Prevention of Iron Deficiency Using Mössbauer Spectroscopy. J Pharm Sci 2024; 113:1426-1454. [PMID: 38423387 DOI: 10.1016/j.xphs.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Various iron-containing medicaments, vitamins and dietary supplements are used or developed for treatment and prevention of the iron deficiency anemia which is very dangerous for human and may cause various disorders. From the other hand, blood losses, iron poor diet, microelements (co-factors) deficiency, metabolic failures, absorption problems, etc. can change the iron status and affect the health. These pharmaceuticals contain iron compounds in the ferrous and ferric states. It is known that ferrous salts are more suitable for the intestinal intake than ferric ones. On the other hand, pharmaceutically important ferritin analogues contain ferric hydrous oxides and appear to be effective for both injections and peroral administration. 57Fe Mössbauer spectroscopy is a unique physical technique which allows one to study various iron-containing materials including pharmaceuticals. Therefore, this technique was applied to study iron-containing pharmaceuticals for the analysis of the iron state, identification of ferric and ferrous compounds, revealing some structural peculiarities and for detection of aging processes in relation to the iron compounds. This review considers the main results of a long experience in the study of iron-containing pharmaceuticals by Mössbauer spectroscopy with critical analysis that may be useful for pharmacists, biochemists, biophysicists, and physicians.
Collapse
Affiliation(s)
- Irina V Alenkina
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation
| | - Michael I Oshtrakh
- Department of Experimental Physics, Institute of Physics and Technology, Ural Federal University, Ekaterinburg, 620002, Russian Federation.
| |
Collapse
|
2
|
Alenkina IV, Chukin AV, Leitus G, Denisova OV, Gracheva M, Felner I, Kuzmann E, Homonnay Z, Oshtrakh MI. Analysis of the iron states in iron-containing pharmaceutical products using Mössbauer spectroscopy. J Pharm Biomed Anal 2024; 237:115745. [PMID: 37832473 DOI: 10.1016/j.jpba.2023.115745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Iron-containing pharmaceuticals, namely: (i) PreNatal with ferrous fumarate, (ii) Tardyferon® with ferrous sulfate, (iii) Fenules with water free ferrous sulfate, (iv) Iron Complex with iron glycinate, citrate, (v) Gentle Iron, (vi) Hema-Plex® and (vii) Iron Bisglycinate with iron (ferrous) bisglycinate chelate (iron compounds are given as declared by the manufactures) were studied by 57Fe Mössbauer spectroscopy with X-ray diffraction and magnetization measurements for analysis of the iron state. The obtained results demonstrate that the iron compound announced by the manufacturer in each pharmaceutical is not homogeneous and exists as some modifications of this compound or results of its transformation/oxidation probably due to its instability. The presence of ferrous and ferric compounds is observed, and the relative ferric iron fractions are roughly determined for each pharmaceutical product. This analysis clearly shows the differences between the iron compounds proclaimed by the manufacturers and those obtained by Mössbauer spectroscopy. That justifies as to why this technique should be used for the control and analysis of the iron-containing pharmaceuticals.
Collapse
Affiliation(s)
- Irina V Alenkina
- Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - Andrey V Chukin
- Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - Gregory Leitus
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Olga V Denisova
- Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - Maria Gracheva
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary; Hevesy Gyorgy Doctoral School of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Israel Felner
- Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel
| | - Ernő Kuzmann
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Homonnay
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Michael I Oshtrakh
- Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation.
| |
Collapse
|
3
|
Gombos J, Balejcikova L, Kopcansky P, Batkova M, Siposova K, Kovac J, Zolochevska K, Safarik I, Lokajova A, Garamus VM, Dobrota D, Strbak O. Destruction of Lysozyme Amyloid Fibrils Induced by Magnetoferritin and Reconstructed Ferritin. Int J Mol Sci 2022; 23:ijms232213926. [PMID: 36430405 PMCID: PMC9696235 DOI: 10.3390/ijms232213926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), or systemic amyloidosis, are characterized by the specific protein transformation from the native state to stable insoluble deposits, e.g., amyloid plaques. The design of potential therapeutic agents and drugs focuses on the destabilization of the bonds in their beta-rich structures. Surprisingly, ferritin derivatives have recently been proposed to destabilize fibril structures. Using atomic force microscopy (AFM) and fluorescence spectrophotometry, we confirmed the destructive effect of reconstructed ferritin (RF) and magnetoferritin (MF) on lysosome amyloid fibrils (LAF). The presence of iron was shown to be the main factor responsible for the destruction of LAF. Moreover, we found that the interaction of RF and MF with LAF caused a significant increase in the release of potentially harmful ferrous ions. Zeta potential and UV spectroscopic measurements of LAF and ferritin derivative mixtures revealed a considerable difference in RF compared to MF. Our results contribute to a better understanding of the mechanism of fibril destabilization by ferritin-like proteins. From this point of view, ferritin derivatives seem to have a dual effect: therapeutic (fibril destruction) and adverse (oxidative stress initiated by increased Fe2+ release). Thus, ferritins may play a significant role in various future biomedical applications.
Collapse
Affiliation(s)
- Jan Gombos
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
- Correspondence: (J.G.); (O.S.)
| | - Lucia Balejcikova
- Institute of Hydrology, Slovak Academy of Sciences, 841 01 Bratislava, Slovakia
| | - Peter Kopcansky
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Marianna Batkova
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Katarina Siposova
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Jozef Kovac
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Kristina Zolochevska
- Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice, Slovakia
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISBB, Czech Academy of Sciences, 370 05 Ceske Budejovice, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, 779 00 Olomouc, Czech Republic
| | - Alica Lokajova
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
| | - Vasil M. Garamus
- Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Dusan Dobrota
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, 036 01 Martin, Slovakia
- Correspondence: (J.G.); (O.S.)
| |
Collapse
|
4
|
Wareppam B, Kuzmann E, Garg VK, Singh LH. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. JOURNAL OF MATERIALS RESEARCH 2022; 38:937-957. [PMID: 36059887 PMCID: PMC9423703 DOI: 10.1557/s43578-022-00665-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Pure and doped iron oxide and hydroxide nanoparticles are highly potential materials for biological, environment, energy and other technological applications. On demand of the applications, single phase as well as multiple phase of different polymorphs or composites of iron oxides with compatible materials for example, zeolite, SiO2, or Au are prepared. The properties of the as-synthesized nanoparticles are predominantly dictated by the local structure and the distribution of the cations. Mössbauer spectroscopy is a perfect and efficient characterization technique to investigate the local structure of the Mössbauer-active element such as Fe, Au, and Sn. In the present review, the local structure transformation on the optimization of the magnetite coexisted with iron hydroxides, spin dynamics of the bare, caped, core-shell and the composites of iron oxide nanoparticles (IONPs), dipole-dipole interactions and the diffusion of IONPs were discussed, based on the findings using Mössbauer spectroscopy.
Collapse
Affiliation(s)
- Boris Wareppam
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| | - Ernő Kuzmann
- Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, 1117 Hungary
| | - Vijayendra K. Garg
- Institute of Physics, University of Brasília, Brasília, DF 70919-970 Brazil
| | - L. Herojit Singh
- Department of Physics, National Institute of Technology Manipur, Langol, 795004 India
| |
Collapse
|
5
|
Trends in biomedical analysis of red blood cells – Raman spectroscopy against other spectroscopic, microscopic and classical techniques. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Buades AB, Pereira LCJ, Vieira BJC, Cerdeira AC, Waerenborgh JC, Pinheiro T, Alves de Matos AP, Pinto CG, Guerreiro J, Mendes F, Valic S, Teixidor F, Vinas C, Marques FM. Mössbauer effect using 57Fe-ferrabisdicarbollide ([o-57FESAN]-): a glance into the potential of a low-dose approach for glioblastoma radiotherapy. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01513c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although a variety of cancers is initially susceptible to chemotherapy, they eventually develop multi-drug resistance. To overcome this situation, more effective and selective treatments are necessary by using anti-tumour agents...
Collapse
|
7
|
Kamnev AA, Tugarova AV. Bioanalytical applications of Mössbauer spectroscopy. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Data on the applications of Mössbauer spectroscopy in the transmission (mainly on 57Fe nuclei) and emission (on 57Co nuclei) variants for analytical studies at the molecular level of metal-containing components in a wide range of biological objects (from biocomplexes and biomacromolecules to supramolecular structures, cells, tissues and organisms) and of objects that are participants or products of biological processes, published in the last 15 years are discussed and systematized. The prospects of the technique in its biological applications, including the developing fields (emission variant, use of synchrotron radiation), are formulated.
The bibliography includes 248 references.
Collapse
|
8
|
Iron, Copper, and Zinc Homeostasis: Physiology, Physiopathology, and Nanomediated Applications. NANOMATERIALS 2021; 11:nano11112958. [PMID: 34835722 PMCID: PMC8620808 DOI: 10.3390/nano11112958] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
Understanding of how the human organism functions has preoccupied researchers in medicine for a very long time. While most of the mechanisms are well understood and detailed thoroughly, medicine has yet much to discover. Iron (Fe), Copper (Cu), and Zinc (Zn) are elements on which organisms, ranging from simple bacteria all the way to complex ones such as mammals, rely on these divalent ions. Compounded by the continuously evolving biotechnologies, these ions are still relevant today. This review article aims at recapping the mechanisms involved in Fe, Cu, and Zn homeostasis. By applying the knowledge and expanding on future research areas, this article aims to shine new light of existing illness. Thanks to the expanding field of nanotechnology, genetic disorders such as hemochromatosis and thalassemia can be managed today. Nanoparticles (NPs) improve delivery of ions and confer targeting capabilities, with the potential for use in treatment and diagnosis. Iron deficiency, cancer, and sepsis are persisting major issues. While targeted delivery using Fe NPs can be used as food fortifiers, chemotherapeutic agents against cancer cells and microbes have been developed using both Fe and Cu NPs. A fast and accurate means of diagnosis is a major impacting factor on outcome of patients, especially when critically ill. Good quality imaging and bed side diagnostic tools are possible using NPs, which may positively impact outcome.
Collapse
|
9
|
Bianchi CL, Djellabi R, Ponti A, Patience GS, Falletta E. Experimental methods in chemical engineering: Mössbauer spectroscopy. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Claudia L. Bianchi
- Department of Chemistry University of Milan Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Florence Italy
| | | | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" (SCITEC) Consiglio Nazionale delle Ricerche Milan Italy
| | | | - Ermelinda Falletta
- Department of Chemistry University of Milan Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Florence Italy
| |
Collapse
|
10
|
Kamnev AA, Tugarova AV, Shchelochkov AG, Kovács K, Kuzmann E. Diffuse reflectance infrared Fourier transform (DRIFT) and Mössbauer spectroscopic study of Azospirillum brasilense Sp7: Evidence for intracellular iron(II) oxidation in bacterial biomass upon lyophilisation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117970. [PMID: 31887674 DOI: 10.1016/j.saa.2019.117970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Microbial cells are well known to be capable of remaining viable when desiccated, and a variety of beneficial microorganisms can thus be preserved for storage. For the ubiquitous widely studied soil bacterium Azospirillum brasilense (wild-type strain Sp7), which has a significant agrobiotechnological potential owing to its plant-growth-promoting capabilities perspective for its use in biofertilisers, Fourier transform infrared (FTIR) spectroscopy (in the diffuse reflectance mode, DRIFT) was used to control the state of biomass, together with 57Fe transmission Mössbauer spectroscopy to monitor intracellular iron speciation in live rapidly frozen cell suspension and in the lyophilised biomass (both measured at T = 80 K). It has been shown for the first time that a relatively large part of ferrous iron in live cells (22% of the whole cellular iron pool, represented by two high-spin Fe(II) forms, in the 18-h culture grown on 57Fe(III) complex with nitrilotriacetic acid as the sole source of iron) gets largely oxidised upon lyophilisation. The remaining part of iron(II) in the resulting dry biomass was found to be ca. 3% only. The major part of ferric iron in the dry biomass was shown to be comprised of ferritin-like ferric species (giving a typical magnetically split sextet at T = 5 K), while the iron(III) formed from cellular iron(II) by oxidation in air in the course of drying remained in a paramagnetic state even at T = 5 K. The possibility of intracellular iron(II) oxidation to iron(III) upon desiccation may be a specific natural strategy to avoid cell damage caused by Fenton-type reactions in dormant (frozen, dried) cells. The results obtained may have important implications related to iron speciation and redox transformations in dried bacterial preparations intended for long-term storage.
Collapse
Affiliation(s)
- Alexander A Kamnev
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov, 13, Saratov 410049, Russia.
| | - Anna V Tugarova
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov, 13, Saratov 410049, Russia
| | - Alexei G Shchelochkov
- Laboratory of Biochemistry, Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Prosp. Entuziastov, 13, Saratov 410049, Russia
| | - Krisztina Kovács
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 1512, Hungary
| | - Ernő Kuzmann
- Laboratory of Nuclear Chemistry, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, Budapest 1512, Hungary
| |
Collapse
|
11
|
Alenkina I, Felner I, Kuzmann E, Oshtrakh M. Characterization of the iron core in Ferrifol®, a pharmaceutical analogue of ferritin, using Mössbauer spectroscopy and magnetization measurements. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|