1
|
Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharm Res 2021; 38:931-945. [PMID: 34114161 DOI: 10.1007/s11095-021-03067-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy has been increasingly conducted for cancer patients in clinical settings. Progress in this therapeutic approach is hampered by the lack of a solid manufacturing process, T lymphocytes, and tumor-specific antigens. T cell source used in CAR-T cell therapy is derived predominantly from the patient's own T lymphocytes, which makes this approach impracticable to patients with progressive diseases and T leukemia. The generation of autologous CAR-T cells is time-consuming due to the lack of readily available T lymphocytes and is not applicable for third-party patients. Pluripotent stem cells, such as human induced pluripotent stem cells (hiPSCs), can provide an unlimited T cell source for CAR-T cell development with the potential of generating off-the-shelf T cell products. T-iPSCs (iPSC-derived T cells) are phenotypically defined, expandable, and as functional as physiological T cells. The combination of iPSC and CAR technologies provides an exciting opportunity to oncology and greatly facilitates cell-based therapy for cancer patients. However, T-iPSCs, in combination with CARs, are at the early stage of development and need further pre-clinical and clinical studies. This review will critically discuss the progress made in iPSC-derived T cells and provides a roadmap for the development of CAR iPSC-derived T cells and off-the-shelf T-iPSCs.
Collapse
|
2
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Huang CY, Liu CL, Ting CY, Chiu YT, Cheng YC, Nicholson MW, Hsieh PCH. Human iPSC banking: barriers and opportunities. J Biomed Sci 2019; 26:87. [PMID: 31660969 PMCID: PMC6819403 DOI: 10.1186/s12929-019-0578-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/31/2022] Open
Abstract
The introduction of induced pluripotent stem cells (iPSCs) has opened up the potential for personalized cell therapies and ushered in new opportunities for regenerative medicine, disease modeling, iPSC-based drug discovery and toxicity assessment. Over the past 10 years, several initiatives have been established that aim to collect and generate a large amount of human iPSCs for scientific research purposes. In this review, we compare the construction and operation strategy of some iPSC banks as well as their ongoing development. We also introduce the technical challenges and offer future perspectives pertaining to the establishment and management of iPSC banks.
Collapse
Affiliation(s)
- Ching-Ying Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Lin Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Yu Ting
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yueh-Ting Chiu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Patrick C H Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medical Genomics and Proteomics and Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
- Cardiovascular Surgery Division, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
4
|
Omole AE, Fakoya AOJ. Ten years of progress and promise of induced pluripotent stem cells: historical origins, characteristics, mechanisms, limitations, and potential applications. PeerJ 2018; 6:e4370. [PMID: 29770269 PMCID: PMC5951134 DOI: 10.7717/peerj.4370] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
The discovery of induced pluripotent stem cells (iPSCs) by Shinya Yamanaka in 2006 was heralded as a major breakthrough of the decade in stem cell research. The ability to reprogram human somatic cells to a pluripotent embryonic stem cell-like state through the ectopic expression of a combination of embryonic transcription factors was greeted with great excitement by scientists and bioethicists. The reprogramming technology offers the opportunity to generate patient-specific stem cells for modeling human diseases, drug development and screening, and individualized regenerative cell therapy. However, fundamental questions have been raised regarding the molecular mechanism of iPSCs generation, a process still poorly understood by scientists. The efficiency of reprogramming of iPSCs remains low due to the effect of various barriers to reprogramming. There is also the risk of chromosomal instability and oncogenic transformation associated with the use of viral vectors, such as retrovirus and lentivirus, which deliver the reprogramming transcription factors by integration in the host cell genome. These challenges can hinder the therapeutic prospects and promise of iPSCs and their clinical applications. Consequently, extensive studies have been done to elucidate the molecular mechanism of reprogramming and novel strategies have been identified which help to improve the efficiency of reprogramming methods and overcome the safety concerns linked with iPSC generation. Distinct barriers and enhancers of reprogramming have been elucidated, and non-integrating reprogramming methods have been reported. Here, we summarize the progress and the recent advances that have been made over the last 10 years in the iPSC field, with emphasis on the molecular mechanism of reprogramming, strategies to improve the efficiency of reprogramming, characteristics and limitations of iPSCs, and the progress made in the applications of iPSCs in the field of disease modelling, drug discovery and regenerative medicine. Additionally, this study appraises the role of genomic editing technology in the generation of healthy iPSCs.
Collapse
Affiliation(s)
- Adekunle Ebenezer Omole
- Department of Basic Sciences, American University of Antigua College of Medicine, St. John's, Antigua
| | | |
Collapse
|
5
|
Samoilova EM, Kalsin VA, Kushnir NM, Chistyakov DA, Troitskiy AV, Baklaushev VP. Adult Neural Stem Cells: Basic Research and Production Strategies for Neurorestorative Therapy. Stem Cells Int 2018; 2018:4835491. [PMID: 29760724 PMCID: PMC5901847 DOI: 10.1155/2018/4835491] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
Over many decades, constructing genetically and phenotypically stable lines of neural stem cells (NSC) for clinical purposes with the aim of restoring irreversibly lost functions of nervous tissue has been one of the major goals for multiple research groups. The unique ability of stem cells to maintain their own pluripotent state even in the adult body has made them into the choice object of study. With the development of the technology for induced pluripotent stem cells (iPSCs) and direct transdifferentiation of somatic cells into the desired cell type, the initial research approaches based on the use of allogeneic NSCs from embryonic or fetal nervous tissue are gradually becoming a thing of the past. This review deals with basic molecular mechanisms for maintaining the pluripotent state of embryonic/induced stem and reprogrammed somatic cells, as well as with currently existing reprogramming strategies. The focus is on performing direct reprogramming while bypassing the stage of iPSCs which is known for genetic instability and an increased risk of tumorigenesis. A detailed description of various protocols for obtaining reprogrammed neural cells used in the therapy of the nervous system pathology is also provided.
Collapse
Affiliation(s)
- E. M. Samoilova
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - V. A. Kalsin
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - N. M. Kushnir
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
| | - D. A. Chistyakov
- Department of Basic and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center for Psychiatry and Narcology, Moscow, Russia
| | - A. V. Troitskiy
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
- Institute for Advanced Studies, Federal Biomedical Agency of Russian Federation, Moscow, Russia
| | - V. P. Baklaushev
- Federal Research Clinical Center of the Federal Biomedical Agency of Russian Federation, 28 Orekhovy Blvd, Moscow 115682, Russia
- Institute for Advanced Studies, Federal Biomedical Agency of Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
Chhabra A. Derivation of Human Induced Pluripotent Stem Cell (iPSC) Lines and Mechanism of Pluripotency: Historical Perspective and Recent Advances. Stem Cell Rev Rep 2017; 13:757-773. [DOI: 10.1007/s12015-017-9766-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Coskun E, Ercin M, Gezginci‐Oktayoglu S. The Role of Epigenetic Regulation and Pluripotency‐Related MicroRNAs in Differentiation of Pancreatic Stem Cells to Beta Cells. J Cell Biochem 2017; 119:455-467. [DOI: 10.1002/jcb.26203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 06/08/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Ediz Coskun
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Merve Ercin
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| | - Selda Gezginci‐Oktayoglu
- Faculty of ScienceBiology DepartmentMolecular Biology Section, Istanbul UniversityVezneciler 34134IstanbulTurkey
| |
Collapse
|
8
|
Artyukhov AS, Dashinimaev EB, Tsvetkov VO, Bolshakov AP, Konovalova EV, Kolbaev SN, Vorotelyak EA, Vasiliev AV. New genes for accurate normalization of qRT-PCR results in study of iPS and iPS-derived cells. Gene 2017; 626:234-240. [PMID: 28546127 DOI: 10.1016/j.gene.2017.05.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/28/2017] [Accepted: 05/21/2017] [Indexed: 01/30/2023]
Abstract
iPSC-derived cells (from induced pluripotent stem cells) are a useful source that provide a powerful and widely accepted tool for the study of various types of human cells in vitro. Indeed, iPSC-derived cells from patients with hereditary diseases have been shown to reproduce the hallmarks of these diseases in vitro, phenotypes that can then also be manipulated in vitro. Quantitative reverse transcription PCR (qRT-PCR) is often used to characterize the progress of iPSC differentiation, validate mature cell types and to determine levels of pathological markers. Quantitative reverse transcription PCR (qRT-PCR) is used to quantify mRNA levels. This method requires some way of normalizing the data, typically by relating the obtained levels of gene expression to the levels of expression of a "house keeping gene", a gene whose expression is presumed not to change during manipulation of the cells. In the literature, typically only one such reference gene is used and its stability of expression during cell manipulation is not demonstrated. We are not aware of any study systematically looking at the expression of such genes in human iPSC or during their differentiation into neurons. Here we compare the expression of 16 reference genes in iPSC, neural stem cells (NSC) and neurons derived from iPSC. The applications GeNorm and NormFinder were used to identify the most suitable reference genes. We showed that ACTb, C1orf43, PSMB4, GAPDH and HMBS have the most stable expression. The use of these reference genes allows an accurate normalization of qRT-PCR results in all the cell types discussed above. We hope that this report will help to enable the performance of proper qRT-PCR results normalization in studies with iPSC-derived cells and in disease-modeling reports.
Collapse
Affiliation(s)
- A S Artyukhov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia; Pirogov Russian National Research Medical University, Moscow, Russia.
| | - E B Dashinimaev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - V O Tsvetkov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - A P Bolshakov
- Pirogov Russian National Research Medical University, Moscow, Russia; Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | - S N Kolbaev
- Research Center for Neurology, Moscow, Russia
| | - E A Vorotelyak
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Vasiliev
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Podobinska M, Szablowska-Gadomska I, Augustyniak J, Sandvig I, Sandvig A, Buzanska L. Epigenetic Modulation of Stem Cells in Neurodevelopment: The Role of Methylation and Acetylation. Front Cell Neurosci 2017; 11:23. [PMID: 28223921 PMCID: PMC5293809 DOI: 10.3389/fncel.2017.00023] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022] Open
Abstract
The coordinated development of the nervous system requires fidelity in the expression of specific genes determining the different neural cell phenotypes. Stem cell fate decisions during neurodevelopment are strictly correlated with their epigenetic status. The epigenetic regulatory processes, such as DNA methylation and histone modifications discussed in this review article, may impact both neural stem cell (NSC) self-renewal and differentiation and thus play an important role in neurodevelopment. At the same time, stem cell decisions regarding fate commitment and differentiation are highly dependent on the temporospatial expression of specific genes contingent on the developmental stage of the nervous system. An interplay between the above, as well as basic cell processes, such as transcription regulation, DNA replication, cell cycle regulation and DNA repair therefore determine the accuracy and function of neuronal connections. This may significantly impact embryonic health and development as well as cognitive processes such as neuroplasticity and memory formation later in the adult.
Collapse
Affiliation(s)
- Martyna Podobinska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | | | - Justyna Augustyniak
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU) Trondheim, Norway
| | - Leonora Buzanska
- Stem Cell Bioengineering Unit, Mossakowski Medical Research Centre, Polish Academy of Sciences Warsaw, Poland
| |
Collapse
|
10
|
Kim DS, Lee MW, Lee TH, Sung KW, Koo HH, Yoo KH. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells. Biomed Rep 2017; 6:300-306. [PMID: 28451390 DOI: 10.3892/br.2017.845] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/11/2016] [Indexed: 02/06/2023] Open
Abstract
The results of clinical trials using mesenchymal stem cells (MSCs) are controversial due to the heterogeneity of human MSCs and differences in culture conditions. In this regard, it is important to identify gene expression patterns according to culture conditions, and to determine how the cells are expanded and when they should be clinically used. In the current study, stemness gene expression was investigated in adipose tissue-derived MSCs (AT-MSCs) harvested following culture at different densities. AT-MSCs were plated at a density of 200 or 5,000 cells/cm2. After 7 days of culture, stemness gene expression was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The proliferation rate of AT-MSCs harvested at a low density (~50% confluent) was higher than that of AT-MSCs harvested at a high density (~90% confluent). Although there were differences in the expression levels of stemness gene, such as octamer-binding transcription factor 4, nanog homeobox (Nanog), SRY-box 2, Kruppel like factor 4, v-myc avian myelocytomatosis viral oncogene homolog (c-Myc), and lin-28 homolog A, in the AT-MSCs obtained from different donors, RT-qPCR analysis demonstrated differential gene expression patterns according to the cell culture density. Expression levels of stemness genes, particularly Nanog and c-Myc, were upregulated in AT-MSCs harvested at a low density (~50% confluent) in comparison to AT-MSCs from the same donor harvested at a high density (~90% confluent). These results imply that culture conditions, such as the cell density at harvesting, modulate the stemness gene expression and proliferation of MSCs.
Collapse
Affiliation(s)
- Dae Seong Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myoung Woo Lee
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae-Hee Lee
- Department of Laboratory of Cancer and Stem Cell Biology, Plant Engineering Institute, Sejong University, Seoul, Republic of Korea
| | - Ki Woong Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hong Hoe Koo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Stem cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Keon Hee Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Stem cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea.,Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zomer HD, Vidane AS, Gonçalves NN, Ambrósio CE. Mesenchymal and induced pluripotent stem cells: general insights and clinical perspectives. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:125-34. [PMID: 26451119 PMCID: PMC4592031 DOI: 10.2147/sccaa.s88036] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stem cells have awakened a great deal of interest in regenerative medicine due to their plasticity, and immunomodulatory and anti-inflammatory properties. They are high-yield and can be acquired through noninvasive methods from adult tissues. Moreover, they are nontumorigenic and are the most widely studied. On the other hand, induced pluripotent stem (iPS) cells can be derived directly from adult cells through gene reprogramming. The new iPS technology avoids the embryo destruction or manipulation to generate pluripotent cells, therefore, are exempt from ethical implication surrounding embryonic stem cell use. The pre-differentiation of iPS cells ensures the safety of future approaches. Both mesenchymal stem cells and iPS cells can be used for autologous cell transplantations without the risk of immune rejection and represent a great opportunity for future alternative therapies. In this review we discussed the therapeutic perspectives using mesenchymal and iPS cells.
Collapse
Affiliation(s)
- Helena D Zomer
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Atanásio S Vidane
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Natalia N Gonçalves
- Department of Surgery, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E Ambrósio
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
12
|
Vodyanoy V, Pustovyy O, Globa L, Sorokulova I. Primo-Vascular System as Presented by Bong Han Kim. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:361974. [PMID: 26379743 PMCID: PMC4562093 DOI: 10.1155/2015/361974] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/01/2015] [Accepted: 01/05/2015] [Indexed: 11/17/2022]
Abstract
In the 1960s Bong Han Kim discovered and characterized a new vascular system. He was able to differentiate it clearly from vascular blood and lymph systems by the use of a variety of methods, which were available to him in the mid-20th century. He gave detailed characterization of the system and created comprehensive diagrams and photographs in his publications. He demonstrated that this system is composed of nodes and vessels, and it was responsible for tissue regeneration. However, he did not disclose in detail his methods. Consequently, his results are relatively obscure from the vantage point of contemporary scientists. The stains that Kim used had been perfected and had been in use for more than 100 years. Therefore, the names of the stains were directed to the explicit protocols for the usage with the particular cells or molecules. Traditionally, it was not normally necessary to describe the method used unless it is significantly deviated from the original method. In this present work, we have been able to disclose staining methods used by Kim.
Collapse
Affiliation(s)
- Vitaly Vodyanoy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Oleg Pustovyy
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Ludmila Globa
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
| | - Iryna Sorokulova
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn, AL 36849, USA
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA
- Edward Via College of Osteopathic Medicine, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Glycosyltransferase ST6GAL1 contributes to the regulation of pluripotency in human pluripotent stem cells. Sci Rep 2015; 5:13317. [PMID: 26304831 PMCID: PMC4548446 DOI: 10.1038/srep13317] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023] Open
Abstract
Many studies have suggested the significance of glycosyltransferase-mediated macromolecule glycosylation in the regulation of pluripotent states in human pluripotent stem cells (hPSCs). Here, we observed that the sialyltransferase ST6GAL1 was preferentially expressed in undifferentiated hPSCs compared to non-pluripotent cells. A lectin which preferentially recognizes α-2,6 sialylated galactosides showed strong binding reactivity with undifferentiated hPSCs and their glycoproteins, and did so to a much lesser extent with differentiated cells. In addition, downregulation of ST6GAL1 in undifferentiated hPSCs led to a decrease in POU5F1 (also known as OCT4) protein and significantly altered the expression of many genes that orchestrate cell morphogenesis during differentiation. The induction of cellular pluripotency in somatic cells was substantially impeded by the shRNA-mediated suppression of ST6GAL1, partially through interference with the expression of endogenous POU5F1 and SOX2. Targeting ST6GAL1 activity with a sialyltransferase inhibitor during cell reprogramming resulted in a dose-dependent reduction in the generation of human induced pluripotent stem cells (hiPSCs). Collectively, our data indicate that ST6GAL1 plays an important role in the regulation of pluripotency and differentiation in hPSCs, and the pluripotent state in human cells can be modulated using pharmacological tools to target sialyltransferase activity.
Collapse
|
14
|
Di KQ, Gao S, Cui LF, Chang G, Wu FJ, Ren LK, An L, Miao K, Tan K, Tao L, Chen H, Wang ZL, Wang SM, Wu ZH, Gao S, Li XY, Tian JH. Generation of fully pluripotent female murine-induced pluripotent stem cells. Biol Reprod 2015; 92:123. [PMID: 25788660 DOI: 10.1095/biolreprod.114.124958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/03/2015] [Indexed: 02/05/2023] Open
Abstract
The high quality of induced pluripotent stem cells (iPSCs) has been determined to be high-grade chimeras that are competent for germline transmission, and viable mice can be generated through tetraploid complementation. Most of the high-quality iPSCs described to date have been male. Female iPSCs, especially fully pluripotent female iPSCs, are also essential for clinical applications and scientific research. Here, we show, for the first time, that a gender-mixed induction strategy could lead to a skewed sex ratio of iPSCs. After reprogramming, 50%, 70%, and 90% female initiating mouse embryonic fibroblasts at different male ratios resulted in 14.1 ± 6.8% (P < 0.05), 31.8 ± 5.4% (P < 0.05), and 80.1 ± 2.8% (P < 0.05) female iPSCs, respectively. Furthermore, these female iPSCs had pluripotent properties typical of embryonic stem cells. Importantly, these fully pluripotent female iPSCs could generate viable mice by tetraploid complementation. These findings indicate that high-quality female iPSCs could be derived effectively, and suggest that clinical application of female iPSCs is feasible.
Collapse
Affiliation(s)
- Ke-Qian Di
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China Health Science Center, Hebei University, Baoding, Hebei, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Li-Fang Cui
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Gang Chang
- National Institute of Biological Sciences, Beijing, People's Republic of China
| | - Fu-Jia Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Li-Kun Ren
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Lei An
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Kai Miao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Tan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Li Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Hui Chen
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China
| | - Zhi-Long Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Shu-Min Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Zhong-Hong Wu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | - Shaorong Gao
- National Institute of Biological Sciences, Beijing, People's Republic of China The School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Xiang-Yun Li
- Department of Animal Reproduction, College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, People's Republic of China
| | - Jian-Hui Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
15
|
Novosadova EV, Grivennikov IA. Induced pluripotent stem cells: From derivation to application in biochemical and biomedical research. BIOCHEMISTRY (MOSCOW) 2015; 79:1425-41. [DOI: 10.1134/s000629791413001x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Abstract
Recent years have challenged the view that adult somatic cells reach a state of terminal differentiation. Although the ultimate example of this, somatic cell nuclear transfer, has not proven feasible in human beings, dedifferentiation of mature cell types to a more primitive state, direct reprogramming from one mature state to another, and the reprogramming of any adult cell type to a pluripotent state via enforced expression of key transcription factors now all have been shown. The implications of these findings for kidney disease include the re-creation of key renal cell types from more readily available and expandable somatic cell sources. The feasibility of such an approach recently was shown with the dedifferentiation of proximal tubule cells to nephrogenic mesenchyme. In this review, we examine the technical and clinical challenges that remain to such an approach and how new reprogramming approaches also may be useful for kidney disease.
Collapse
Affiliation(s)
- Minoru Takasato
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jessica M Vanslambrouck
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Melissa H Little
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
17
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
18
|
Hernday AD, Lohse MB, Fordyce PM, Nobile CJ, DeRisi JL, Johnson AD. Structure of the transcriptional network controlling white-opaque switching in Candida albicans. Mol Microbiol 2013; 90:22-35. [PMID: 23855748 DOI: 10.1111/mmi.12329] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2013] [Indexed: 01/06/2023]
Abstract
The human fungal pathogen Candida albicans can switch between two phenotypic cell types, termed 'white' and 'opaque'. Both cell types are heritable for many generations, and the switch between the two types occurs epigenetically, that is, without a change in the primary DNA sequence of the genome. Previous work identified six key transcriptional regulators important for white-opaque switching: Wor1, Wor2, Wor3, Czf1, Efg1, and Ahr1. In this work, we describe the structure of the transcriptional network that specifies the white and opaque cell types and governs the ability to switch between them. In particular, we use a combination of genome-wide chromatin immunoprecipitation, gene expression profiling, and microfluidics-based DNA binding experiments to determine the direct and indirect regulatory interactions that form the switch network. The six regulators are arranged together in a complex, interlocking network with many seemingly redundant and overlapping connections. We propose that the structure (or topology) of this network is responsible for the epigenetic maintenance of the white and opaque states, the switching between them, and the specialized properties of each state.
Collapse
Affiliation(s)
- Aaron D Hernday
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, 94158, USA
| | | | | | | | | | | |
Collapse
|
19
|
Palma CS, Tannous MA, Malta TM, Russo EMS, Covas DT, Picanço-Castro V. Forced expression of OCT4 influences the expression of pluripotent genes in human mesenchymal stem cells and fibroblasts. GENETICS AND MOLECULAR RESEARCH 2013; 12:1054-60. [PMID: 23613252 DOI: 10.4238/2013.april.2.22] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Genetic reprogramming of adult cells to generate induced pluripotent stem (iPS) cells is a new and important step in sidestepping some of the ethical issues and risks involved in the use of embryonic stem cells. iPS cells can be generated by introduction of transcription factors, such as OCT4, SOX2, KLF4, and CMYC. iPS cells resemble embryonic stem cells in their properties and differentiation potential. The mechanisms that lead to induced pluripotency and the effect of each transcription factor are not completely understood. We performed a critical evaluation of the effect of overexpressing OCT4 in mesenchymal stem cells and fibroblasts and found that OCT4 can activate the expression of other stemness genes, such as SOX2, NANOG, CMYC, FOXD3, KLF4, and βCATENIN, which are not normally or are very weakly expressed in mesenchymal stem cells. Transient expression of OCT4 was also performed to evaluate whether these genes are affected by its overexpression in the first 48 h. Transfected fibroblast cells expressed around 275-fold more OCT4 than non-transfected cells. In transient expression, in which cells were analyzed after 48 h, we detected only the up-regulation of FOXD3, SOX2, and KLF4 genes, suggesting that these genes are the earlier targets of OCT4 in this cellular type. We conclude that forced expression of OCT4 can alter cell status and activate the pluripotent network. Knowledge gained through study of these systems may help us to understand the kinetics and mechanism of cell reprogramming.
Collapse
Affiliation(s)
- C S Palma
- Instituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular, Hemocentro de Ribeirão Preto, Ribeirão Preto, SP, Brasil
| | | | | | | | | | | |
Collapse
|
20
|
Sandt C, Frederick J, Dumas P. Profiling pluripotent stem cells and organelles using synchrotron radiation infrared microspectroscopy. JOURNAL OF BIOPHOTONICS 2013; 6:60-72. [PMID: 23125135 DOI: 10.1002/jbio.201200139] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 05/22/2023]
Abstract
FTIR micro-spectroscopy is a sensitive, non-destructive and label-free method offering diffraction-limited resolution with high signal-to-noise ratios when combined with a synchrotron radiation source. The vibrational signature of individual cells was used to validate an alternative strategy for reprogramming induced pluripotent stem cells generated from amniocytes. The iPSC lines PB09 and PB10, were reprogrammed from the same amniocyte cell line using respectively the Oct54, Sox2, Lin28, and Nanog and the Oct4 and Sox2 transcription factor cocktail. We show that cells reprogrammed by the two different sets of transfection factors have similar spectral signatures after reprogramming, except for a small subpopulation of cells in one of the cell lines. Mapping HeLa cells at subcellular resolution, we show that the Golgi apparatus, the cytoplasm and the nucleus have a specific spectral signature. The CH(3):CH(2) ratio is the highest in the nucleus and the lowest in the Golgi apparatus/endoplasmic reticulum, in agreement with the membrane composition of these organelles. This is confirmed by specific staining of the organelles with fluorescent dyes. Subcellular differentiation of cell compartments is also demonstrated in living cells.
Collapse
Affiliation(s)
- Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | | | | |
Collapse
|
21
|
Wierstra I. FOXM1 (Forkhead box M1) in tumorigenesis: overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy. Adv Cancer Res 2013; 119:191-419. [PMID: 23870513 DOI: 10.1016/b978-0-12-407190-2.00016-2] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor and is also intimately involved in tumorigenesis. FOXM1 stimulates cell proliferation and cell cycle progression by promoting the entry into S-phase and M-phase. Additionally, FOXM1 is required for proper execution of mitosis. In accordance with its role in stimulation of cell proliferation, FOXM1 exhibits a proliferation-specific expression pattern and its expression is regulated by proliferation and anti-proliferation signals as well as by proto-oncoproteins and tumor suppressors. Since these factors are often mutated, overexpressed, or lost in human cancer, the normal control of the foxm1 expression by them provides the basis for deregulated FOXM1 expression in tumors. Accordingly, FOXM1 is overexpressed in many types of human cancer. FOXM1 is intimately involved in tumorigenesis, because it contributes to oncogenic transformation and participates in tumor initiation, growth, and progression, including positive effects on angiogenesis, migration, invasion, epithelial-mesenchymal transition, metastasis, recruitment of tumor-associated macrophages, tumor-associated lung inflammation, self-renewal capacity of cancer cells, prevention of premature cellular senescence, and chemotherapeutic drug resistance. However, in the context of urethane-induced lung tumorigenesis, FOXM1 has an unexpected tumor suppressor role in endothelial cells because it limits pulmonary inflammation and canonical Wnt signaling in epithelial lung cells, thereby restricting carcinogenesis. Accordingly, FOXM1 plays a role in homologous recombination repair of DNA double-strand breaks and maintenance of genomic stability, that is, prevention of polyploidy and aneuploidy. The implication of FOXM1 in tumorigenesis makes it an attractive target for anticancer therapy, and several antitumor drugs have been reported to decrease FOXM1 expression.
Collapse
|
22
|
Ozdemir M, Attar A, Kuzu I, Ayten M, Ozgencil E, Bozkurt M, Dalva K, Uckan D, Kılıc E, Sancak T, Kanpolat Y, Beksac M. Stem cell therapy in spinal cord injury: in vivo and postmortem tracking of bone marrow mononuclear or mesenchymal stem cells. Stem Cell Rev Rep 2012; 8:953-62. [PMID: 22552878 DOI: 10.1007/s12015-012-9376-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The aim of this study was to address the question of whether bone marrow-originated mononuclear cells (MNC) or mesenchymal stem cells (MSC) induce neural regeneration when implanted intraspinally. MATERIALS AND METHODS The study design included 4 groups of mice: Group 1, non-traumatized control group; Groups 2, 3 and 4 spinal cord traumatized mice with 1 g force Tator clips, which received intralesionally either no cellular implants (Group 2), luciferase (Luc) (+) MNC (Group 3) or MSC (Group 4) obtained from CMV-Luc or beta-actin Luc donor transgenic mice. Following the surgery until decapitation, periodical radioluminescence imaging (RLI) and Basso Mouse Scale (BMS) evaluations was performed to monitor neural activity. Postmortem immunohistochemical techniques were used to analyze the fate of donor type implanted cells. RESULTS All mice of Groups 3 and 4 showed various degrees of improvement in the BMS scores, whereas there was no change in Groups 1 and 2. The functional improvement was significantly better in Group 4 compared to Group 3 (18 vs 8, p=0.002). The immunohistochemical staining demonstrated GFP(+)Luc(+) neuronal/glial cells that were also positive with one or more of these markers: nestin, myelin associated glycoprotein, microtubule associated protein or myelin oligodendrocyte specific protein, which is considered as indicator of donor type neuronal regeneration. Frequency of donor type neuronal cells; Luc + signals and median BMS scores were observed 48-64% and 68-72%; 44-80%; 8 and 18 within Groups III and IV respectively. DISCUSSION MSCs were more effective than MNC in obtaining neuronal recovery. Substantial but incomplete functional improvement was associated with donor type in vivo imaging signals more frequently than the number of neuronal cells expressing donor markers in spinal cord sections in vitro. Our results are in favor of functional recovery arising from both donor MSC and MNCs, contributing to direct neuronal regeneration and additional indirect mechanisms.
Collapse
Affiliation(s)
- Mevci Ozdemir
- School of Medicine, Department of Neurosurgery, Pamukkale University, 20070, Kinikli, Denizli, Turkey.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Potential roles of stem cells in the management of sensorineural hearing loss. The Journal of Laryngology & Otology 2012; 126:653-7. [PMID: 22624825 DOI: 10.1017/s0022215112000850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND In the management of sensorineural hearing loss, effective therapy for degenerated hair cells, third order neurons, ganglions, dendrites and synaptic areas of the vestibulo-cochleo-cerebral pathway remains an enigma. Transplantation of stem and progenitor cells appears to be an emerging potential solution, and is the focus of this review. AIM To review recent developments in the management of sensorineural hearing loss in the field of stem cell research. MATERIALS AND METHOD A systematic review of the English language literature included all experimental and non-experimental studies with a Jadad score of three or more, published between 2000 and 2010 and included in the following databases: Cochrane Library Ear, Nose and Throat Disorders; Medline; Google Scholar; Hinari; and the Online Library of Toronto University. RESULTS Of the 455 and 29 600 articles identified from Medline and Google Scholar, respectively, 48 met the inclusion criteria. These were independently reviewed and jointly analysed. CONCLUSION Although there is not yet any evidence from successful human studies, stem cell and 'alternative stem cell' technology seems to represent the future of sensorineural hearing loss management.
Collapse
|
24
|
Sher F, Amor S, Gerritsen W, Baker D, Jackson SL, Boddeke E, Copray S. Intraventricularly injected Olig2-NSCs attenuate established relapsing-remitting EAE in mice. Cell Transplant 2012; 21:1883-97. [PMID: 22469520 DOI: 10.3727/096368911x637443] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In multiple sclerosis (MS), a chronic inflammatory relapsing demyelinating disease, failure to control or repair damage leads to progressive neurological dysfunction and neurodegeneration. Implantation of neural stem cells (NSCs) has been shown to promote repair and functional recovery in the acute experimental autoimmune encephalomyelitis (EAE) animal model for MS; the major therapeutic mechanism of these NSCs appeared to be immune regulation. In the present study, we examined the efficacy of intraventricularly injected NSCs in chronic relapsing experimental autoimmune encephalomyelitis (CREAE), the animal disease model that is widely accepted to mimic most closely recurrent inflammatory demyelination lesions as observed in relapsing-remitting MS. In addition, we assessed whether priming these NSCs to become oligodendrocyte precursor cells (OPCs) by transient overexpression of Olig2 would further promote functional recovery, for example, by contributing to actual remyelination. Upon injection at the onset of the acute phase or the relapse phase of CREAE, NSCs as well as Olig2-NSCs directly migrated toward active lesions in the spinal cord as visualized by in vivo bioluminescence and biofluorescence imaging, and once in the spinal cord, the majority of Olig2-NSCs, in contrast to NSCs, differentiated into OPCs. The survival of Olig2-NSCs was significantly higher than that of injected control NSCs, which remained undifferentiated. Nevertheless, both Olig2-NSCs and NSC significantly reduced the clinical signs of acute and relapsing disease and, in case of Olig2-NSCs, even completely abrogated relapsing disease when administered early after onset of acute disease. We provide the first evidence that NSCs and in particular NSC-derived OPCs (Olig2-NSCs) ameliorate established chronic relapsing EAE in mice. Our experimental data in established neurological disease in mice indicate that such therapy may be effective in relapsing-remitting MS preventing chronic progressive disease.
Collapse
Affiliation(s)
- Falak Sher
- Department of Neuroscience, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Pietronave S, Prat M. Advances and applications of induced pluripotent stem cells. Can J Physiol Pharmacol 2012; 90:317-25. [DOI: 10.1139/y11-125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Direct reprogramming of somatic cells into pluripotent cells is an emerging technology for creating patient-specific cells, and potentially opens new scenarios in medical and pharmacological fields. From the discovery of Shinya Yamanaka, who first obtained pluripotent cells from fibroblasts by retrovirus-derived ectopic expression of defined embryonic transcription factors, new methods have been developed to generate safe induced pluripotent stem (iPS) cells without genomic manipulations. This review will focus on the recent advances in iPS technology and their application in pharmacology and medicine.
Collapse
Affiliation(s)
- Stefano Pietronave
- Laboratory of Histology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
| | - Maria Prat
- Laboratory of Histology, Department of Health Sciences, Università del Piemonte Orientale “A. Avogadro”, Via Solaroli 17, 28100 Novara, Italy
- Centro di Biotecnologie per la Ricerca Medica Applicata (BRMA), Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
26
|
Abstract
Reprogramming of adult somatic cells into pluripotent stem cells may provide an attractive source of stem cells for regenerative medicine. It has emerged as an invaluable method for generating patient-specific stem cells of any cell lineage without the use of embryonic stem cells. A revolutionary study in 2006 showed that it is possible to convert adult somatic cells directly into pluripotent stem cells by using a limited number of pluripotent transcription factors and is called as iPS cells. Currently, both genomic integrating viral and nonintegrating nonviral methods are used to generate iPS cells. However, the viral-based technology poses increased risk of safety, and more studies are now focused on nonviral-based technology to obtain autologous stem cells for clinical therapy. In this review, the pros and cons of the present iPS cell technology and the future direction for the successful translation of this technology into the clinic are discussed.
Collapse
|
27
|
Yap CS, Peterson AL, Castellani G, Sedivy JM, Neretti N. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle 2011; 10:2184-96. [PMID: 21623162 DOI: 10.4161/cc.10.13.16249] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mammalian c-Myc is a member of a small family of three related proto-oncogenic transcription factors. c-Myc has an unusually broad array of regulatory functions, which include roles in cell cycle and apoptosis, a variety of metabolic functions, cell differentiation, senescence, and stem cell maintenance. c-Myc modulates the expression of a very large number of genes, but the magnitude of the majority of the regulatory effects is only 2-fold or less. c-Myc can both activate and repress the promoters of its target genes. Identification of genes directly regulated by c-Myc has been an enduring question in the field. We report here microarray expression profiling of a high resolution time course of c-Myc induction, using fibroblast cells in which c-Myc activity can be modulated from null to physiological. The c-Myc transcriptome dataset presented is the largest reported to date with 4,186 differentially regulated genes (1,826 upregulated, 2,360 downregulated, 1% FDR). The gene expression patterns fit well with the known biological functions of c-Myc. We describe several novel findings and present tools for further data mining. Although the mechanisms of transcriptional activation by c-Myc are well understood, how c-Myc represses an even greater number of genes remains incompletely described. One mechanism involves the binding of c-Myc to other, positively acting transcription factors, and interfering with their activities. We identified rapid-response genes likely to be direct c-Myc targets, and analyzed the promoters of the repressed genes to identify transcription factors that could be targets of c-Myc repression.
Collapse
Affiliation(s)
- Chui-Sun Yap
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | | | | | | | | |
Collapse
|
28
|
|
29
|
Cardiac Stem Cells: Tales, Mysteries and Promises in Heart Generation and Regeneration. Regen Med 2011. [DOI: 10.1007/978-90-481-9075-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Abstract
Generation of induced pluripotent stem (iPS) cells using defined factors has been considered a ground-breaking step towards establishing patient-specific pluripotent stem cells for various applications. The isolation of human embryonic stem (ES) cells set the standard that pluripotent stem cells are attainable as potentially immortal cells for regeneration of many types of tissues. Different approaches have been tested to obtain pluripotent stem cells by circumventing the need for embryos. iPS cells appear to be an ideal substitute for ES cells. Since the first demonstration of creating iPS cells in 2006, tremendous efforts have been made into improving iPS cell generation methods and understanding the reprogramming mechanism as well as the nature of iPS cells. To improve iPS cell generation, several approaches have been taken: (1) eliminate the viral vector integration after delivering the defined factors; (2) select different cell types that more effectively give rise to iPS cells; (3) use of chemicals to facilitate reprogramming; (4) use of protein factors to reprogram cells. The iPS cells are also being rigorously characterized in comparison to ES cells. All these efforts are made for the purpose of making iPS cells closer to clinical applications. This article will give an overview of the following areas: (1) mechanisms of iPS cell derivation; (2) characterization of iPS cells; (3) iPS cells for cell-based therapy; and (4) iPS cells for studying disease mechanism. Questions as to what aspects of iPS cells require further understanding before they may be put to clinical use are also discussed.
Collapse
Affiliation(s)
- George T-J Huang
- Department of Endodontics, Boston University School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Lohse MB, Johnson AD. Temporal anatomy of an epigenetic switch in cell programming: the white-opaque transition of C. albicans. Mol Microbiol 2010; 78:331-43. [PMID: 20735781 DOI: 10.1111/j.1365-2958.2010.07331.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human pathogen Candida albicans undergoes a well-defined switch between two distinct cell types, named 'white' and 'opaque'. White and opaque cells differ in metabolic preferences, mating behaviours, cellular morphologies and host interactions. Each cell type is stable through many generations; switching between them is rare, stochastic and occurs without any known changes in the primary sequence of the genome; thus the switch is epigenetic. The white-opaque switch is regulated by a transcriptional circuit, composed of four regulators arranged in a series of interlocking feedback loops. To understand how switching occurs, we investigated the order of regulatory changes that occur during the switch from the opaque to the white cell type. Surprisingly, changes in key transcriptional regulators occur gradually, extending over several cell divisions with little cell-to-cell variation. Additional experiments, including perturbations to regulator concentrations, refine the signature of the commitment point. Transcriptome analysis reveals that opaque cells begin to globally resemble white cells well before they irreversibly commit to switching. We propose that these characteristics of the switching process permit C. albicans to 'test the waters' before making an all-or-none decision.
Collapse
Affiliation(s)
- Matthew B Lohse
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
32
|
Anastasia L, Pelissero G, Venerando B, Tettamanti G. Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine. Cell Death Differ 2010; 17:1230-7. [PMID: 20168332 DOI: 10.1038/cdd.2010.14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The possibility of reprogramming adult somatic cells into pluripotent stem cells (iPSCs) has generated a renewed interest into stem cell research and promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells and the difficulty of obtaining large numbers of adult stem cells (Belmonte et al., Nat Rev Genet, 2009). This approach is also not free from challenges like the mechanism of the reprogramming process, which has yet to be elucidated, and the warranties for safety of generated pluripotent cells, especially in view of their possible therapeutic use. Very recently, several new reprogramming methods have surfaced, which seem to be more appropriate than genetic reprogramming. Particularly, chemically induced pluripotent cells (CiPSs), obtained with recombinant proteins or small synthetic molecules, may represent a valid approach, simpler and possibly safer than the other ones.
Collapse
Affiliation(s)
- L Anastasia
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, Segrate, Milan, Italy.
| | | | | | | |
Collapse
|
33
|
Tokumoto Y, Ogawa S, Nagamune T, Miyake J. Comparison of efficiency of terminal differentiation of oligodendrocytes from induced pluripotent stem cells versus embryonic stem cells in vitro. J Biosci Bioeng 2009; 59:882-92. [PMID: 20471604 DOI: 10.1002/glia.21159] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS), and defects in these cells can result in the loss of CNS functions. Although oligodendrocyte progenitor cells transplantation therapy is an effective cure for such symptoms, there is no readily available source of these cells. Recent studies have described the generation of induced pluripotent stem cells (iPS cells) from somatic cells, leading to anticipation of this technique as a novel therapeutic tool in regenerative medicine. In this study, we evaluated the ability of iPS cells derived from mouse embryonic fibroblasts to differentiate into oligodendrocytes and compared this with the differential ability of mouse embryonic stem cells (ES cells). Experiments using an in vitro oligodendrocyte differentiation protocol that was optimized to ES cells demonstrated that 2.3% of iPS cells differentiated into O4(+) oligodendrocytes compared with 24.0% of ES cells. However, the rate of induction of A2B5(+) oligodendrocyte precursor cell (OPC) was similar for both iPS-derived cells and ES-derived cells (14.1% and 12.6%, respectively). These findings suggest that some intracellular factors in iPS cells inhibit the terminal differentiation of oligodendrocytes from the OPC stage.
Collapse
Affiliation(s)
- Yasuhito Tokumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | |
Collapse
|