1
|
Messana I, Manconi B, Cabras T, Boroumand M, Sanna MT, Iavarone F, Olianas A, Desiderio C, Rossetti DV, Vincenzoni F, Contini C, Guadalupi G, Fiorita A, Faa G, Castagnola M. The Post-Translational Modifications of Human Salivary Peptides and Proteins Evidenced by Top-Down Platforms. Int J Mol Sci 2023; 24:12776. [PMID: 37628956 PMCID: PMC10454625 DOI: 10.3390/ijms241612776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
In this review, we extensively describe the main post-translational modifications that give rise to the multiple proteoforms characterized to date in the human salivary proteome and their potential role. Most of the data reported were obtained by our group in over twenty-five years of research carried out on human saliva mainly by applying a top-down strategy. In the beginning, we describe the products generated by proteolytic cleavages, which can occur before and after secretion. In this section, the most relevant families of salivary proteins are also described. Next, we report the current information concerning the human salivary phospho-proteome and the limited news available on sulfo-proteomes. Three sections are dedicated to the description of glycation and enzymatic glycosylation. Citrullination and N- and C-terminal post-translational modifications (PTMs) and miscellaneous other modifications are described in the last two sections. Results highlighting the variation in the level of some proteoforms in local or systemic pathologies are also reviewed throughout the sections of the manuscript to underline the impact and relevance of this information for the development of new diagnostic biomarkers useful in clinical practice.
Collapse
Affiliation(s)
- Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | | | - Maria Teresa Sanna
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy; (I.M.); (C.D.); (D.V.R.)
| | - Federica Vincenzoni
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.I.); (F.V.)
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
| | - Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Giulia Guadalupi
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy; (B.M.); (M.T.S.); (A.O.); (C.C.); (G.G.)
| | - Antonella Fiorita
- Fondazione Policlinico Universitario A. Gemelli Fondazione IRCCS, 00168 Rome, Italy;
- Dipartimento di Scienze dell’Invecchiamento, Neurologiche, Ortopediche e della Testa e del Collo, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gavino Faa
- Unit of Pathology, Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Massimo Castagnola
- Proteomics Laboratory, European Center for Brain Research, (IRCCS) Santa Lucia Foundation, 00168 Rome, Italy;
| |
Collapse
|
2
|
Gao Z, Chen S, Du J, Wu Z, Ge W, Gao S, Zhou Z, Yang X, Xing Y, Shi M, Hu Y, Tang W, Xia J, Zhang X, Jiang J, Yang S. Quantitative analysis of fucosylated glycoproteins by immobilized lectin-affinity fluorescent labeling. RSC Adv 2023; 13:6676-6687. [PMID: 36860533 PMCID: PMC9969232 DOI: 10.1039/d3ra00072a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023] Open
Abstract
Human biofluids are often used to discover disease-specific glycosylation, since abnormal changes in protein glycosylation can discern physiopathological states. Highly glycosylated proteins in biofluids make it possible to identify disease signatures. Glycoproteomic studies on saliva glycoproteins showed that fucosylation was significantly increased during tumorigenesis and that glycoproteins became hyperfucosylated in lung metastases, and tumor stage is associated with fucosylation. Quantification of salivary fucosylation can be achieved by mass spectrometric analysis of fucosylated glycoproteins or fucosylated glycans; however, the use of mass spectrometry is non-trivial for clinical practice. Here, we developed a high-throughput quantitative method, lectin-affinity fluorescent labeling quantification (LAFLQ), to quantify fucosylated glycoproteins without relying on mass spectrometry. Lectins with a specific affinity for fucoses are immobilized on the resin and effectively capture fluorescently labeled fucosylated glycoproteins, which are further quantitatively characterized by fluorescence detection in a 96-well plate. Our results demonstrated that serum IgG can be accurately quantified by lectin and fluorescence detection. Quantification in saliva showed significantly higher fucosylation in lung cancer patients compared to healthy controls or other non-cancer diseases, suggesting that this method has the potential to quantify stage-related fucosylation in lung cancer saliva.
Collapse
Affiliation(s)
- Ziyuan Gao
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Sufeng Chen
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Jing Du
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Wei Ge
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University Lianyungang 222005 China
| | - Zeyang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Xiaodong Yang
- Department of General Surgery, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yufei Xing
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Minhua Shi
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Yunyun Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Wen Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University Suzhou 215004 China
| | - Jun Xia
- Clinical Laboratory Center, Zhejiang Provincial People's Hospital Hangzhou Zhejiang 310014 China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University Shanghai 200438 China
| | - Junhong Jiang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University Suzhou 215006 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou 215123 China
| |
Collapse
|
3
|
Lectin-Based Affinity Enrichment and Characterization of N-Glycoproteins from Human Tear Film by Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020648. [PMID: 36677706 PMCID: PMC9864693 DOI: 10.3390/molecules28020648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
The glycosylation of proteins is one of the most common post-translational modifications (PTMs) and plays important regulatory functions in diverse biological processes such as protein stability or cell signaling. Accordingly, glycoproteins are also a consistent part of the human tear film proteome, maintaining the proper function of the ocular surface and forming the first defense barrier of the ocular immune system. Irregularities in the glycoproteomic composition of tear film might promote the development of chronic eye diseases, indicating glycoproteins as a valuable source for biomarker discovery or drug target identification. Therefore, the present study aimed to develop a lectin-based affinity method for the enrichment and concentration of tear glycoproteins/glycopeptides and to characterize their specific N-glycosylation sites by high-resolution mass spectrometry (MS). For method development and evaluation, we first accumulated native glycoproteins from human tear sample pools and assessed the enrichment efficiency of different lectin column systems by 1D gel electrophoresis and specific protein stainings (Coomassie and glycoproteins). The best-performing multi-lectin column system (comprising the four lectins ConA, JAC, WGA, and UEA I, termed 4L) was applied to glycopeptide enrichment from human tear sample digests, followed by MS-based detection and localization of their specific N-glycosylation sites. As the main result, our study identified a total of 26 N glycosylation sites of 11 N-glycoproteins in the tear sample pools of healthy individuals (n = 3 biological sample pools). Amongst others, we identified tear film proteins lactotransferrin (N497 and N642, LTF), Ig heavy chain constant α-1 (N144 and 340, IGHA1), prolactin-inducible protein (N105, PIP), and extracellular lacritin (N105, LACRT) as highly reliable and significant N glycoproteins, already associated with the pathogenesis of various chronic eye diseases such as dry eye syndrome (DES). In conclusion, the results of the present study will serve as an important tear film N-glycoprotein catalog for future studies focusing on human tear film and ocular surface-related inflammatory diseases.
Collapse
|
4
|
Contreras-Aguilar MD, Vallejo-Mateo PJ, Lamy E, Cerón JJ, Rubio CP. Changes in salivary analytes in cows due to the in vitro presence of feed. BMC Vet Res 2022; 18:275. [PMID: 35836175 PMCID: PMC9281046 DOI: 10.1186/s12917-022-03371-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The effect in a sialochemistry profile of the presence of usually available feed in dairy cows was evaluated by an in vitro experiment. For this purpose, a pooled clean saliva from five healthy dairy cows was incubated five times with a standard feed based on a total mixed ration (F), wheat hay (H), and grass (G). The salivary panel was integrated by biomarkers of stress (cortisol -sCor-, salivary alpha-amylase -sAA-, butyrylcholinesterase -BChE-, total esterase -TEA-, and lipase -Lip-), immunity (adenosine deaminase -ADA-), oxidative status (Trolox equivalent antioxidant capacity -TEAC-, the ferric reducing ability of saliva -FRAS-, the cupric reducing antioxidant capacity -CUPRAC-, uric acid, and advanced oxidation protein products -AOPP-), and enzymes, proteins, and minerals of general metabolism and markers of liver, muscle, and renal damage (aspartate aminotransferase -AST-, alanine aminotransferase -ALP-, γ-glutamyl transferase -gGT-, lactate dehydrogenase -LDH-, creatine kinase -CK-, creatinine, urea, triglycerides, glucose, lactate, total protein, phosphorus, and total calcium). RESULTS Most of the evaluated analytes showed a coefficient of variations (CV) higher than 15% and/or significant changes compared with the clean saliva when feed was present. Some analytes, such as the oxidative status biomarkers (CV > 80%), AST (CV > 60%), or glucose (CV > 100%), showed significant changes with all the feed types tested. Others showed significant differences only with certain types of feed, such as LDH with F (CV > 60%) or triglycerides with F (CV > 100%) and H (CV > 95%). However, sCor or gGT remained unchanged (CV < 15%, P > 0.05) in all the treatments. CONCLUSIONS The presence of feed can produce changes in most of the analytes measured in cows' saliva, being of high importance to consider this factor when saliva is used as a sample to avoid errors in the interpretation of the results.
Collapse
Affiliation(s)
- M D Contreras-Aguilar
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Campus de Espinardo, 30100, Espinardo, Murcia, Spain.
| | - P J Vallejo-Mateo
- Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Campus de Espinardo, 30100, Espinardo, Murcia, Spain
| | - E Lamy
- MED Mediterranean Institute for Agriculture, Environment and Development, IIFA Instituto de Investigação e Formação Avançada, University of Évora, Núcleo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - J J Cerón
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Campus de Espinardo, 30100, Espinardo, Murcia, Spain
| | - C P Rubio
- Interdisciplinary Laboratory of Clinical Analysis of the University of Murcia (Interlab-UMU), Department of Animal Medicine and Surgery, Veterinary School, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, Campus de Espinardo, 30100, Espinardo, Murcia, Spain.,Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
5
|
Huang L, Shao D, Wang Y, Cui X, Li Y, Chen Q, Cui J. Human body-fluid proteome: quantitative profiling and computational prediction. Brief Bioinform 2021; 22:315-333. [PMID: 32020158 PMCID: PMC7820883 DOI: 10.1093/bib/bbz160] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Empowered by the advancement of high-throughput bio technologies, recent research on body-fluid proteomes has led to the discoveries of numerous novel disease biomarkers and therapeutic drugs. In the meantime, a tremendous progress in disclosing the body-fluid proteomes was made, resulting in a collection of over 15 000 different proteins detected in major human body fluids. However, common challenges remain with current proteomics technologies about how to effectively handle the large variety of protein modifications in those fluids. To this end, computational effort utilizing statistical and machine-learning approaches has shown early successes in identifying biomarker proteins in specific human diseases. In this article, we first summarized the experimental progresses using a combination of conventional and high-throughput technologies, along with the major discoveries, and focused on current research status of 16 types of body-fluid proteins. Next, the emerging computational work on protein prediction based on support vector machine, ranking algorithm, and protein-protein interaction network were also surveyed, followed by algorithm and application discussion. At last, we discuss additional critical concerns about these topics and close the review by providing future perspectives especially toward the realization of clinical disease biomarker discovery.
Collapse
Affiliation(s)
- Lan Huang
- College of Computer Science and Technology in the Jilin University
| | - Dan Shao
- College of Computer Science and Technology in the Jilin University
- College of Computer Science and Technology in Changchun University
| | - Yan Wang
- College of Computer Science and Technology in the Jilin University
| | - Xueteng Cui
- College of Computer Science and Technology in the Changchun University
| | - Yufei Li
- College of Computer Science and Technology in the Changchun University
| | - Qian Chen
- College of Computer Science and Technology in the Jilin University
| | - Juan Cui
- Department of Computer Science and Engineering in the University of Nebraska-Lincoln
| |
Collapse
|
6
|
Bostanci N, Grant M, Bao K, Silbereisen A, Hetrodt F, Manoil D, Belibasakis GN. Metaproteome and metabolome of oral microbial communities. Periodontol 2000 2020; 85:46-81. [PMID: 33226703 DOI: 10.1111/prd.12351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The emergence of high-throughput technologies for the comprehensive measurement of biomolecules, also referred to as "omics" technologies, has helped us gather "big data" and characterize microbial communities. In this article, we focus on metaproteomic and metabolomic approaches that support hypothesis-driven investigations on various oral biologic samples. Proteomics reveals the working units of the oral milieu and metabolomics unveils the reactions taking place; and so these complementary techniques can unravel the functionality and underlying regulatory processes within various oral microbial communities. Current knowledge of the proteomic interplay and metabolic interactions of microorganisms within oral biofilm and salivary microbiome communities is presented and discussed, from both clinical and basic research perspectives. Communities indicative of, or from, health, caries, periodontal diseases, and endodontic lesions are represented. Challenges, future prospects, and examples of best practice are given.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Melissa Grant
- Biological Sciences, School of Dentistry, Institute of Clinical Sciences, University of Birmingham, Birmingham, UK
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franziska Hetrodt
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Miller I, Schlosser S, Palazzolo L, Veronesi MC, Eberini I, Gianazza E. Some more about dogs: Proteomics of neglected biological fluids. J Proteomics 2020; 218:103724. [PMID: 32126321 DOI: 10.1016/j.jprot.2020.103724] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/28/2020] [Indexed: 01/01/2023]
Abstract
We report in this manuscript what is known about the protein makeup of a selection of biological fluids in the domestic dog. The samples we review - amniotic and allantoic fluid, seminal fluid, saliva, bile, synovial fluid, tears - are still very poorly characterized in this species. For some of them we can present results from our own, mainly unpublished experiments. SIGNIFICANCE: The dog is one of the most widespread companion animals, and also of medical relevance as model species for some human diseases. Still, investigation of body fluids other than serum and urine is not so commonly undertaken, although - like in humans - also these sample types may have potential for diagnostic purposes. We compile published data about proteomes of fetal fluids, seminal plasma, saliva, bile, synovial fluid and tears, enriched by some yet unpublished data of our own (proteins of amniotic and allantoic fluid, tears). Closing gaps in our knowledge on dog proteins will further our understanding of (patho)physiological processes.
Collapse
Affiliation(s)
- Ingrid Miller
- Institut für Medizinische Biochemie, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria.
| | - Sarah Schlosser
- VetCore, Veterinärmedizinische Universität Wien, Veterinärplatz 1, A-1210 Wien, Austria
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Maria Cristina Veronesi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via dell'Università 6, 26900 Lodi, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| | - Elisabetta Gianazza
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, I-20133 Milano, Italy
| |
Collapse
|
8
|
Zuo Y, Whitbeck JC, Haila GJ, Hakim AA, Rothlauf PW, Eisenberg RJ, Cohen GH, Krummenacher C. Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1. PLoS One 2019; 14:e0223299. [PMID: 31581238 PMCID: PMC6776388 DOI: 10.1371/journal.pone.0223299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Oral herpes is a highly prevalent infection caused by herpes simplex virus 1 (HSV-1). After an initial infection of the oral cavity, HSV-1 remains latent in sensory neurons of the trigeminal ganglia. Episodic reactivation of the virus leads to the formation of mucocutaneous lesions (cold sores), but asymptomatic reactivation accompanied by viral shedding is more frequent and allows virus spread to new hosts. HSV-1 DNA has been detected in many oral tissues. In particular, HSV-1 can be found in periodontal lesions and several studies associated its presence with more severe periodontitis pathologies. Since gingival fibroblasts may become exposed to salivary components in periodontitis lesions, we analyzed the effect of saliva on HSV-1 and -2 infection of these cells. We observed that human gingival fibroblasts can be infected by HSV-1. However, pre-treatment of these cells with saliva extracts from some but not all individuals led to an increased susceptibility to infection. Furthermore, the active saliva could expand HSV-1 tropism to cells that are normally resistant to infection due to the absence of HSV entry receptors. The active factor in saliva was partially purified and comprised high molecular weight complexes of glycoproteins that included secretory Immunoglobulin A. Interestingly, we observed a broad variation in the activity of saliva between donors suggesting that this activity is selectively present in the population. The active saliva factor, has not been isolated, but may lead to the identification of a relevant biomarker for susceptibility to oral herpes. The presence of a salivary factor that enhances HSV-1 infection may influence the risk of oral herpes and/or the severity of associated oral pathologies.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Charles Whitbeck
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel J. Haila
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| | - Abraham A. Hakim
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Paul W. Rothlauf
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
9
|
Inui T, Palmer RJ, Shah N, Li W, Cisar JO, Wu CD. Effect of mechanically stimulated saliva on initial human dental biofilm formation. Sci Rep 2019; 9:11805. [PMID: 31413280 PMCID: PMC6694102 DOI: 10.1038/s41598-019-48211-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 02/03/2023] Open
Abstract
This study evaluated the impact of mechanically stimulated saliva on initial bacterial colonization. Interaction between oral bacteria and both unstimulated and stimulated saliva was examined in vitro by laying labeled bacteria over SDS-PAGE-separated salivary proteins. The effects of chewing on in vivo biofilm, microbial composition, and spatial arrangement were examined in two human volunteers using an intraoral stent containing retrievable enamel chips. In vitro experiments showed that bacterial binding to proteins from stimulated saliva was lower than that to proteins from unstimulated saliva. Lack of binding activity was noted with Streptococcus mutans and Lactobacillus casei. Human Oral Microbe Identification Microarray (HOMIM) analyses revealed a consistent chewing-related increase in the binding of Streptococcus anginosus and Streptococcus gordonii. Immunofluorescence microscopy demonstrated the presence of multi-species colonies and cells bearing different serotypes of the coaggregation-mediating streptococcal cell-surface receptor polysaccharides (RPS). Differences in bacterial colonization were noted between the two volunteers, while the type 4 RPS-reactive serotype was absent in one volunteer. Cells reacting with antibody against Rothia or Haemophilus were prominent in the early biofilm. While analysis of the data obtained demonstrated inter-individual variations in both in vitro and in vivo bacterial binding patterns, stimulating saliva with multiple orosensory stimuli may modulate oral bacterial colonization of tooth surfaces.
Collapse
Affiliation(s)
- Taichi Inui
- Mars-Wrigley Confectionery, Chicago, IL, 60642, USA.,National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Robert J Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nehal Shah
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wei Li
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - John O Cisar
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christine D Wu
- Department of Pediatric Dentistry, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
10
|
Amado F, Calheiros-Lobo MJ, Ferreira R, Vitorino R. Sample Treatment for Saliva Proteomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1073:23-56. [DOI: 10.1007/978-3-030-12298-0_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Ma R, Peng X, Xu Y, Duan DY. [Advances in salivary protein glycosylation and its relationship with systemic and oral diseases]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:336-341. [PMID: 29984939 DOI: 10.7518/hxkq.2018.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein glycosylation is one of the most important protein post-translational modifications that can affect life activities by endowing the protein with various structural and functional features. Saliva is an easy-to-obtain, noninvasive body fluid that contains components originating from serum, gingival crevicular fluid, and oropharyngeal mucosae. In recent years, understanding of saliva has been constantly updated with the developments in related research. Studies have shown that salivary proteins can be used as diagnostic markers for certain diseases, and changes of protein glycosylation in saliva are generally considered to be related to many diseases. In this review, salivary protein glycosylation and its relationship with systemic and oral diseases were discussed.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ding-Yu Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Takeuchi T, Plasseraud L, Ziegler-Devin I, Brosse N, Shinzato C, Satoh N, Marin F. Biochemical characterization of the skeletal matrix of the massive coral, Porites australiensis - The saccharide moieties and their localization. J Struct Biol 2018; 203:219-229. [PMID: 29859330 DOI: 10.1016/j.jsb.2018.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/01/2023]
Abstract
To construct calcium carbonate skeletons of sophisticated architecture, scleractinian corals secrete an extracellular skeletal organic matrix (SOM) from aboral ectodermal cells. The SOM, which is composed of proteins, saccharides, and lipids, performs functions critical for skeleton formation. Even though polysaccharides constitute the major component of the SOM, its contribution to coral skeleton formation is poorly understood. To this end, we analyzed the SOM of the massive colonial coral, Porites australiensis, the skeleton of which has drawn great research interest because it records environmental conditions throughout the life of the colony. The coral skeleton was extensively cleaned, decalcified with acetic acid, and organic fractions were separated based on solubility. These fractions were analyzed using various techniques, including SDS-PAGE, FT-IR, in vitro crystallization, CHNS analysis, chromatography analysis of monosaccharide and enzyme-linked lectin assay (ELLA). We confirmed the acidic nature of SOM and the presence of sulphate, which is thought to initiate CaCO3 crystallization. In order to analyze glycan structures, we performed ELLA on the soluble SOM for the first time and found that it exhibits strong specificity to Datura stramonium lectin (DSL). Furthermore, using biotinylated DSL with anti-biotin antibody conjugated to nanogold, in situ localization of DSL-binding polysaccharides in the P. australiensis skeleton was performed. Signals were distributed on the surfaces of fiber-like crystals of the skeleton, suggesting that polysaccharides may modulate crystal shape. Our study emphasizes the importance of sugar moieties in biomineralization of scleractinian corals.
Collapse
Affiliation(s)
- Takeshi Takeuchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan.
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| | - Isabelle Ziegler-Devin
- LERMAB, Faculté des Sciences & Technologies -Campus Aiguillettes, Université de Lorraine, Vandœuvre-Lès-Nancy, France
| | - Nicolas Brosse
- LERMAB, Faculté des Sciences & Technologies -Campus Aiguillettes, Université de Lorraine, Vandœuvre-Lès-Nancy, France
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan; Department of Marine Bioscience Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8564, Japan
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne - Franche-Comté (UBFC), Dijon, France
| |
Collapse
|
13
|
Laputková G, Schwartzová V, Bánovčin J, Alexovič M, Sabo J. Salivary Protein Roles in Oral Health and as Predictors of Caries Risk. Open Life Sci 2018; 13:174-200. [PMID: 33817083 PMCID: PMC7874700 DOI: 10.1515/biol-2018-0023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 02/13/2018] [Indexed: 12/13/2022] Open
Abstract
This work describes the current state of research on the potential relationship between protein content in human saliva and dental caries, which remains among the most common oral diseases and causes irreversible damage in the oral cavity. An understanding the whole saliva proteome in the oral cavity could serve as a prerequisite to obtaining insight into the etiology of tooth decay at early stages. To date, however, there is no comprehensive evidence showing that salivary proteins could serve as potential indicators for the early diagnosis of the risk factors causing dental caries. Therefore, proteomics indicates the promising direction of future investigations of such factors, including diagnosis and thus prevention in dental therapy.
Collapse
Affiliation(s)
- Galina Laputková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Vladimíra Schwartzová
- 1st Department of Stomatology, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Juraj Bánovčin
- Department of Stomatology and Maxillofacial Surgery, Faculty of Medicine, University of P. J. Šafárik in Košice, Rastislavova 43, Košice, 041 90, Slovakia
| | - Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P. J. Šafárik in Košice, Trieda SNP 1, Košice, 040 11, Slovakia
| |
Collapse
|
14
|
Abstract
Although the type and amount of salivary components are influenced by many factors, due to easy, quick, cheap, and noninvasive sampling method alongside with the existence of the vast majority of the substances found in peripheral blood and urine in it, in recent years saliva has been considered as an ideal biofluid for disease research. Salivary circular RNA (circRNA), as an endogenous RNA molecule with a great variety of regulatory potency, is becoming a novel focus for detecting wide range of local or systemic diseases. Expectantly, with characterization of many more circRNAs in saliva, their motifs, and target sites, they can be used routinely in personalized medicine.
Collapse
Affiliation(s)
- Farinaz Jafari Ghods
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
15
|
Monitoring of post-mortem changes of saliva N-glycosylation by nano LC/MS. Anal Bioanal Chem 2017; 410:45-56. [DOI: 10.1007/s00216-017-0702-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/25/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023]
|
16
|
Hall SC, Hassis ME, Williams KE, Albertolle ME, Prakobphol A, Dykstra AB, Laurance M, Ona K, Niles RK, Prasad N, Gormley M, Shiboski C, Criswell LA, Witkowska HE, Fisher SJ. Alterations in the Salivary Proteome and N-Glycome of Sjögren's Syndrome Patients. J Proteome Res 2017; 16:1693-1705. [PMID: 28282148 PMCID: PMC9668345 DOI: 10.1021/acs.jproteome.6b01051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We used isobaric mass tagging (iTRAQ) and lectin affinity capture mass spectrometry (MS)-based workflows for global analyses of parotid saliva (PS) and whole saliva (WS) samples obtained from patients diagnosed with primary Sjögren's Syndrome (pSS) who were enrolled in the Sjögren's International Collaborative Clinical Alliance (SICCA) as compared with two control groups. The iTRAQ analyses revealed up- and down-regulation of numerous proteins that could be involved in the disease process (e.g., histones) or attempts to mitigate the ensuing damage (e.g., bactericidal/permeability increasing fold containing family (BPIF) members). An immunoblot approach applied to independent sample sets confirmed the pSS associated up-regulation of β2-microglobulin (in PS) and down-regulation of carbonic anhydrase VI (in WS) and BPIFB2 (in PS). Beyond the proteome, we profiled the N-glycosites of pSS and control samples. They were enriched for glycopeptides using lectins Aleuria aurantia and wheat germ agglutinin, which recognize fucose and sialic acid/N-acetyl glucosamine, respectively. MS analyses showed that pSS is associated with increased N-glycosylation of numerous salivary glycoproteins in PS and WS. The observed alterations of the salivary proteome and N-glycome could be used as pSS biomarkers enabling easier and earlier detection of this syndrome while lending potential new insights into the disease process.
Collapse
Affiliation(s)
- Steven C. Hall
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Maria E. Hassis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine E. Williams
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew E. Albertolle
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Andrew B. Dykstra
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Megan Laurance
- Library and Center for Knowledge Management, University of California, San Francisco, San Francisco, California 94143, United States
| | - Katherine Ona
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Richard K. Niles
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Namrata Prasad
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Matthew Gormley
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Caroline Shiboski
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
| | - Lindsey A. Criswell
- Department of Orofacial Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Russel/Engleman Rheumatology Research Center, Department of Medicine, University of California, San Francisco, San Francisco, California 94143, United States
| | - H. Ewa Witkowska
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| | - Susan J. Fisher
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California 94143, United States
- Sandler-Moore Mass Spectrometry Core Facility, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
17
|
Detection and first characterization of an uncommon haptoglobin in porcine saliva of pigs with rectal prolapse by using boronic acid sample enrichment. Animal 2017; 11:845-853. [DOI: 10.1017/s1751731116002159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
18
|
Kozak RP, Urbanowicz PA, Punyadeera C, Reiding KR, Jansen BC, Royle L, Spencer DI, Fernandes DL, Wuhrer M. Variation of Human Salivary O-Glycome. PLoS One 2016; 11:e0162824. [PMID: 27610614 PMCID: PMC5017618 DOI: 10.1371/journal.pone.0162824] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022] Open
Abstract
The study of saliva O-glycosylation is receiving increasing attention due to the potential of glycans for disease biomarkers, but also due to easy access and non-invasive collection of saliva as biological fluid. Saliva is rich in glycoproteins which are secreted from the bloodstream or produced by salivary glands. Mucins, which are highly O-glycosylated proteins, are particularly abundant in human saliva. Their glycosylation is associated with blood group and secretor status, and represents a reservoir of potential disease biomarkers. This study aims to analyse and compare O-glycans released from whole human mouth saliva collected 3 times a day from a healthy individual over a 5 days period. O-linked glycans were released by hydrazinolysis, labelled with procainamide and analysed by ultra-high performance liquid chromatography with fluorescence detection (UHPLC-FLR) coupled to electrospray ionization mass spectrometry (ESI-MS/MS). The sample preparation method showed excellent reproducibility and can therefore be used for biomarker discovery. Our data demonstrates that the O-glycosylation in human saliva changes significantly during the day. These changes may be related to changes in the salivary concentrations of specific proteins.
Collapse
Affiliation(s)
- Radoslaw P. Kozak
- Ludger Ltd., Culham Science Centre, Oxfordshire, United Kingdom
- * E-mail:
| | | | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Health and Biomedical Innovations, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Australia
| | - Karli R. Reiding
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| | - Bas C. Jansen
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| | - Louise Royle
- Ludger Ltd., Culham Science Centre, Oxfordshire, United Kingdom
| | | | | | - Manfred Wuhrer
- Centre for Proteomics and Metabolomics Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
19
|
Caragata M, Shah AK, Schulz BL, Hill MM, Punyadeera C. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays. Anal Biochem 2015; 497:76-82. [PMID: 26743719 DOI: 10.1016/j.ab.2015.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/21/2023]
Abstract
Aberrant glycosylation of proteins is a hallmark of tumorigenesis and could provide diagnostic value in cancer detection. Human saliva is an ideal source of glycoproteins due to the relatively high proportion of glycosylated proteins in the salivary proteome. Moreover, saliva collection is noninvasive and technically straightforward, and the sample collection and storage is relatively easy. Although differential glycosylation of proteins can be indicative of disease states, identification of differential glycosylation from clinical samples is not trivial. To facilitate salivary glycoprotein biomarker discovery, we optimized a method for differential glycoprotein enrichment from human saliva based on lectin magnetic bead arrays (saLeMBA). Selected lectins from distinct reactivity groups were used in the saLeMBA platform to enrich salivary glycoproteins from healthy volunteer saliva. The technical reproducibility of saLeMBA was analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to identify the glycosylated proteins enriched by each lectin. Our saLeMBA platform enabled robust glycoprotein enrichment in a glycoprotein- and lectin-specific manner consistent with known protein-specific glycan profiles. We demonstrated that saLeMBA is a reliable method to enrich and detect glycoproteins present in human saliva.
Collapse
Affiliation(s)
- Michael Caragata
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Alok K Shah
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Michelle M Hill
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| | - Chamindie Punyadeera
- School of Biomedical Sciences, Institute of Biomedical Innovations, Queensland University of Technology, Kelvin Grove, and Translational Research Institute, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
20
|
Albertolle ME, Hassis ME, Ng CJ, Cuison S, Williams K, Prakobphol A, Dykstra AB, Hall SC, Niles RK, Ewa Witkowska H, Fisher SJ. Mass spectrometry-based analyses showing the effects of secretor and blood group status on salivary N-glycosylation. Clin Proteomics 2015; 12:29. [PMID: 26719750 PMCID: PMC4696288 DOI: 10.1186/s12014-015-9100-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Background The carbohydrate portions of salivary glycoproteins play important roles, including mediating bacterial and leukocyte adhesion. Salivary glycosylation is complex. Many of its glycoproteins present ABO and Lewis blood group determinants. An individual’s genetic complement and secretor status govern the expression of blood group antigens. We queried the extent to which salivary glycosylation varies
according to blood group and secretor status. First, we screened submandibular/sublingual and parotid salivas collected as ductal secretions for reactivity with a panel of 16 lectins. We selected three lectins that reacted with the largest number of glycoproteins and one that recognized uncommon lactosamine-containing structures. Ductal salivas representing a secretor with complex blood group expression and a nonsecretor with a simple pattern were separated by SDS-PAGE. Gel slices were trypsin digested and the glycopeptides were individually separated on each of the four lectins. The bound fractions were de-N-glycosylated. LC–MS/MS identified the original glycosylation sites, the peptide sequences, and the parent proteins. Results The results revealed novel salivary N-glycosites and glycoproteins not previously reported. As compared to the secretor, nonsecretor saliva had higher levels of N-glycosylation albeit with simpler structures. Conclusions Together, the results suggested a molecular basis for inter-individual variations in salivary protein glycosylation with functional implications for oral health. Electronic supplementary material The online version of this article (doi:10.1186/s12014-015-9100-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Matthew E Albertolle
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Maria E Hassis
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Connie Jen Ng
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Severino Cuison
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Katherine Williams
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Akraporn Prakobphol
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Andrew B Dykstra
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Steven C Hall
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Richard K Niles
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - H Ewa Witkowska
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| | - Susan J Fisher
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143 USA.,Sandler-Moore Mass Spectrometry Core Facility, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|
21
|
Majem B, Rigau M, Reventós J, Wong DT. Non-coding RNAs in saliva: emerging biomarkers for molecular diagnostics. Int J Mol Sci 2015; 16:8676-98. [PMID: 25898412 PMCID: PMC4425103 DOI: 10.3390/ijms16048676] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 01/05/2023] Open
Abstract
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information.
Collapse
Affiliation(s)
- Blanca Majem
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Marina Rigau
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
| | - Jaume Reventós
- Research Unit in Biomedicine and Translational Oncology, Lab 209, Collserola Building, Vall Hebron Research Institute (VHIR) and University Hospital, Pg. Vall Hebron 119-129, 08035 Barcelona, Spain.
- IDIBELL-Bellvitge Biomedical Research Institute & Universitat Internacional de Catalunya, 08908 Barcelona, Spain.
| | - David T Wong
- Center for Oral/Head & Neck Oncology Research, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Wong DTW. Salivary extracellular noncoding RNA: emerging biomarkers for molecular diagnostics. Clin Ther 2015; 37:540-51. [PMID: 25795433 DOI: 10.1016/j.clinthera.2015.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/05/2023]
Abstract
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, nourished by body's vasculature. Although many circulatory molecules (DNA, RNA, and proteins) can also be present in saliva, saliva harbors unique molecular constituents that can be discriminatory for oral and systemic disease screening and detection. Many studies have reported that salivary constituents can discriminate oral diseases (oral cancer and Sjögren's syndrome) and also systemic diseases (lung cancer, breast cancer, pancreatic cancer, and ovarian cancer). Noncoding RNAs (ncRNAs) are emerging new regulators of diverse biological functions, playing important roles in oncogenesis and tumor progression. Indeed, the short size of these molecules makes them stable in different body fluids such as urine, blood, and saliva, being not as susceptible as mRNAs to degradation by RNases. Here, the current status and clinical implications of the ncRNAs present in human saliva are reviewed for translational applications and basic biological research. The development of noninvasive salivary test (based on ncRNAs profiles) for disease detection could have effective applications into the clinical context with a translational significance as emerging molecular biomarkers for non-invasively disease detection, not only by reducing the cost to the health care system but also by benefitting patients.
Collapse
Affiliation(s)
- David T W Wong
- Division of Oral Biology, School of Dentistry; Jonnson Comprehensive Cancer Center, Department of Head and Neck Surgery, David Geffen School of Medicine; School of Engineering, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
23
|
Kanold JM, Guichard N, Immel F, Plasseraud L, Corneillat M, Alcaraz G, Brümmer F, Marin F. Spine and test skeletal matrices of the Mediterranean sea urchin Arbacia lixula--a comparative characterization of their sugar signature. FEBS J 2015; 282:1891-905. [PMID: 25702947 DOI: 10.1111/febs.13242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/27/2022]
Abstract
Calcified structures of sea urchins are biocomposite materials that comprise a minor fraction of organic macromolecules, such as proteins, glycoproteins and polysaccharides. These macromolecules are thought to collectively regulate mineral deposition during the process of calcification. When occluded, they modify the properties of the mineral. In the present study, the organic matrices (both soluble and insoluble in acetic acid) of spines and tests from the Mediterranean black sea urchin Arbacia lixula were extracted and characterized, in order to determine whether they exhibit similar biochemical signatures. Bulk characterizations were performed by mono-dimensional SDS/PAGE, FT-IR spectroscopy, and an in vitro crystallization assay. We concentrated our efforts on characterization of the sugar moieties. To this end, we determined the monosaccharide content of the soluble and insoluble organic matrices of A. lixula spines and tests by HPAE-PAD, together with their respective lectin-binding profiles via enzyme-linked lectin assay. Finally, we performed in situ localization of N-acetyl glucosamine-containing saccharides on spines and tests using gold-conjugated wheatgerm agglutinin. Our data show that the test and spine matrices exhibit different biochemical signatures with regard to their saccharidic fraction, suggesting that future studies should analyse the regulation of mineral deposition by the matrix in these two mineralized structures in detail. This study re-emphasizes the importance of non-protein moieties, i.e. sugars, in calcium carbonate systems, and highlights the need to clearly identify their function in the biomineralization process.
Collapse
Affiliation(s)
- Julia M Kanold
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Nathalie Guichard
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Françoise Immel
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| | - Laurent Plasseraud
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR CNRS 6302, Faculté des Sciences Mirande, Université de Bourgogne, Dijon, France
| | - Marion Corneillat
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Gérard Alcaraz
- Unité Propre Soutien de Programme PROXISS, Département Agronomie Environnement AgroSupDijon, Dijon Cedex, France
| | - Franz Brümmer
- Department of Zoology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Germany
| | - Frédéric Marin
- UMR CNRS 6282 Biogéosciences, Bâtiment des Sciences Gabriel, Université de Bourgogne, Dijon, France
| |
Collapse
|
24
|
Top-down analytical platforms for the characterization of the human salivary proteome. Bioanalysis 2014; 6:563-81. [PMID: 24568357 DOI: 10.4155/bio.13.349] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Comprehensive analysis and characterization of the human salivary proteome is an important step towards the possible use of saliva for diagnostic and prognostic purposes. The contribution of the different sources to whole saliva, and the evaluation of individual variability and physiological modifications have been investigated by top-down proteomic approaches, disclosing the faceted and complex profile of the human salivary proteome. All this information is essential to develop saliva protein biomarkers. In this Review the major results obtained in the field by top-down platforms, and the improvements required to allow a more complete picture, will be discussed.
Collapse
|
25
|
Xu Y, Bailey UM, Punyadeera C, Schulz BL. Identification of salivary N-glycoproteins and measurement of glycosylation site occupancy by boronate glycoprotein enrichment and liquid chromatography/electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:471-482. [PMID: 24497285 DOI: 10.1002/rcm.6806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/08/2013] [Accepted: 12/10/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Diseases including cancer and congenital disorders of glycosylation have been associated with changes in the site-specific extent of protein glycosylation. Saliva can be non-invasively sampled and is rich in glycoproteins, giving it the potential to be a useful biofluid for the discovery and detection of disease biomarkers associated with changes in glycosylation. METHODS Saliva was collected from healthy individuals and glycoproteins were enriched using phenylboronic acid based glycoprotein enrichment resin. Proteins were deglycosylated with peptide-N-glycosidase F and digested with AspN or trypsin. Desalted peptides and deglycosylated peptides were separated by reversed-phase liquid chromatography and detected with on-line electrospray ionization quadrupole-time-of-flight mass spectrometry using a 5600 TripleTof instrument. Site-specific glycosylation occupancy was semi-quantitatively determined from the abundance of deglycosylated and nonglycosylated versions of each given peptide. RESULTS Glycoprotein enrichment identified 67 independent glycosylation sites from 24 unique proteins, a 3.9-fold increase in the number of glycosylation sites identified. Enrichment of glycoproteins rather than glycopeptides allowed detection of both deglycosylated and nonglycosylated versions of each peptide, and thereby robust measurement of site-specific occupancy at 21 asparagines. Healthy individuals showed limited biological variability in occupancy, with partially modified sites having characteristics consistent with inefficient glycosylation by oligosaccharyltransferase. Inclusion of negative controls without enzymatic deglycosylation controlled for spontaneous chemical deamidation, and identified asparagines previously incorrectly annotated as glycosylated. CONCLUSIONS We developed a sample preparation and mass spectrometry detection strategy for rapid and efficient measurement of site-specific glycosylation occupancy on diverse salivary glycoproteins suitable for biomarker discovery and detection of changes in glycosylation occupancy in human disease.
Collapse
Affiliation(s)
- Ying Xu
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | | | | | | |
Collapse
|
26
|
Kratz EM, Waszkiewicz N, Kałuża A, Szajda SD, Zalewska-Szajda B, Szulc A, Zwierz K, Ferens-Sieczkowska M. Glycosylation Changes in the Salivary Glycoproteins of Alcohol-Dependent Patients: A Pilot Study. Alcohol Alcohol 2013; 49:23-30. [DOI: 10.1093/alcalc/agt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
27
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 1017] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Gutiérrez AM, Nöbauer K, Soler L, Razzazi-Fazeli E, Gemeiner M, Cerón JJ, Miller I. Detection of potential markers for systemic disease in saliva of pigs by proteomics: a pilot study. Vet Immunol Immunopathol 2012. [PMID: 23177629 DOI: 10.1016/j.vetimm.2012.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Animals with different health status have been studied in order to extend the knowledge about protein composition of porcine saliva samples and to discover potential salivary markers for systemic disease in porcine production. Clinical examination of animals was performed at farm level where 10 healthy pigs and 10 animals with evident clinical signs of disease were randomly selected. Saliva and blood samples were obtained and afterwards animals were humanely sacrificed to perform a complete necropsy. Levels of two acute phase proteins, haptoglobin and C-reactive protein, were used to identify possible active infections of the animals. Moreover, serological analysis, to the main porcine infectious diseases in the area, was performed. Salivary proteins were separated by two-dimensional gel electrophoresis followed by mass spectrometry for the identification of specific proteins. A total of 58 spots out of 75 were successfully identified by MS, which correspond to 20 unique proteins. Two different approaches were used to perform a statistical comparison of saliva protein patterns from healthy and diseased animals using the relative spot volume (% spot volume/total volume of all spot in the gel, approach "A") or taking also into account the total protein content of each saliva sample (μg of spot/mL of saliva, approach "B"). Both analyses showed three proteins in common that are differentially regulated between states. However, approach B was selected for biomarker searching since it gave an estimation of protein concentration and showed differential expression of proteins between both health states in a total of 10 proteins, which were up-regulated in disease. Mass spectrometric analysis identified those proteins as salivary lipocalin, lipocalin 1, double headed protease inhibitor protein, adenosine deaminase, haptoglobin, albumin fragments, S100-A8, S100-A9, S100-A12 and pancreatic alpha amylase. These proteins could be considered as potential salivary markers of disease.
Collapse
Affiliation(s)
- A M Gutiérrez
- Department of Animal Medicine and Surgery, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Espinardo, Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Amado FML, Ferreira RP, Vitorino R. One decade of salivary proteomics: current approaches and outstanding challenges. Clin Biochem 2012; 46:506-17. [PMID: 23103441 DOI: 10.1016/j.clinbiochem.2012.10.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
Abstract
Efforts have been made in the last decade towards the complete characterization of saliva proteome using gel-based and gel-free approaches. The combination of these strategies resulted in the increment of the dynamic range of saliva proteome, which yield in the identification of more than 3,000 different protein species. Comparative protein profiling using isotope labeling and label free approaches has been used for the identification of novel biomarkers for oral and related diseases. Although progresses have been made in saliva proteome characterization, the comparative profiling in different pathophysiological conditions is still at the beginning if compared to other bodily fluids. The potential biomarkers identified so far lack specificity once common differentially expressed proteins were detected in the saliva of patients with distinct diseases. In addition, recent research works focused on saliva peptidome profiling already allowed a better understanding of peptides' physiological role in oral cavity. This review provides an overview of the major achievements in saliva proteomics giving emphasis to methodological concerns related with saliva collection, treatment and analysis, as well as the main advantages and pitfalls underlying salivary proteomic strategies and potential clinical outcomes.
Collapse
Affiliation(s)
- Francisco M L Amado
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|
30
|
Vitorino R, Guedes S, Manadas B, Ferreira R, Amado F. Toward a standardized saliva proteome analysis methodology. J Proteomics 2012; 75:5140-65. [PMID: 22809520 DOI: 10.1016/j.jprot.2012.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/26/2012] [Accepted: 05/30/2012] [Indexed: 01/01/2023]
Abstract
The present study aimed the evaluation of saliva sample pre-treatment, in particular the sample clearance usually performed by centrifugation, to the contribution of salivary proteome and peptidome. Using in-gel and off-gel approaches, a large content of salivary proteins was detected in the pellet fraction that is usually discarded. In addition, chaotropic/detergent treatment in combination with sonication, before the centrifugation step, resulted in salivary complex disruption and consequently in the extraction of high amounts of proteins. Based on this data, we suggest the use of urea/detergent with sonication as a standard saliva sample pre-treatment procedure. We also described a procedure to extract salivary peptides which can be performed even after saliva sample treatment with chaotropic/detergents. In overall, we reported for the first time the contribution of the pellet fraction to the whole saliva proteome. iTRAQ analysis highlighted a higher number of different peptides as well as distinct quantities of each protein class when after sample treatment with urea and sonication, acetone precipitation followed by solubilization with acetonitrile/HCl was performed.
Collapse
Affiliation(s)
- Rui Vitorino
- QOPNA, Mass spectrometry center, Department of Chemistry, University of Aveiro, Portugal.
| | | | | | | | | |
Collapse
|
31
|
Schulz BL, Cooper-White J, Punyadeera CK. Saliva proteome research: current status and future outlook. Crit Rev Biotechnol 2012; 33:246-59. [DOI: 10.3109/07388551.2012.687361] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Ruhl S. The scientific exploration of saliva in the post-proteomic era: from database back to basic function. Expert Rev Proteomics 2012; 9:85-96. [PMID: 22292826 DOI: 10.1586/epr.11.80] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The proteome of human saliva can be considered as being essentially completed. Diagnostic markers for a number of diseases have been identified among salivary proteins and peptides, taking advantage of saliva as an easy-to-obtain biological fluid. Yet, the majority of disease markers identified so far are serum components and not intrinsic proteins produced by the salivary glands. Furthermore, despite the fact that saliva is essential for protecting the oral integuments and dentition, little progress has been made in finding risk predictors in the salivary proteome for dental caries or periodontal disease. Since salivary proteins, and in particular the attached glycans, play an important role in interactions with the microbial world, the salivary glycoproteome and other post-translational modifications of salivary proteins need to be studied. Risk markers for microbial diseases, including dental caries, are likely to be discovered among the highly glycosylated major protein species in saliva. This review will attempt to raise new ideas and also point to under-researched areas that may hold promise for future applicability in oral diagnostics and prediction of oral disease.
Collapse
Affiliation(s)
- Stefan Ruhl
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
33
|
Siqueira WL, Dawes C. The salivary proteome: Challenges and perspectives. Proteomics Clin Appl 2011; 5:575-9. [DOI: 10.1002/prca.201100046] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Gonzalez-Begne M, Lu B, Liao L, Xu T, Bedi G, Melvin JE, Yates JR. Characterization of the human submandibular/sublingual saliva glycoproteome using lectin affinity chromatography coupled to multidimensional protein identification technology. J Proteome Res 2011; 10:5031-46. [PMID: 21936497 DOI: 10.1021/pr200505t] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In-depth analysis of the salivary proteome is fundamental to understanding the functions of salivary proteins in the oral cavity and to reveal disease biomarkers involved in different pathophysiological conditions, with the ultimate goal of improving patient diagnosis and prognosis. Submandibular and sublingual glands contribute saliva rich in glycoproteins to the total saliva output, making them valuable sources for glycoproteomic analysis. Lectin-affinity chromatography coupled to mass spectrometry-based shotgun proteomics was used to explore the submandibular/sublingual (SM/SL) saliva glycoproteome. A total of 262 N- and O-linked glycoproteins were identified by multidimensional protein identification technology (MudPIT). Only 38 were previously described in SM and SL salivas from the human salivary N-linked glycoproteome, while 224 were unique. Further comparison analysis with SM/SL saliva of the human saliva proteome, revealed 125 glycoproteins not formerly reported in this secretion. KEGG pathway analyses demonstrated that many of these glycoproteins are involved in processes such as complement and coagulation cascades, cell communication, glycosphingolipid biosynthesis neo-lactoseries, O-glycan biosynthesis, glycan structures-biosynthesis 2, starch and sucrose metabolism, peptidoglycan biosynthesis or others pathways. In summary, lectin-affinity chromatography coupled to MudPIT mass spectrometry identified many novel glycoproteins in SM/SL saliva. These new additions to the salivary proteome may prove to be a critical step for providing reliable biomarkers in the diagnosis of a myriad of oral and systemic diseases.
Collapse
Affiliation(s)
- Mireya Gonzalez-Begne
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Ang CS, Binos S, Knight MI, Moate PJ, Cocks BG, McDonagh MB. Global Survey of the Bovine Salivary Proteome: Integrating Multidimensional Prefractionation, Targeted, and Glycocapture Strategies. J Proteome Res 2011; 10:5059-69. [DOI: 10.1021/pr200516d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ching-Seng Ang
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Steve Binos
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Matthew I Knight
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Peter J Moate
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Benjamin G Cocks
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| | - Matthew B McDonagh
- Biosciences Research Division, ‡Dairy Futures Cooperative Research Centre, and §Future Farming Research Division, Department of Primary Industries, 1 Park Drive, Bundoora, Victoria, Australia
| |
Collapse
|
36
|
Abstract
Salivary diagnostics is a dynamic and emerging field utilizing nanotechnology and molecular diagnostics to aid in the diagnosis of oral and systemic diseases. In this article the author critically reviews the latest advances using oral biomarkers for disease detection. The use of oral fluids is broadening perspectives in clinical diagnosis, disease monitoring, and decision making for patient care. Important elements determining the future possibilities and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Daniel Malamud
- Department of Basic Sciences, New York University College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
37
|
Loo JA, Yan W, Ramachandran P, Wong DT. Comparative human salivary and plasma proteomes. J Dent Res 2010; 89:1016-23. [PMID: 20739693 DOI: 10.1177/0022034510380414] [Citation(s) in RCA: 253] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The protein compositions, or the proteomes, found in human salivary and plasma fluids are compared. From recent experimental work by many laboratories, a catalogue of 2290 proteins found in whole saliva has been compiled. This list of salivary proteins is compared with the 2698 proteins found in plasma. Approximately 27% of the whole-saliva proteins are found in plasma. However, despite this apparent low degree of overlap, the distribution found across Gene Ontological categories, such as molecular function, biological processes, and cellular components, shows significant similarities. Moreover, nearly 40% of the proteins that have been suggested to be candidate markers for diseases such as cancer, cardiovascular disease, and stroke can be found in whole saliva. These comparisons and correlations should encourage researchers to consider the use of saliva to discover new protein markers of disease and as a diagnostic non-proximal fluid to detect early signs of disease throughout the body.
Collapse
Affiliation(s)
- J A Loo
- Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
38
|
Proteomic analysis of porcine saliva. Vet J 2010; 187:356-62. [PMID: 20093058 DOI: 10.1016/j.tvjl.2009.12.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/19/2009] [Accepted: 12/22/2009] [Indexed: 01/17/2023]
Abstract
Saliva contains a number of proteins that may be useful as biomarkers of health and disease and can be easily obtained from large numbers of animals in a non-invasive, stress-free way. The objective of this study was to explore the protein composition of porcine saliva from 10 specific pathogen free pigs using first one-dimensional SDS-PAGE and then two-dimensional electrophoresis and mass spectrometry. A reference proteome pattern for porcine saliva was established with the identification of 13 different, mainly saliva-specific, proteins. These reference data will facilitate the investigation of salivary proteins potentially altered in disease and could serve as novel diagnostic biomarkers.
Collapse
|