1
|
Zhang X, Zhang Z. Insulin receptor tyrosine kinase substrate in health and disease (Review). Mol Med Rep 2025; 31:72. [PMID: 39930824 PMCID: PMC11795247 DOI: 10.3892/mmr.2025.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/19/2024] [Indexed: 02/14/2025] Open
Abstract
Insulin receptor (IR) tyrosine kinase substrate (IRTKS) was first identified >20 years ago as a tyrosine‑phosphorylated IR substrate and subsequently characterized as a protein containing an inverse‑Bin‑amphiphysin‑Rvs domain. Subsequent research has shown that IRTKS functions as a scaffold protein with multiple domains, which results in diverse functions in a variety of cell activities. For example, IRTKS plays roles in regulating the formation of membrane protrusions; triggering pathogen‑driven actin assembly; modulating insulin signaling, antiviral immunity and embryonic development; and promoting tumor occurrence and progression. It is also a candidate forensic biomarker of hypothermia. Nevertheless, a systematic summary of the biological functions of IRTKS and its underlying molecular mechanism is lacking. Therefore, the present review provides a comprehensive summary of the latest advancements in IRTKS research, thereby establishing a framework for understanding the contribution of IRTKS to diverse cell processes.
Collapse
Affiliation(s)
- Xueyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
2
|
Wang Y, Liu N, Zhang X, Dai M, Zhang N, Huang G. Study on the repair function of radiation-induced salivary gland injury using human amniotic mesenchymal stem cells pre treated with hypoxia. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102223. [PMID: 39800062 DOI: 10.1016/j.jormas.2025.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/03/2025] [Indexed: 01/15/2025]
Abstract
OBJECTIVE To investigate the reparative effect of hypoxia pretreated hAMSCs on radiation-induced damage to salivary gland function in mice. METHODS hAMSCs were separated from human amniotic tissues by mechanical and enzymatic digestion methods and a 15 Gy electron beam was used to locally irradiate the neck of mouse to create a salivary gland injury model. The mouse models were randomly divided into four groups: control group, IR+PBS group, IR+Nor group and IR+HP group. RESULT Two months after hAMSCs injection, the saliva flow of mice in the IR+PBS group was significantly lower than that of the control group (P < 0.05). The saliva flow of mice in the IR+Nor group and IR+HP group were significantly increased compared to the IR+PBS group (P < 0.05). The cell apoptosis rate of the IR+PBS group was sensibly higher than that of the blank control group (P < 0.05). The cell apoptosis rates of the IR+Nor group and the IR+HP group were lower than that of the IR+PBS group. In addition, the apoptosis rate of the IR+HP group was lower than that of the IR+Nor group (P < 0.05). The changes of IOD of α-Amy in each group showed that the expression of α - Amy in the IR+PBS group was significantly lower than that in the blank control group (P < 0.05). Compared with the IR+PBS group, the IR+Nor group and the IR+HP group showed an obvious increase in the expression of α-Amy (P < 0.05). CONCLUSION Low oxygen pretreatment of hAMSCs could more effectively repair the function of radiation-induced salivary gland compared to normoxic cultivation.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Oral Maxillofacial Surgery, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Nana Liu
- Department of Periodontology, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Xin Zhang
- Department of Oral Maxillofacial Surgery, Suzhou Stomatological Hospital, Suzhou 215004, PR China
| | - Min Dai
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province 563099, PR China
| | - Nini Zhang
- Department of Oral Maxillofacial Surgery, School and Hospital of Stomatology, Zunyi Medical University, Zunyi City, Guizhou Province 563099, PR China.
| | - Guilin Huang
- Department of Stomatology, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519090, PR China.
| |
Collapse
|
3
|
Rasouli M, Safari F, Kanani MH, Ahvati H. Principles of Hanging Drop Method (Spheroid Formation) in Cell Culture. Methods Mol Biol 2025; 2879:289-300. [PMID: 38411887 DOI: 10.1007/7651_2024_527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A type of three-dimensional (3D) cell culture models which is simple and easy is hanging drop method. The hanging drop method emerges as a pivotal technique with diverse applications in cancer research and cell biology. This method facilitates the formation of multicellular spheroids, providing a unique environment for studying cell behavior dynamics. The hanging drop method's theoretical underpinning relies on gravity-enforced self-assembly, allowing for cost-effective, reproducible 3D cell cultures with controlled spheroid sizes. The advantages of this approach include its efficiency in producing cellular heterogeneity, particularly in non-adherent 3D cultures, and its ability to create hypoxic spheroids, making it a suitable model for studying cancer. Moreover, the hanging drop method has proven valuable in investigating various aspects such as tissue structure, signaling pathways, immune activation of cancer cells, and notably, cell proliferation. Researchers have utilized the hanging drop method to explore the dynamics of cell proliferation, studying the effects of mesenchymal stem cells (MSC) secretome on cancer cells. The method's application involves co-culturing different cell lines, assessing spheroid formations, and quantifying their sizes over time. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell growth and viability within a three-dimensional co-culture paradigm.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | | | - Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Rasouli M, Alavi M, D'Angelo A, Sobhani N, Roudi R, Safari F. Exploring the dichotomy of the mesenchymal stem cell secretome: Implications for tumor modulation via cell-signaling pathways. Int Immunopharmacol 2024; 143:113265. [PMID: 39353385 DOI: 10.1016/j.intimp.2024.113265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024]
Abstract
Current cancer therapeutic strategies for the treatment of cancer are often unsuccessful due to unwanted side effects and drug resistance. Therefore, the design and development of potent, new anticancer platforms, such as stem-cell treatments, have attracted much attention. Distinctive biological properties of stem cells include their capacity to secrete bioactive factors, their limited immunogenicity, and their capacity for renewing themselves. Mesenchymal stem cells (MSCs) are one of several kinds of stem cells that are conveniently extracted and are able to be cultivated in vitro utilizing various sources. The secretome of stem cells contains many trophic factors, including cytokines, chemokines, growth factors, and microRNA molecules that can either promote or inhibit the formation of tumors, based on the cell environment. In the current review, we focused on the secretome of mesenchymal stem cells. These stem cells act as a double-edged sword in the regulation of cell signal transduction pathways in that they can either suppress or promote tumors.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Mana Alavi
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Alberto D'Angelo
- Oncology Department, Royal United Hospital, Bath BA1 3NG, United Kingdom
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
5
|
Djermane R, Nieto C, Vega MA, Del Valle EMM. EGFR-targeting polydopamine nanoparticles co-loaded with 5-fluorouracil, irinotecan, and leucovorin to potentially enhance metastatic colorectal cancer therapy. Sci Rep 2024; 14:29265. [PMID: 39587206 PMCID: PMC11589782 DOI: 10.1038/s41598-024-80879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024] Open
Abstract
Despite all prevention programs, many cases of colorectal cancer (CRC) are diagnosed when they have already metastasized. Herein, chemotherapy is required, and combination of 5-fluorouracil, irinotecan, and leucovorin (FOLFIRI) is one of the first-line treatments chosen. However, it is so toxic that compromises patient outcomes. Thus, with the aim of improving FOLFIRI pharmacokinetics while reducing its side effects, the three compounds that make it up were simultaneously absorbed in this work into polydopamine nanoparticles (PDA NPs), also loaded with an antibody to target CRC cells overexpressing the epithermal growth factor receptor (EGFR). All adsorptions, which were successfully executed without toxic solvents, were electrostatic in nature according to the calorimetry results obtained. Otherwise, based on the experiments done, 5-flurouracil, irinotecan, and leucovorin release from PDA NPs followed a burst-like pattern, which was possibly mediated by Fickian diffusion mechanisms. Finally, the assays performed with two EGFR-overexpressing CRC cell lines showed that the uptake of the nanosystem was rapid, and that its therapeutic effect was very significant. It managed to greatly reduce the viability of these cells to 22-30% after 72 h of incubation. Furthermore, when tumor spheroids were developed and treated with PDA NPs loaded with FOLFIRI and the anti-EGFR antibody (FOLFIRI-CTX@PDA NPs), these demonstrated to continue to have very marked therapeutic activity. In addition, FOLFIRI-CTX@PDA NPs affected to a lesser extent the survival rate of stromal cells, with which viability experiments were also done. Therefore, the novel developed PDA nanocarrier could be a promising strategy to enhance metastatic CRC therapy hereafter.
Collapse
Affiliation(s)
- Rania Djermane
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
| | - Celia Nieto
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain
| | - Milena A Vega
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| | - Eva M Martín Del Valle
- Departamento de Ingeniería Química y Textil, Universidad de Salamanca, Plaza de los Caídos s/n, 37008, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial de Salamanca, Paseo de San Vicente, 58, 37007, Salamanca, Spain.
| |
Collapse
|
6
|
Rasouli M, Safari F. Principles of Indirect Co-culture Method Using Transwell. Methods Mol Biol 2024. [PMID: 38502468 DOI: 10.1007/7651_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The co-culture method is a simple type of cell culture method used to evaluate the effects of communication between various types of cells in an in vitro setting. In the co-culture method, two or more eukaryotic cell types, or eukaryotic and prokaryotic cells, are cultured together. The co-culture method reflects in vivo cell behaviors and thereby emerges as a pivotal technique with diverse applications in cancer research and cell biology. Two categories of co-culture methods (indirect methods and direct methods) are well known. Direct co-culture methods allow physical contact between the various cell types (juxtacrine signaling). In indirect methods, cells are physically separated into two different populations (for example, using a Transwell) that allow communication only via secretory factors (paracrine signaling). Herein, we focus on the principles of the indirect co-culture method. Nowadays, this method is used to explore the effects of mesenchymal stem cell (MSC) secretome on cancer cells. These studies have unveiled intricate cell behavior dynamics, demonstrating how the MSC secretome influences cancer cell proliferation, invasion, apoptosis, and polarity.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
7
|
Safari F, Dadvar F. In vitro evaluation of autophagy and cell death induction in Panc1 pancreatic cancer by secretome of hAMSCs through downregulation of p-AKT/p-mTOR and upregulation of p-AMPK/ULK1 signal transduction pathways. Tissue Cell 2023; 84:102160. [PMID: 37482027 DOI: 10.1016/j.tice.2023.102160] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/21/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
One of the main causes of cancer mortality in the world is pancreatic cancer. Therapies based on stem cells are currently thought to be a hopeful option in the treatment of cancer. Herein, we intend to evaluate the antitumor effects of secretome of human amniotic mesenchymal stromal cells (hAMSCs) on autophagy and cell death induction in Panc1 pancreatic cancer cells. We adopted a co-culture system using Transwell 6-well plates and after 72 h, hAMSCs-treated Panc1 cancer cells were analyzed using quantitative real time PCR (qRT-PCR), flow cytometry, western blot, MTT assay, and DAPI staining. Based on our results, the microtubule-associated protein 1 light chain 3 (LC3) conversion from LC3-I to LC3-II and the upregulation of autophagy-related proteins expression including Beclin1, Atg7, and Atg12 were detected in hAMSCs-treated Panc1 cells. Furthermore, the level of phosphorylated proteins such as Unc-51-like kinase 1 (ULK1), AMP activated protein kinase (AMPK), AKT, and mTOR changed. Apoptotic cell death was also induced via the elevation of Bax and Caspase 3 expression and inhibition of Bcl-2. Our findings showed that secretome of hAMSCs induces autophagy and cell death in Panc1 cancer cells. However, more experiments will be needed to identify more details about the associated mechanisms.
Collapse
Affiliation(s)
- Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Faezeh Dadvar
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Rahimi Lifshagerd M, Safari F. Therapeutic effects of hAMSCs secretome on proliferation of MDA-MB-231 breast cancer cells by the cell cycle arrest in G1/S phase. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1702-1709. [PMID: 36617361 DOI: 10.1007/s12094-022-03067-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer refers to a disease resulting from the uncontrolled division and growth of abnormal cells. Among different cancer types, breast cancer is considered as one of the most commonly diagnosed cancers. Herein, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) secretome on breast cancer cells (MDA-MB-231) through analyzing cell cycle progression. METHODS We employed a co-culture system using 6-well Transwell plates and after 72 h, the cell cycle progression was evaluated in the hAMSCs-treated MDA-MB-231 cells through analyzing the expressions of RB, CDK4/6, cyclin D, CDK2, cyclin E, p16/INK4a, p21/WAF1/CIP1, and p27/KIP1 using quantitative real-time PCR (qRT-PCR) and western blot method. Cell proliferation, apoptosis, and cell cycle progression were checked using an MTT assay, DAPI staining, and flow cytometry. RESULTS Our results indicated that elevation of RB, p21/WAF1/CIP1, and p27/KIP1 and suppression of RB hyperphosphorylation, p16/INK4a, cyclin E, cyclin D1, CDK2, and CDK4/6 may contribute to inhibiting the proliferation of hAMSCs-treated MDA-MB-231 cells through cell cycle arrest in G1/S phase followed by apoptosis. CONCLUSION hAMSCs secretome may be an effective approach on breast cancer therapy through the inhibition of cell cycle progression.
Collapse
Affiliation(s)
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|